
Copyright © 2012 Pearson Education, Inc.

Chapter 12:

Advanced File

Operations

Copyright © 2012 Pearson Education, Inc.

12.1

File Operations

Copyright © 2012 Pearson Education, Inc.

File Operations

• File: a set of data stored on a computer,
often on a disk drive

• Programs can read from, write to files

• Used in many applications:

– Word processing

– Databases

– Spreadsheets

– Compilers

Copyright © 2012 Pearson Education, Inc.

Using Files

1. Requires fstream header file
– use ifstream data type for input files

– use ofstream data type for output files

– use fstream data type for both input, output
files

2. Can use >>, << to read from, write to a file

3. Can use eof member function to test for
end of input file

Copyright © 2012 Pearson Education, Inc.

fstream Object

• fstream object can be used for either input or output

• Must specify mode on the open statement

• Sample modes:
 ios::in – input

 ios::out – output

• Can be combined on open call:
 dFile.open("class.txt", ios::in | ios::out);

Copyright © 2012 Pearson Education, Inc.

File Access Flags

Copyright © 2012 Pearson Education, Inc.

Using Files - Example

// copy 10 numbers between files

// open the files

fstream infile("input.txt", ios::in);

fstream outfile("output.txt", ios::out);

int num;

for (int i = 1; i <= 10; i++)

{

 infile >> num; // use the files

 outfile << num;

}

infile.close(); // close the files

outfile.close();

Copyright © 2012 Pearson Education, Inc.

Default File Open Modes

• ifstream:
– open for input only

– file cannot be written to

– open fails if file does not exist

• ofstream:

– open for output only

– file cannot be read from

– file created if no file exists

– file contents erased if file exists

Copyright © 2012 Pearson Education, Inc.

More File Open Details

• Can use filename, flags in definition:
 ifstream gradeList("grades.txt");

• File stream object set to 0 (false) if
open failed:
 if (!gradeList) ...

• Can also check fail member function to
detect file open error:
 if (gradeList.fail()) ...

Copyright © 2012 Pearson Education, Inc.

12.2

File Output Formatting

Copyright © 2012 Pearson Education, Inc.

File Output Formatting

• Use the same techniques with file stream
objects as with cout: showpoint,

setw(x), showprecision(x), etc.

• Requires iomanip to use manipulators

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Program 12-3 (Continued)

Copyright © 2012 Pearson Education, Inc.

12.3

Passing File Stream Objects to

Functions

Copyright © 2012 Pearson Education, Inc.

Passing File Stream Objects to

Functions

• It is very useful to pass file stream objects

to functions

• Be sure to always pass file stream objects

by reference

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

12.4

More Detailed Error Testing

Copyright © 2012 Pearson Education, Inc.

More Detailed Error Testing

• Can examine error state bits to determine stream
status

• Bits tested/cleared by stream member functions

ios::eofbit set when end of file detected

ios::failbit set when operation failed

ios::hardfail set when error occurred and no recovery

ios::badbit set when invalid operation attempted

ios::goodbit set when no other bits are set

Copyright © 2012 Pearson Education, Inc.

Member Functions / Flags

eof() true if eofbit set, false otherwise

fail() true if failbit or hardfail set, false otherwise

bad() true if badbit set, false otherwise

good() true if goodbit set, false otherwise

clear() clear all flags (no arguments), or clear a specific flag

Copyright © 2012 Pearson Education, Inc.

From Program 12-6

Copyright © 2012 Pearson Education, Inc.

12.5

Member Functions for Reading

and Writing Files

Copyright © 2012 Pearson Education, Inc.

Member Functions for Reading

and Writing Files

• Functions that may be used for input with
whitespace, to perform single character
I/O, or to return to the beginning of an input
file

• Member functions:
 getline: reads input including whitespace

 get: reads a single character

 put: writes a single character

Copyright © 2012 Pearson Education, Inc.

The getline Function

• Three arguments:
– Name of a file stream object

– Name of a string object

– Delimiter character of your choice

– Examples, using the file stream object myFile,
and the string objects name and address:

 getline(myFile, name);

 getline(myFile, address, '\t');

– If left out, '\n' is default for third argument

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Single Character I/O

• get: read a single character from a file

 char letterGrade;

 gradeFile.get(letterGrade);

Will read any character, including whitespace

• put: write a single character to a file

 reportFile.put(letterGrade);

Copyright © 2012 Pearson Education, Inc.

12.6

Working with Multiple Files

Copyright © 2012 Pearson Education, Inc.

Working with Multiple Files

• Can have more than file open at a time in

a program

• Files may be open for input or output

• Need to define file stream object for each

file

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

12.7

Binary Files

Copyright © 2012 Pearson Education, Inc.

12-35

Binary Files

• Binary file contains unformatted, non-ASCII

data

• Indicate by using binary flag on open:

 inFile.open("nums.dat", ios::in |

ios::binary);

Copyright © 2012 Pearson Education, Inc.

12-36

Binary Files

• Use read and write instead of <<, >>

char ch;

// read in a letter from file

inFile.read(&ch, sizeof(ch));

// send a character to a file

outFile.write(&ch, sizeof(ch));

address of where to put
the data being read in.
The read function expects
to read chars

how many bytes to
read from the file

Copyright © 2012 Pearson Education, Inc.

Binary Files

• To read, write non-character data, must use a
typecast operator to treat the address of the data
as a character address
int num;

// read in a binary number from a file

inFile.read(reinterpret_cast<char *>&num,

 sizeof(num));

// send a binary value to a file

outf.write(reinterpret_cast<char *>&num,

 sizeof(num));

treat the address of num as
the address of a char

Copyright © 2012 Pearson Education, Inc.

12.8

Creating Records with Structures

Copyright © 2012 Pearson Education, Inc.

12-39

Creating Records with

Structures
• Can write structures to, read structures

from files

• To work with structures and files,

– use ios::binary file flag upon open

– use read, write member functions

Copyright © 2012 Pearson Education, Inc.

12-40

Creating Records with

Structures

struct TestScore

{

 int studentId;

 double score;

 char grade;

};

TestScore oneTest;

...

// write out oneTest to a file

gradeFile.write(reinterpret_cast<char *>

(&oneTest), sizeof(oneTest));

Copyright © 2012 Pearson Education, Inc.

12.9

Random-Access Files

Copyright © 2012 Pearson Education, Inc.

12-42

Random-Access Files

• Sequential access: start at beginning of
file and go through data in file, in order,
to end

– to access 100th entry in file, go through 99
preceding entries first

• Random access: access data in a file in
any order

– can access 100th entry directly

Copyright © 2012 Pearson Education, Inc.

12-43

Random Access Member

Functions

• seekg (seek get): used with files open for
input

• seekp (seek put): used with files open for
output

• Used to go to a specific position in a file

Copyright © 2012 Pearson Education, Inc.

12-44

Random Access Member

Functions
• seekg,seekp arguments:

offset: number of bytes, as a long
mode flag: starting point to compute offset

• Examples:
inData.seekg(25L, ios::beg);

// set read position at 26th byte

// from beginning of file

outData.seekp(-10L, ios::cur);

// set write position 10 bytes

// before current position

Copyright © 2012 Pearson Education, Inc.

12-45

Important Note on Random

Access

• If eof is true, it must be cleared before

seekg or seekp:

 gradeFile.clear();

 gradeFile.seekg(0L, ios::beg);

 // go to the beginning of the file

Copyright © 2012 Pearson Education, Inc.

12-46

Random Access Information

• tellg member function: return current

byte position in input file

 long int whereAmI;

 whereAmI = inData.tellg();

• tellp member function: return current

byte position in output file

 whereAmI = outData.tellp();

Copyright © 2012 Pearson Education, Inc.

12.10

Opening a File for

Both Input and Output

Copyright © 2012 Pearson Education, Inc.

Opening a File for

Both Input and Output
• File can be open for input and output simultaneously

• Supports updating a file:
– read data from file into memory

– update data

– write data back to file

• Use fstream for file object definition:
 fstream gradeList("grades.dat",

 ios::in | ios::out);

• Can also use ios::binary flag for binary data

