
Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Chapter 14:

More About

Classes

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

14.1

Instance and Static Members

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Instance and Static Members

• instance variable: a member variable in a class.
Each object has its own copy.

• static variable: one variable shared among all
objects of a class

• static member function: can be used to
access static member variable; can be called
before any objects are defined

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

static member variable

Contents of Tree.h

 1 // Tree class

 2 class Tree

 3 {

 4 private:

 5 static int objectCount; // Static member variable.

 6 public:

 7 // Constructor

 8 Tree()

 9 { objectCount++; }

10

11 // Accessor function for objectCount

12 int getObjectCount() const

13 { return objectCount; }

14 };

15

16 // Definition of the static member variable, written

17 // outside the class.

18 int Tree::objectCount = 0;

Static member declared here.

Static member defined here.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Three Instances of the Tree Class, But Only
One objectCount Variable

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

static member function

• Declared with static before return type:
 static int getObjectCount() const

 { return objectCount; }

• Static member functions can only access static
member data

• Can be called independent of objects:

int num = Tree::getObjectCount();

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Modified Version of Tree.h

 1 // Tree class

 2 class Tree

 3 {

 4 private:

 5 static int objectCount; // Static member variable.

 6 public:

 7 // Constructor

 8 Tree()

 9 { objectCount++; }

10

11 // Accessor function for objectCount

12 static int getObjectCount() const

13 { return objectCount; }

14 };

15

16 // Definition of the static member variable, written

17 // outside the class.

18 int Tree::objectCount = 0;

Now we can call the function like this:
cout << "There are " << Tree::getObjectCount()

 << " objects.\n";

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

14.2

Friends of Classes

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Friends of Classes

• Friend: a function or class that is not a member
of a class, but has access to private members of
the class

• A friend function can be a stand-alone function
or a member function of another class

• It is declared a friend of a class with friend
keyword in the function prototype

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

 friend Function Declarations

• Stand-alone function:
friend void setAVal(intVal&, int);

// declares setAVal function to be

// a friend of this class

• Member function of another class:
friend void SomeClass::setNum(int num)

// setNum function from SomeClass

// class is a friend of this class

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

 friend Class Declarations

• Class as a friend of a class:
class FriendClass

{

 ...

};

class NewClass

{

 public:

 friend class FriendClass; // declares

 // entire class FriendClass as a friend

 // of this class

 …
};

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

14.3

Memberwise Assignment

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Memberwise Assignment

• Can use = to assign one object to another, or to

initialize an object with an object’s data

• Copies member to member. e.g.,

 instance2 = instance1; means:

 copy all member values from instance1 and assign

to the corresponding member variables of
instance2

• Use at initialization:

 Rectangle r2 = r1;

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

14.4

Copy Constructors

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Copy Constructors

• Special constructor used when a newly created
object is initialized to the data of another object
of same class

• Default copy constructor copies field-to-field

• Default copy constructor works fine in many
cases

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Copy Constructors

 Problem: what if object contains a pointer?
 class SomeClass

 { public:

 SomeClass(int val = 0)

 {value=new int; *value = val;}

 int getVal();

 void setVal(int);

 private:

 int *value;

 }

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Copy Constructors

 What we get using memberwise copy with
objects containing dynamic memory:

SomeClass object1(5);

SomeClass object2 = object1;

object2.setVal(13);

cout << object1.getVal(); // also 13

object1 object2

value value

13

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Programmer-Defined

Copy Constructor

• Allows us to solve problem with objects
containing pointers:
 SomeClass::SomeClass(const SomeClass &obj)

 {

 value = new int;

 *value = obj.value;

 }

• Copy constructor takes a reference
parameter to an object of the class

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Programmer-Defined

Copy Constructor
• Each object now points to separate

dynamic memory:
SomeClass object1(5);

SomeClass object2 = object1;

object2.setVal(13);

cout << object1.getVal(); // still 5

object1 object2

value value

13 5

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Programmer-Defined

Copy Constructor

• Since copy constructor has a reference to
the object it is copying from,
 SomeClass::SomeClass(SomeClass &obj)

 it can modify that object.

• To prevent this from happening, make the
object parameter const:
 SomeClass::SomeClass

 (const SomeClass &obj)

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

14.5

Operator Overloading

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Operator Overloading

• Operators such as =, +, and others can be redefined when
used with objects of a class

• The name of the function for the overloaded operator is
operator followed by the operator symbol, e.g.,
 operator+ to overload the + operator, and

 operator= to overload the = operator

• Prototype for the overloaded operator goes in the
declaration of the class that is overloading it

• Overloaded operator function definition goes with other
member functions

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Operator Overloading

• Prototype:

 void operator=(const SomeClass &rval)

• Operator is called via object on left side

return

type

function

name

parameter for

object on right

side of operator

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Invoking an Overloaded

Operator

• Operator can be invoked as a member

function:

 object1.operator=(object2);

• It can also be used in more conventional

manner:

 object1 = object2;

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Returning a Value

• Overloaded operator can return a value
class Point2d

{

 public:

 double operator-(const point2d &right)

 { return sqrt(pow((x-right.x),2)

 + pow((y-right.y),2)); }

...

 private:

 int x, y;

};

Point2d point1(2,2), point2(4,4);

// Compute and display distance between 2 points.

cout << point2 – point1 << endl; // displays 2.82843

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Returning a Value

• Return type the same as the left operand

supports notation like:

 object1 = object2 = object3;

• Function declared as follows:
const SomeClass operator=(const someClass &rval)

• In function, include as last statement:

 return *this;

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

The this Pointer

• this: predefined pointer available to a
class’s member functions

• Always points to the instance (object) of
the class whose function is being called

• Is passed as a hidden argument to all non-
static member functions

• Can be used to access members that may
be hidden by parameters with same name

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

this Pointer Example

class SomeClass

{

 private:

 int num;

 public:

 void setNum(int num)

 { this->num = num; }

 ...

};

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Notes on

Overloaded Operators
• Can change meaning of an operator

• Cannot change the number of operands of

the operator

• Only certain operators can be overloaded.

Cannot overload the following operators:

 ?: . .* :: sizeof

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Overloading Types of Operators

• ++, -- operators overloaded differently for
prefix vs. postfix notation

• Overloaded relational operators should
return a bool value

• Overloaded stream operators >>, << must
return reference to istream, ostream
objects and take istream, ostream
objects as parameters

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Overloaded [] Operator

• Can create classes that behave like arrays,

provide bounds-checking on subscripts

• Must consider constructor, destructor

• Overloaded [] returns a reference to

object, not an object itself

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

14.6

Object Conversion

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Object Conversion

• Type of an object can be converted to another type

• Automatically done for built-in data types

• Must write an operator function to perform conversion

• To convert an FeetInches object to an int:
 FeetInches::operator int()

{return feet;}

• Assuming distance is a FeetInches object, allows
statements like:
 int d = distance;

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

14.7

Aggregation

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Aggregation

• Aggregation: a class is a member of a

class

• Supports the modeling of ‘has a’

relationship between classes – enclosing

class ‘has a’ enclosed class

• Same notation as for structures within

structures

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Aggregation

class StudentInfo

{

 private:

 string firstName, LastName;

 string address, city, state, zip;

 ...

};

class Student

{

 private:

 StudentInfo personalData;

 ...

};

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

See the Instructor, TextBook,

and Course classes in Chapter 14.

