Chapter 18;:

C++

From Control Structures
through Obijects

STARTING OUT WITH

seventh edition

Stacks And
Queues

TONY GADDIS

Addison-Wesley
is an imprint of

HFVSTOLN M Copyright © 2012 Pearson Education, Inc.
B

From Control Structures

through Objects
1 8 [1 TONY GADDIS

sevent! h edition

Introduction to the
Stack ADT

Copyright © 2012 Pearson Education, Inc.

Introduction to the Stack ADT

« Stack: a LIFO (last in, first out) data
structure

« Examples:

— plates in a cafeteria

— return addresses for function calls
Implementation:

— static: fixed size, implemented as array

— dynamic: variable size, implemented as linked
list

Copyright © 2012 Pearson Education, Inc.

A LIFO Structure

Last plate in,)
first plate out i

: . 2
First plate in, —3»3

last plate out

Copyright © 2012 Pearson Education, Inc.

Stack Operations and Functions

* Operations:

— push: add a value onto the top of the stack
— pop: remove a value from the top of the stack

 Functions:

—1sFull: true If the stac
has no more space to ho

— ISEmpty: true If the stac
no elements

Copyright © 2012 Pearson Education, Inc.

K IS currently full, I.e.,
d additional elements

K currently contains

Stack Operations - Example

A stack that can hold char values:

push ('E") ; push ('K") ; i push ('G") ;

Copyright © 2012 Pearson Education, Inc.

Stack Operations - Example

A stack that can hold char values:

pop () ; pop () ; pop () 7
(remove G) E (remove K) (remove E)

Copyright © 2012 Pearson Education, Inc.

Contents of IntStack.h

// Bpecification file for the IntStack class
tifndef INTSTACE H
tdefine INTSTACE H

class IntStack

{
private:
int #*stackArray; // Pointer to the stack array
int stacksSize: // The stack size
int top; // Indicates the top of the stack
public:
/{ Constructor
Int5tack{int);
// Copy constructor
IntStack({const IntStack &);
/{ Destructor
~Intstack();
{/f Stack operations
vold push({int);
vold pop(int &);
bool isFull() const;
bool isEmpty () const;
bi
tendif

Copyright © 2012 Pearson Education, Inc.

(See IntStack.cpp for the
implementation.)

Copyright © 2012 Pearson Education, Inc.

18.2

Dynamic Stacks

STARTING OUT WITH ‘ -+

From Control Structures
through Objects

seventh edition

TONY GADDIS

Dynamic Stacks

* Grow and shrink as necessary

« Can't ever be full as long as memory Is
available

* Implemented as a linked list

Copyright © 2012 Pearson Education, Inc.

Implementing a Stack

* Programmers can program their own
routines to Implement stack functions

« See DynIntStack class in the book for
an example.

« Can also use the implementation of stack
available in the STL

Copyright © 2012 Pearson Education, Inc.

STARTING OUT WITH ‘ e

From Control Structures
through Objects

seventh edition

TONY GADDIS

The STL stack Container

Copyright © 2012 Pearson Education, Inc.

The STL stack container

« Stack template can be implemented as a
vector, a linked list, or a deque

* Implements push, pop, and empty
member functions

* Implements other member functions:
— size: number of elements on the stack
— top: reference to element on top of the stack

Copyright © 2012 Pearson Education, Inc.

Defining a stack

Defining a stack of chars, named cstack,
Implemented using a vector:

stack< char, vector<char> > cstack;

Implemented using a list:
stack< char, list<char> > cstack;

Implemented using a deque:
stack< char > cstack;

Spaces are required between consecutive >>,
<< symbols

Copyright © 2012 Pearson Education, Inc.

From Control Structures
through Objects

seventh edition

TONY GADDIS

Introduction to the Queue ADT

Copyright © 2012 Pearson Education, Inc.

Introduction to the Queue ADT

* Queue: a FIFO (first in, first out) data structure.

« Examples:
— people in line at the theatre box office
— print jobs sent to a printer
* Implementation:
— static: fixed size, implemented as array
— dynamic: variable size, implemented as linked list

Copyright © 2012 Pearson Education, Inc.

Queue Locations and
Operations

* rear: position where elements are added

* front: position from which elements are
removed

* enqueue: add an element to the rear of
the queue

* dequeue: remove an element from the
front of a queue

Copyright © 2012 Pearson Education, Inc.

Queue Operations - Example

« A currently empty queue that can hold char values:

* enqueue('E'");

frorn\\\\\\\\

rear

Copyright © 2012 Pearson Education, Inc.

Queue Operations - Example

e enqueue ('K'");

front — |,
E K

~

e enqueue ('G'"); rear

front\

rear

Copyright © 2012 Pearson Education, Inc.

Queue Operations - Example

 dequeue(); // remove E

front — | g C

—

[——— rear

« dequeue (); // remove K

front——_

—>

G
\

rear

Copyright © 2012 Pearson Education, Inc.

dequeue Issue, Solutions

 When removing an element from a queue,
remaining elements must shift to front

e Solutions:

— Let front index move as elements are removed (works
as long as rear index is not at end of array)

— Use above solution, and also let rear index "wrap
around" to front of array, treating array as circular
Instead of linear (more complex enqueue, dequeue
code)

Copyright © 2012 Pearson Education, Inc.

Contents of IntQueue.h
// Specification file for the IntQueue class
#ifndef INTQUEUE H
#define INTQUEUE H

1

O J o U1 b W I

11
12

class IntQueue

{

private:

int
int
int
int
int

Copyright © 2012 Pearson Education, Inc.

*queueArray;
queueSize;
front;

rear;
numltems;

//
//
//
//
//

Points to
The queue
Subscript
Subscript
Number of

the queue array
size

of the queue front
of the queue rear
items in the queue

18-22

Ccontents of IntQueue.h
(Continued)

13
14
15
16
17
18
19
20
21
22
23
24
25
26
2°7
28
29
30

public:
// Constructor
IntQueue (int) ;

// Copy constructor
IntQueue (const IntQueue &) ;

// Destructor (See IntQueue.cpp for the
~IntQueue () ; implementation)

// Queue operations
void enqueue (int) ;
void dequeue (int &) ;
bool isEmpty () const;
bool isFull () const;
void clear () ;

} i

#endif

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

18.5

Dynamic Queues

STARTING OUT WITH ‘ -+

From Control Structures
through Objects

seventh edition

TONY GADDIS

Dynamic Queues

* Like a stack, a gueue can be implemented
using a linked list

 Allows dynamic sizing, avoids issue of
shifting elements or wrapping indices

—r——— NULL

front * | rear

Copyright © 2012 Pearson Education, Inc.

Implementing a Queue

* Programmers can program their own
routines to iImplement queue operations

 See the DynIntQue class in the book for
an example of a dynamic queue

« Can also use the implementation of queue
and dequeue avallable in the STL

Copyright © 2012 Pearson Education, Inc.

From Control Structures

through Objects
1 8 [| 6 TONY GADDIS

The STL deque and queue
Containers

Copyright © 2012 Pearson Education, Inc.

The STL deque
and queue Containers

« deque: a double-ended queue. Has

member functions to enqueue
(push back) and dequeue (pop front)

* queue:. container ADT that can be used to
provide queue as a vector, list, or deque.
Has member functions to enque (push)
and dequeue (pop)

Copyright © 2012 Pearson Education, Inc.

Defining a queue

Defining a queue of chars, named
cQueue, Implemented using a deque:

deque<char> cQueue;

Implemented using a queue:
queue<char> cQueue;

Implemented using a 1ist:
queue< char, list<char> > cQueue;

Spaces are required between consecutive
>> << symbols

Copyright © 2012 Pearson Education, Inc.

