
Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Chapter 15:

Inheritance,

Polymorphism,

and Virtual

Functions

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

15.1

What Is Inheritance?

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

What Is Inheritance?

• Provides a way to create a new class from

an existing class

• The new class is a specialized version of

the existing class

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Example: Insects

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

The "is a" Relationship

• Inheritance establishes an "is a"

relationship between classes.

– A poodle is a dog

– A car is a vehicle

– A flower is a plant

– A football player is an athlete

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Inheritance – Terminology and

Notation
• Base class (or parent) – inherited from

• Derived class (or child) – inherits from the base class

• Notation:
 class Student // base class

 {

 . . .

 };

 class UnderGrad : public student

 { // derived class

 . . .

 };

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Back to the ‘is a’ Relationship

• An object of a derived class 'is a(n)' object of
the base class

• Example:

– an UnderGrad is a Student

– a Mammal is an Animal

• A derived object has all of the characteristics of
the base class

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

What Does a Child Have?

An object of the derived class has:

• all members defined in child class

• all members declared in parent class

An object of the derived class can use:

• all public members defined in child class

• all public members defined in parent
class

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

15.2

Protected Members and Class

Access

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Protected Members and

Class Access
• protected member access specification:

like private, but accessible by objects of

derived class

• Class access specification: determines
how private, protected, and public

members of base class are inherited by

the derived class

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Class Access Specifiers

1) public – object of derived class can be

treated as object of base class (not vice-

versa)

2) protected – more restrictive than public,

but allows derived classes to know details of

parents

3) private – prevents objects of derived class

from being treated as objects of base class.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Inheritance vs. Access

private: x

protected: y

public: z

private: x

protected: y

public: z

private: x

protected: y

public: z

Base class members

x is inaccessible
private: y

private: z

x is inaccessible

protected: y

protected: z

x is inaccessible

protected: y

public: z

How inherited base class
members

appear in derived class
private
base class

protected
base class

public
base class

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

More Inheritance vs. Access

private members:
 char letter;
 float score;
 void calcGrade();
public members:
 void setScore(float);
 float getScore();
 char getLetter();

class Grade

private members:
 int numQuestions;
 float pointsEach;
 int numMissed;
public members:
 Test(int, int);

class Test : public Grade

When Test class inherits

from Grade class using

public class access, it

looks like this:

private members:
 int numQuestions:
 float pointsEach;
 int numMissed;
public members:
 Test(int, int);
 void setScore(float);
 float getScore();
 float getLetter();

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

More Inheritance vs. Access (2)

private members:
 char letter;
 float score;
 void calcGrade();
public members:
 void setScore(float);
 float getScore();
 char getLetter();

class Grade

private members:
 int numQuestions;
 float pointsEach;
 int numMissed;
public members:
 Test(int, int);

When Test class inherits

from Grade class using

protected class access, it

looks like this:

private members:
 int numQuestions:
 float pointsEach;
 int numMissed;
public members:
 Test(int, int);
protected members:
 void setScore(float);
 float getScore();
 float getLetter();

class Test : protected Grade

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

More Inheritance vs. Access (3)

private members:
 int numQuestions:
 float pointsEach;
 int numMissed;
 void setScore(float);
 float getScore();
 float getLetter();
public members:
 Test(int, int);

private members:
 char letter;
 float score;
 void calcGrade();
public members:
 void setScore(float);
 float getScore();
 char getLetter();

class Grade

private members:
 int numQuestions;
 float pointsEach;
 int numMissed;
public members:
 Test(int, int);

When Test class inherits

from Grade class using

private class access, it

looks like this:

class Test : private Grade

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

15.3

Constructors and Destructors in

Base and Derived Classes

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Constructors and Destructors in

Base and Derived Classes

• Derived classes can have their own
constructors and destructors

• When an object of a derived class is
created, the base class’s constructor is
executed first, followed by the derived
class’s constructor

• When an object of a derived class is
destroyed, its destructor is called first, then
that of the base class

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Constructors and Destructors in

Base and Derived Classes

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Program 5-14 (Continued)

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Passing Arguments to

Base Class Constructor

• Allows selection between multiple base
class constructors

• Specify arguments to base constructor on
derived constructor heading:
 Square::Square(int side) :
 Rectangle(side, side)

• Can also be done with inline constructors

• Must be done if base class has no default
constructor

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Passing Arguments to

Base Class Constructor

Square::Square(int

side):Rectangle(side,side)

derived class constructor base class constructor

derived constructor
parameter

base constructor
parameters

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

15.4

Redefining Base Class Functions

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Redefining Base Class

Functions

• Redefining function: function in a derived
class that has the same name and
parameter list as a function in the base
class

• Typically used to replace a function in base
class with different actions in derived class

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Redefining Base Class

Functions
• Not the same as overloading – with

overloading, parameter lists must be

different

• Objects of base class use base class

version of function; objects of derived

class use derived class version of function

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Base Class

15-26

Note setScore function

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

15-27

Redefined setScore function

Derived Class

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

From Program 15-7

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Problem with Redefining

• Consider this situation:
– Class BaseClass defines functions x() and y().
x() calls y().

– Class DerivedClass inherits from BaseClass and
redefines function y().

– An object D of class DerivedClass is created and
function x() is called.

– When x() is called, which y() is used, the one
defined in BaseClass or the the redefined one in
DerivedClass?

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Problem with Redefining

BaseClass

DerivedClass

void X();

void Y();

void Y();

DerivedClass D;

D.X();

Object D invokes function X()

In BaseClass. Function X()

invokes function Y() in BaseClass, not

function Y() in DerivedClass,

because function calls are bound at

compile time. This is static
binding.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

15.5

Class Hierarchies

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Class Hierarchies

• A base class can be derived from another

base class.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Class Hierarchies

• Consider the GradedActivity, FinalExam,

PassFailActivity, PassFailExam hierarchy in

Chapter 15.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

15.6

Polymorphism and Virtual

Member Functions

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Polymorphism and

Virtual Member Functions

• Virtual member function: function in base class
that expects to be redefined in derived class

• Function defined with key word virtual:
virtual void Y() {...}

• Supports dynamic binding: functions bound at
run time to function that they call

• Without virtual member functions, C++ uses
static (compile time) binding

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Consider this function (from Program 15-9)

Because the parameter in the displayGrade function is a GradedActivity

reference variable, it can reference any object that is derived from

GradedActivity. That means we can pass a GradedActivity object, a

FinalExam object, a PassFailExam object, or any other object that is

derived from GradedActivity.

A problem occurs in Program 15-10 however...

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

15-37

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

As you can see from the example output, the getLetterGrade member

function returned ‘C’ instead of ‘P’. This is because the GradedActivity
class’s getLetterGrade function was executed instead of the

PassFailActivity class’s version of the function.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Static Binding

• Program 15-10 displays 'C' instead of 'P'
because the call to the getLetterGrade

function is statically bound (at compile

time) with the GradedActivity class's

version of the function.

• We can remedy this by making the

function virtual.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Virtual Functions

• A virtual function is dynamically bound to

calls at runtime.

• At runtime, C++ determines the type of

object making the call, and binds the

function to the appropriate version of the

function.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Virtual Functions

• To make a function virtual, place the

virtual key word before the return type in

the base class's declaration:

virtual char getLetterGrade() const;

• The compiler will not bind the function to

calls. Instead, the program will bind them

at runtime.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Updated Version of GradedActivity

The function

is now virtual.

The function also becomes

virtual in all derived classes

automatically!

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

If we recompile our program with the updated versions of the

classes, we will get the right output, shown here: (See Program

15-11 in the book.)

This type of behavior is known as polymorphism. The term

polymorphism means the ability to take many forms.

Program 15-12 demonstrates polymorphism by passing

objects of the GradedActivity and PassFailExam classes to the

displayGrade function.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Polymorphism Requires

References or Pointers

• Polymorphic behavior is only possible

when an object is referenced by a

reference variable or a pointer, as
demonstrated in the displayGrade

function.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Base Class Pointers

• Can define a pointer to a base class object

• Can assign it the address of a derived

class object

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Base Class Pointers

• Base class pointers and references only know

about members of the base class

– So, you can’t use a base class pointer to call a

derived class function

• Redefined functions in derived class will be

ignored unless base class declares the function
virtual

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Redefining vs. Overriding

• In C++, redefined functions are statically

bound and overridden functions are

dynamically bound.

• So, a virtual function is overridden, and a

non-virtual function is redefined.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Virtual Destructors

• It's a good idea to make destructors virtual

if the class could ever become a base

class.

• Otherwise, the compiler will perform static

binding on the destructor if the class ever

is derived from.

• See Program 15-14 for an example

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

15.7

Abstract Base Classes and

Pure Virtual Functions

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Abstract Base Classes and

Pure Virtual Functions

• Pure virtual function: a virtual member function
that must be overridden in a derived class that
has objects

• Abstract base class contains at least one pure
virtual function:
 virtual void Y() = 0;

• The = 0 indicates a pure virtual function

• Must have no function definition in the base
class

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Abstract Base Classes and

Pure Virtual Functions

• Abstract base class: class that can have
no objects. Serves as a basis for derived
classes that may/will have objects

• A class becomes an abstract base class
when one or more of its member
functions is a pure virtual function

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

15.8

Multiple Inheritance

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Multiple Inheritance

• A derived class can have more than one base
class

• Each base class can have its own access
specification in derived class's definition:
 class cube : public square,

 public rectSolid;

class
square

class
rectSolid

class
cube

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Multiple Inheritance

• Arguments can be passed to both base
classes' constructors:
 cube::cube(int side) :
square(side),

 rectSolid(side, side, side);

• Base class constructors are called in order

given in class declaration, not in order

used in class constructor

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Multiple Inheritance

• Problem: what if base classes have member

variables/functions with the same name?

• Solutions:

– Derived class redefines the multiply-defined function

– Derived class invokes member function in a particular
base class using scope resolution operator ::

• Compiler errors occur if derived class uses base

class function without one of these solutions

