
Copyright © 2012 Pearson Education, Inc.

Chapter 2:

Introduction to

C++

Copyright © 2012 Pearson Education, Inc.

2.1

The Part of a C++ Program

Copyright © 2012 Pearson Education, Inc.

The Parts of a C++ Program

// sample C++ program

#include <iostream>

using namespace std;

int main()

{

 cout << "Hello, there!";

 return 0;

}

preprocessor directive

comment

which namespace to use

beginning of function named main

beginning of block for main

output statement

end of block for main

string literal
send 0 to operating system

Copyright © 2012 Pearson Education, Inc.

Special Characters

Character Name Meaning

// Double slash Beginning of a comment

Pound sign Beginning of preprocessor
directive

< > Open/close brackets Enclose filename in #include

() Open/close
parentheses

Used when naming a
function

{ } Open/close brace Encloses a group of
statements

" " Open/close
quotation marks

Encloses string of
characters

; Semicolon End of a programming
statement

Copyright © 2012 Pearson Education, Inc.

2.2

The cout Object

Copyright © 2012 Pearson Education, Inc.

The cout Object

• Displays output on the computer screen

• You use the stream insertion operator <<

to send output to cout:

 cout << "Programming is fun!";

Copyright © 2012 Pearson Education, Inc.

The cout Object

• Can be used to send more than one item
to cout:

 cout << "Hello " << "there!";

Or:

 cout << "Hello ";

 cout << "there!";

Copyright © 2012 Pearson Education, Inc.

The cout Object

• This produces one line of output:

cout << "Programming is ";

cout << "fun!";

Copyright © 2012 Pearson Education, Inc.

The endl Manipulator

• You can use the endl manipulator to start

a new line of output. This will produce two

lines of output:

cout << "Programming is" << endl;

cout << "fun!";

Copyright © 2012 Pearson Education, Inc.

The endl Manipulator

cout << "Programming is" << endl;
cout << "fun!";

Programming is
fun!

Copyright © 2012 Pearson Education, Inc.

The endl Manipulator

• You do NOT put quotation marks around
endl

• The last character in endl is a lowercase

L, not the number 1.

endl This is a lowercase L

Copyright © 2012 Pearson Education, Inc.

The \n Escape Sequence

• You can also use the \n escape sequence

to start a new line of output. This will

produce two lines of output:

cout << "Programming is\n";

cout << "fun!";

 Notice that the \n is INSIDE

the string.

Copyright © 2012 Pearson Education, Inc.

The \n Escape Sequence

cout << "Programming is\n";
cout << "fun!";

Programming is
fun!

Copyright © 2012 Pearson Education, Inc.

2.3

The #include Directive

Copyright © 2012 Pearson Education, Inc.

The #include Directive

• Inserts the contents of another file into the

program

• This is a preprocessor directive, not part of

C++ language

• #include lines not seen by compiler

• Do not place a semicolon at end of
#include line

Copyright © 2012 Pearson Education, Inc.

2.4

Variables and Literals

Copyright © 2012 Pearson Education, Inc.

Variables and Literals

• Variable: a storage location in memory

– Has a name and a type of data it can hold

– Must be defined before it can be used:

 int item;

Copyright © 2012 Pearson Education, Inc.

Variable Definition in Program 2-7

Variable Definition

Copyright © 2012 Pearson Education, Inc.

Literals

• Literal: a value that is written into a

program’s code.

 "hello, there" (string literal)

 12 (integer literal)

Copyright © 2012 Pearson Education, Inc.

Integer Literal in Program 2-9

20 is an integer literal

Copyright © 2012 Pearson Education, Inc.

String Literals in Program 2-9

These are string literals

Copyright © 2012 Pearson Education, Inc.

2.5

Identifiers

Copyright © 2012 Pearson Education, Inc.

Identifiers

• An identifier is a programmer-defined

name for some part of a program:

variables, functions, etc.

Copyright © 2012 Pearson Education, Inc.

C++ Key Words

You cannot use any of the C++ key words as an
identifier. These words have reserved meaning.

Copyright © 2012 Pearson Education, Inc.

Variable Names

• A variable name should represent the

purpose of the variable. For example:

 itemsOrdered

The purpose of this variable is to hold the
number of items ordered.

Copyright © 2012 Pearson Education, Inc.

Identifier Rules

• The first character of an identifier must be
an alphabetic character or and underscore
(_),

• After the first character you may use
alphabetic characters, numbers, or
underscore characters.

• Upper- and lowercase characters are
distinct

Copyright © 2012 Pearson Education, Inc.

Valid and Invalid Identifiers

IDENTIFIER VALID? REASON IF INVALID

totalSales Yes

total_Sales Yes

total.Sales No Cannot contain .

4thQtrSales No Cannot begin with digit

totalSale$ No Cannot contain $

Copyright © 2012 Pearson Education, Inc.

2.6

Integer Data Types

Copyright © 2012 Pearson Education, Inc.

Integer Data Types

• Integer variables can hold whole numbers such
as 12, 7, and -99.

Copyright © 2012 Pearson Education, Inc.

Defining Variables

• Variables of the same type can be defined
- On separate lines:

 int length;

 int width;

 unsigned int area;

- On the same line:

 int length, width;

 unsigned int area;

• Variables of different types must be in different
definitions

Copyright © 2012 Pearson Education, Inc.

Integer Types in Program 2-10

This program has three variables: checking,
miles, and days

Copyright © 2012 Pearson Education, Inc.

Integer Literals

• An integer literal is an integer value that is

typed into a program’s code. For example:

 itemsOrdered = 15;

In this code, 15 is an integer literal.

Copyright © 2012 Pearson Education, Inc.

Integer Literals in Program 2-10

Integer Literals

Copyright © 2012 Pearson Education, Inc.

Integer Literals

• Integer literals are stored in memory as
ints by default

• To store an integer constant in a long
memory location, put ‘L’ at the end of the
number: 1234L

• Constants that begin with ‘0’ (zero) are
base 8: 075

• Constants that begin with ‘0x’ are base
16: 0x75A

Copyright © 2012 Pearson Education, Inc.

2.7

The char Data Type

Copyright © 2012 Pearson Education, Inc.

The char Data Type

• Used to hold characters or very small

integer values

• Usually 1 byte of memory

• Numeric value of character from the

character set is stored in memory:

CODE:
char letter;

letter = 'C';

MEMORY:
letter

67

Copyright © 2012 Pearson Education, Inc.

Character Literals

• Character literals must be enclosed in

single quote marks. Example:

 'A'

Copyright © 2012 Pearson Education, Inc.

Character Literals in Program 2-13

Copyright © 2012 Pearson Education, Inc.

Character Strings

• A series of characters in consecutive memory
locations:
 "Hello"

• Stored with the null terminator, \0, at the end:

• Comprised of the characters between the " "

H e l l o \0

Copyright © 2012 Pearson Education, Inc.

2.8

The C++ string Class

Copyright © 2012 Pearson Education, Inc.

The C++ string Class

• Special data type supports working with strings

• #include <string>

• Can define string variables in programs:
string firstName, lastName;

• Can receive values with assignment operator:
firstName = "George";

lastName = "Washington";

• Can be displayed via cout
cout << firstName << " " << lastName;

Copyright © 2012 Pearson Education, Inc.

The string class in Program 2-15

Copyright © 2012 Pearson Education, Inc.

2.9

Floating-Point Data Types

Copyright © 2012 Pearson Education, Inc.

Floating-Point Data Types

• The floating-point data types are:
float
double
long double

• They can hold real numbers such as:
 12.45 -3.8

• Stored in a form similar to scientific notation

• All floating-point numbers are signed

Copyright © 2012 Pearson Education, Inc.

Floating-Point Data Types

Copyright © 2012 Pearson Education, Inc.

Floating-Point Literals

• Can be represented in

– Fixed point (decimal) notation:

 31.4159 0.0000625

– E notation:

 3.14159E1 6.25e-5

• Are double by default

• Can be forced to be float (3.14159f) or
long double (0.0000625L)

Copyright © 2012 Pearson Education, Inc.

Floating-Point Data Types in

Program 2-16

Copyright © 2012 Pearson Education, Inc.

2.10

The bool Data Type

Copyright © 2012 Pearson Education, Inc.

The bool Data Type

• Represents values that are true or

false

• bool variables are stored as small

integers

• false is represented by 0, true by 1:

 bool allDone = true;

 bool finished = false;

allDone finished

1 0

Copyright © 2012 Pearson Education, Inc.

Boolean Variables in Program 2-17

Copyright © 2012 Pearson Education, Inc.

2.11

Determining the Size of a Data

Type

Copyright © 2012 Pearson Education, Inc.

Determining the Size of a Data

Type
 The sizeof operator gives the size of any

data type or variable:

 double amount;

 cout << "A double is stored in "

 << sizeof(double) <<
"bytes\n";

 cout << "Variable amount is
stored in "

 << sizeof(amount)

 << "bytes\n";

Copyright © 2012 Pearson Education, Inc.

2.12

Variable Assignments and

Initialization

Copyright © 2012 Pearson Education, Inc.

Variable Assignments and

Initialization

• An assignment statement uses the =
operator to store a value in a variable.

item = 12;

• This statement assigns the value 12 to the
item variable.

Copyright © 2012 Pearson Education, Inc.

Assignment

• The variable receiving the value must

appear on the left side of the = operator.

• This will NOT work:

 // ERROR!

 12 = item;

Copyright © 2012 Pearson Education, Inc.

Variable Initialization

• To initialize a variable means to assign it a

value when it is defined:

 int length = 12;

• Can initialize some or all variables:

 int length = 12, width = 5, area;

Copyright © 2012 Pearson Education, Inc.

Variable Initialization in Program 2-

19

Copyright © 2012 Pearson Education, Inc.

2.13

Scope

Copyright © 2012 Pearson Education, Inc.

Scope

• The scope of a variable: the part of the

program in which the variable can be

accessed

• A variable cannot be used before it is

defined

Copyright © 2012 Pearson Education, Inc.

Variable Out of Scope in Program

2-20

Copyright © 2012 Pearson Education, Inc.

2.14

Arithmetic Operators

Copyright © 2012 Pearson Education, Inc.

Arithmetic Operators

• Used for performing numeric calculations

• C++ has unary, binary, and ternary

operators:

– unary (1 operand) -5

– binary (2 operands) 13 - 7

– ternary (3 operands) exp1 ? exp2 : exp3

Copyright © 2012 Pearson Education, Inc.

Binary Arithmetic Operators

SYMBOL OPERATION EXAMPLE VALUE OF
ans

+ addition ans = 7 + 3; 10

- subtraction ans = 7 - 3; 4

* multiplication ans = 7 * 3; 21

/ division ans = 7 / 3; 2

% modulus ans = 7 % 3; 1

Copyright © 2012 Pearson Education, Inc.

Arithmetic Operators in Program 2-

21

Copyright © 2012 Pearson Education, Inc.

A Closer Look at the / Operator

• / (division) operator performs integer
division if both operands are integers
cout << 13 / 5; // displays 2

cout << 91 / 7; // displays 13

• If either operand is floating point, the result
is floating point
cout << 13 / 5.0; // displays 2.6

cout << 91.0 / 7; // displays 13.0

Copyright © 2012 Pearson Education, Inc.

A Closer Look at the % Operator

• % (modulus) operator computes the

remainder resulting from integer division

cout << 13 % 5; // displays 3

• % requires integers for both operands

cout << 13 % 5.0; // error

Copyright © 2012 Pearson Education, Inc.

2.15

Comments

Copyright © 2012 Pearson Education, Inc.

Comments

• Used to document parts of the program

• Intended for persons reading the source

code of the program:

– Indicate the purpose of the program

– Describe the use of variables

– Explain complex sections of code

• Are ignored by the compiler

Copyright © 2012 Pearson Education, Inc.

Single-Line Comments

 Begin with // through to the end of line:

int length = 12; // length in

inches

int width = 15; // width in inches

int area; // calculated area

// calculate rectangle area

area = length * width;

Copyright © 2012 Pearson Education, Inc.

Multi-Line Comments

• Begin with /*, end with */

• Can span multiple lines:

/* this is a multi-line

 comment

*/

• Can begin and end on the same line:

int area; /* calculated area */

Copyright © 2012 Pearson Education, Inc.

2.16

Named Constants

Copyright © 2012 Pearson Education, Inc.

Named Constants

• Named constant (constant variable):
variable whose content cannot be
changed during program execution

• Used for representing constant values with
descriptive names:
 const double TAX_RATE = 0.0675;

 const int NUM_STATES = 50;

• Often named in uppercase letters

Copyright © 2012 Pearson Education, Inc.

Named Constants in Program 2-28

Copyright © 2012 Pearson Education, Inc.

2.17

Programming Style

Copyright © 2012 Pearson Education, Inc.

Programming Style

• The visual organization of the source code

• Includes the use of spaces, tabs, and

blank lines

• Does not affect the syntax of the program

• Affects the readability of the source code

Copyright © 2012 Pearson Education, Inc.

Programming Style

Common elements to improve readability:

• Braces { } aligned vertically

• Indentation of statements within a set of
braces

• Blank lines between declaration and other
statements

• Long statements wrapped over multiple
lines with aligned operators

Copyright © 2012 Pearson Education, Inc.

2.18

Standard and Prestandard C++

Copyright © 2012 Pearson Education, Inc.

Standard and Prestandard C++

Older-style C++ programs:

– Use .h at end of header files:

– #include <iostream.h>

– Use #define preprocessor directive instead

of const definitions

– Do not use using namespace convention

– May not compile with a standard C++

compiler

Copyright © 2012 Pearson Education, Inc.

#define directive in Program 2-31

