
Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Chapter 18:

Stacks And

Queues

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

18.1

Introduction to the

Stack ADT

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Introduction to the Stack ADT

• Stack: a LIFO (last in, first out) data
structure

• Examples:
– plates in a cafeteria

– return addresses for function calls

• Implementation:
– static: fixed size, implemented as array

– dynamic: variable size, implemented as linked
list

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

A LIFO Structure

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Stack Operations and Functions

• Operations:

– push: add a value onto the top of the stack

– pop: remove a value from the top of the stack

• Functions:

– isFull: true if the stack is currently full, i.e.,

has no more space to hold additional elements

– isEmpty: true if the stack currently contains

no elements

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Stack Operations - Example

• A stack that can hold char values:

K

E

G

K

E

E
push('E'); push('K'); push('G');

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Stack Operations - Example

• A stack that can hold char values:

E

K

E
pop();

(remove G)

pop();

(remove K)

pop();

(remove E)

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

(See IntStack.cpp for the

implementation.)

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

18.2

Dynamic Stacks

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Dynamic Stacks

• Grow and shrink as necessary

• Can't ever be full as long as memory is

available

• Implemented as a linked list

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Implementing a Stack

• Programmers can program their own
routines to implement stack functions

• See DynIntStack class in the book for
an example.

• Can also use the implementation of stack
available in the STL

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

18.3

The STL stack Container

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

The STL stack container

• Stack template can be implemented as a
vector, a linked list, or a deque

• Implements push, pop, and empty
member functions

• Implements other member functions:
– size: number of elements on the stack

– top: reference to element on top of the stack

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Defining a stack

• Defining a stack of chars, named cstack,
implemented using a vector:
stack< char, vector<char> > cstack;

• implemented using a list:
stack< char, list<char> > cstack;

• implemented using a deque:
stack< char > cstack;

• Spaces are required between consecutive >>,
<< symbols

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

18.4

Introduction to the Queue ADT

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Introduction to the Queue ADT

• Queue: a FIFO (first in, first out) data structure.

• Examples:
– people in line at the theatre box office

– print jobs sent to a printer

• Implementation:
– static: fixed size, implemented as array

– dynamic: variable size, implemented as linked list

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Queue Locations and

Operations

• rear: position where elements are added

• front: position from which elements are
removed

• enqueue: add an element to the rear of
the queue

• dequeue: remove an element from the
front of a queue

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Queue Operations - Example

• A currently empty queue that can hold char values:

• enqueue('E');

E

front

rear

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Queue Operations - Example

• enqueue('K');

• enqueue('G');

E K

E K G

front

rear

front

rear

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Queue Operations - Example

• dequeue(); // remove E

• dequeue(); // remove K

K G

G

front

rear

front

rear

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

dequeue Issue, Solutions

• When removing an element from a queue,
remaining elements must shift to front

• Solutions:
– Let front index move as elements are removed (works

as long as rear index is not at end of array)

– Use above solution, and also let rear index "wrap
around" to front of array, treating array as circular
instead of linear (more complex enqueue, dequeue
code)

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

18-22

Contents of IntQueue.h

 1 // Specification file for the IntQueue class

 2 #ifndef INTQUEUE_H

 3 #define INTQUEUE_H

 4

 5 class IntQueue

 6 {

 7 private:

 8 int *queueArray; // Points to the queue array

 9 int queueSize; // The queue size

10 int front; // Subscript of the queue front

11 int rear; // Subscript of the queue rear

12 int numItems; // Number of items in the queue

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

13 public:

14 // Constructor

15 IntQueue(int);

16

17 // Copy constructor

18 IntQueue(const IntQueue &);

19

20 // Destructor

21 ~IntQueue();

22

23 // Queue operations

24 void enqueue(int);

25 void dequeue(int &);

26 bool isEmpty() const;

27 bool isFull() const;

28 void clear();

29 };

30 #endif

(See IntQueue.cpp for the

implementation)

Contents of IntQueue.h

(Continued)

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

18.5

Dynamic Queues

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Dynamic Queues

• Like a stack, a queue can be implemented

using a linked list

• Allows dynamic sizing, avoids issue of

shifting elements or wrapping indices

front rear

NULL

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Implementing a Queue

• Programmers can program their own

routines to implement queue operations

• See the DynIntQue class in the book for

an example of a dynamic queue

• Can also use the implementation of queue

and dequeue available in the STL

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

18.6

The STL deque and queue

Containers

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

The STL deque

and queue Containers

• deque: a double-ended queue. Has

member functions to enqueue
(push_back) and dequeue (pop_front)

• queue: container ADT that can be used to

provide queue as a vector, list, or deque.

Has member functions to enque (push)

and dequeue (pop)

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Defining a queue

• Defining a queue of chars, named
cQueue, implemented using a deque:
deque<char> cQueue;

• implemented using a queue:
queue<char> cQueue;

• implemented using a list:
queue< char, list<char> > cQueue;

• Spaces are required between consecutive
>>, << symbols

