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1 Introductory Remarks

These notes are intended to accompany the video lectures on Kerr Geometry, which are available here. The content
closely follows the classic text on Kerr geometry by Barrett O’Neill [1], which serves as the primary reference
throughout. Please note that O’Neill’s notations for the spacetimes K∗ and ∗K are represented in these notes as
K̄ and K∗, respectively. Additionally, the discussion on energy extraction is drawn directly from Chandrasekhar’s
authoritative text, The Mathematical Theory of Black Holes [2]. The only prerequisite for these notes is a basic
understanding of general relativity at the level of an introductory textbook. Finally, if you notice any errors or lack
of clarity, please reach out to me at and I will modify these notes accordingly.

2 Begining Kerr Geometry

The Kerr metric describes the time-independent, axis-symmetric gravitational field of a collapsed object that has
retained its angular momentum. All matter having collapsed, the Kerr metric satisfies the vacuum Einstein equation
given by Rµν = 0. In Boyer-Lindquist coodinate system (t, r, θ, φ), the Kerr metric takes the form

ds2 = gtt c
2dt2 + 2 gtφ dt dφ+ grr dr2 + gθθ dθ2 + gφφ dφ2 , (1)

where

gtt = −1 +
2Mr

ρ2
, gtφ =

−2Mra sin2 θ

ρ2
, grr =

ρ2

∆
, gθθ = ρ2, gφφ =

Σ2 sin2 θ

ρ2
. (2)

Here
ρ2 = r2 + a2 cos2 θ , ∆ = r2 − 2Mr + a2 , and Σ2 = (r2 + a2)2 −∆ a2 sin2 θ .

As we shall see, M can be interpreted as the mass, and aM the angular momentum of the black hole. The metric
coefficient functions are independent of t and φ as expected from the assumed symmetry. When a → 0, the Kerr
metric reduces to the Schwarzschild metric. The Schwarzschild metric is both static and spherically symmetric, and
consequently describes the end product of a non-rotating spherically symmetric collapse. In the expressions above,
and as in the remainder of these notes, I have set c = G = 1.

The contravariant form of the Kerr metric tensor is given by

g = − Σ2

ρ2∆
∂t ⊗ ∂t −

2Mar

ρ2∆
∂t ⊗ ∂φ − 2Mar

ρ2∆
∂φ ⊗ ∂t +

∆

ρ2
∂r ⊗ ∂r +

1

ρ2
∂θ ⊗ ∂θ +

(∆− a2 sin2 θ)

ρ2∆sin2 θ
∂φ ⊗ ∂φ . (3)

We will find the following relationships obeyed by the components of the Kerr metric in Boyer-Lindquist coordinates
useful. Since they can be easily verified by algebraic manipulation, we state them without proof. For the covariant
form of the metric

a sin2 θgtt + gtφ = −a sin2 θ,

(r2 + a2)gtφ + agφφ = a sin2 θ∆,

(r2 + a2)gtt + agtφ = −∆,

a sin2 θgtφ + gφφ = (r2 + a2) sin2 θ.

(4)

And for the contravariant form
∆ gtt − a sin2 θ ∆ gtφ = −(r2 + a2)

agtt − (r2 + a2) gtφ = −a

∆gtφ − a sin2 θ∆ gφφ = −a

−a sin2 θgtφ + (r2 + a2) sin2 θgφφ = 1 .

(5)

Note

gφφ =
1

∆sin2 θ

[
1− 2Mr

ρ2

]
, and

√
−g = ρ2 sin θ .
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2.1 Singularities of K

1. In the BL coordinates since −det g = ρ2 sin θ, the poles defined by θ = 0 and θ = π are singular points. As
can be expected, these singularities will disappear in Cartesian-like coordinates.

2. There is a physical singularity when ρ2 = 0 which deserves some attention. This happens only when r = 0 and
θ = π/2 . If this is the case, it is not clear whether r = 0 is truly a point. To understand the nature of the
region r = 0, consider spacelike curves of type

α(φ) = (t0, r = 0, θ0, φ)

when θ ̸= π/2. These curves have proper length

L =

∫ 2π

0

√
gφφ |r=0 dφ =

∫ 2π

0

a sin θ0 dφ = 2π a sin θ0 .

I.e., when θ ̸= π/2, the region r = 0 has structure since the curve α has length 2πa in the limit θ = π/2.
Consequently, ρ2 = 0 is the famous ring singularity (RS) of the Kerr geometry defined by

RS = {r = 0, θ = π/2} .

On RS, the scalar curvature RabcdR
abcd → ∞ as can be easily verified.

3. K has a coordinate singularity when ∆ = 0. This happens when

r = r± ≡ M ±
√
M2 − a2 .

The surfaces r = r± are called Horizons (H+ and H− respectively). As suggested by their description as a
coordinate singularity, and as we shall see, they can be transformed away using cleverly chosen coordinates.

Much like the spherical coordinate system in Minkowski and Schwarzschild spacetime, the polar axis, given by θ = 0
and θ = π, is a coordinate singularity. This is easily seen by noting that at the polar axis

√
−g = 0, making the metric

degenerate in the Boyer-Lindquist coordinate system. In section 2.8, we will explicitly coordinate transform the polar
singularities away. With this in mind, we will treat the polar axis as a meaningful region of our spacetime. The
Kerr metric given in eq.(1) is asymptotically flat provided we have the usual interpretation for the Boyer-Lindquist
coordinates as r approaches infinity. I.e., we set 0 ≤ θ ≤ π and 0 ≤ φ < 2 π. In particular we require that φ is a
cyclic coordinate (φ0 and φ0 + 2π locates the same point).

Definition 1. The Kerr metric in the Boyer-Lindquist coordinate system extended to the axis {θ = 0, π} is referred
to as the spacetime K.

Definition 2. The two horizons H− and H+ divide K into three open regions. Block I is the region defined by
r > r+, Block II is the region defined by r− < r < r+, and Block III is the region defined by r < r−.

2.2 In Falling Kerr-Schild Coordinates

Problem 1. Define vector fields l and n by

l =
1

∆

[
(r2 + a2)∂t +∆∂r + a∂φ

]
and

n =
1

∆

[
(r2 + a2)∂t −∆∂r + a∂φ

]
in the Boyer-Lindquist coordinate system. Show that n and l are null geodesic vector fields in the Boyer-Lindquist
coordinate system.

Definition 3. n and l respectively will be referred to as the infalling and outgoing null geodesics of the Kerr geometry.
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Just like in the case of the Schwarzschild metric, we will show that that a simple coordinate transformation will
remove the singularities at H±. Naturally, for this to happen, the coordinate transformations will have to be singular
at r = r±. The infalling Kerr-Schild coordinates are (t̄, r̄, θ̄, φ̄). They are related to the Boyer-Lindquist coordinates
by the following relations:

r̄ = r , θ̄ = θ , dt̄ = dt+
r2 + a2

∆
dr , and dφ̄ = dφ+

a

∆
dr. (6)

The “barred” is placed on r and θ so that no confusions arise while performing coordinate transformations. We
will have plenty of opportunities to compare various components of tensors in the Boyer-Lindquist and Kerr-Schild
coordinates. Therefore, it will be crucial to establish the transformation properties as early as possible. Clearly,

dt̄
dr̄
dθ̄
dφ̄

 =


1 G 0 0
0 1 0 0
0 0 1 0
0 H 0 1




dt
dr
dθ
dφ

 , (7)

where

G =
r2 + a2

∆
and H =

a

∆
.

We can write the above equation as
dx̄µ = Aµ

ν dxν ,

where Aµ
ν is the transformation matrix defined in eq.(7), and

dx̄µ = (dt̄, dr̄, dθ̄, dφ̄) .

The lower indices refer to columns, and the upper indices refer to rows.

Problem 2. Show that the components of the dual vectors transforms as
wt̄

wr̄

wθ̄

wφ̄

 =
(
A−1

)T


wt

wr

wθ

wφ

 (8)

where

A−1 =


1 −G 0 0
0 1 0 0
0 0 1 0
0 −H 0 1

 .

Problem 3. Show that the basis vector transform as
∂t̄
∂r̄
∂θ̄
∂φ̄

 = (A−1)T


∂t
∂r
∂θ
∂φ

 .

Problem 4. Show that the components of a vector Y transforms as
Y t̄

Y r̄

Y θ̄

Y φ̄

 = (A)


Y t

Y r

Y θ

Y φ

 . (9)

Eqs.(8) and (9) can be used to transform general tensors. We are now in a position to compute the metric
tensor in the Kerr-Schild coordinate system. Various metric identities listed in eq.(4) will be required to simplify the
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expressions. To illustrate the nature of the simplifications, will carry out the calculation of gr̄r̄ explicitly, leaving the
others to the reader to verify.

gr̄r̄ = (A−1)α 1 (A−1)β 1 gαβ = [G2gtt +GHgtφ] + [GHgtφ +H2γφφ] + grr.

But,

G2gtt +GHgtφ =
G

∆

[
2Mrgtt + agtφ

]
=

G

∆

[
(r2 + a2)gtt + agtφ

]
.

Using eq.(4), the above equation becomes [
G2gtt +GHgtφ

]
= −G .

Similary, [
GHgtφ +H2γφφ

]
=

a2 sin2 θ

∆
.

From the above calculations we get that
gr̄r̄ = 0 .

In a similar manner, we find that in Kerr-Schild coordinates, the metric components in the basis (t̄, r̄, θ̄, φ̄) become

gµν =


z − 1 1 0 −za sin2 θ
1 0 0 −a sin2 θ
0 0 ρ2 0

−za sin2 θ −a sin2 θ 0 Σ2 sin2 θ/ρ2

 , (10)

where z = 2Mr/ρ2. Since det A = 1, here
√
−g = ρ2 sin θ , as well.

From mere inspection, we see that

Lemma 1. The Kerr-Schild metric in eq. (10) does not suffer from a coordinate singularity at ∆ = 0.

Definition 4. The Kerr metric in the Kerr-Schild coordinate system, extended to the axis {θ = 0, π} is referred to
as the infalling Kerr-Schild spacetime and is denoted by K̄.

Definition 5. The two horizons H− and H+ divide K̄ into three open regions. Block Ī is the region defined by
r̄ > r+, Block Ī Ī is the region defined by r− < r̄ < r+, and Block Ī Ī Ī is the region defined by r̄ < r−.

2.3 Time Orientation of the Infalling Kerr-Schild Spacetime

As we shall see, the causal character of the coordinate function t changes even outside the outer horizon H+.
Therefore, to understand the causal structure of K̄, it is crucial to consistently choose future pointing light cones if
possible. From the form of the Kerr-Schild metric in eq.(10), it is clear that

−∂r̄

is a smooth, nowhere vanishing, lightlike vector-field that is well defined on K̄.

Definition 6. We shall pick −∂r̄ as future pointing in K̄, thus making K̄ a time oriented spacetime. 1

Problem 5. Show that, outside the horizons H±,

−∂r̄ = n =
1

∆

[
(r2 + a2)∂t −∆∂r + a∂φ

]
.

Naturally, we require that as r → ∞ , ∂t is future pointing, so that far away from the singularity RS, life goes on as
usual, and time increases in the future direction. So, the time orientation of K̄ must contain ∂t for large r.

1Recall what this means. A causal vector X, which is not proportional to −∂r̄ in K̄ is future pointing if and only if g(X,−∂r̄) < 0.
If X is proportional to −∂r̄ then the proportionality constant must be greater the zero for X to be future pointing (and evidently null).
This is easily verified in a local orthonormal frame where the null vector has the appearance (1, 1, 00).
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Problem 6. In the Boyer-Lindquist coordinate system, show that as r approaches infinity, ∂t is future pointing
timelike.

Hence our choice of future is consistent with our expectations of how time flows as r → ∞. Furthermore, in K̄,
by n we will mean the vector field −∂r̄. In the Boyer-Lindquist coordinate system the expression for n is given by
definition 1.

2.4 Graviational Redshift

Definition 7. gtt = 0 when

r = r∞ ±(θ) = M ±
√
M2 − a2 cos2 θ . (11)

r = r∞ − and r = r∞ + are the called infinite redshift surfaces.

The reason for the definition above will now be made clear. Consider a static observer at some fixed r = r1 > r∞ +.
Such an observer has four velocity

u1 =
1√

−gtt(r1)
∂t .

Here,

−gtt(r1) ≡ 1− 2Mr1
r21 + a2 cos2 θ

is the relevant metric coefficient evaluated at r1. Suppose this observer were to send a photon of energy E (as
measured at r = ∞), along the outgoing radial null geodesic l. Such a photon would have a 4-momentum given by

pµ =
E

∆

[
(r2 + a2)∂t +∆∂r + a∂φ

]
.

The frequency of the emitted photon ν1 as measured by the observer at r1 is given by the expression

h ν1 = −g(p, u1)

= −E

∆

[
(r21 + a2)gtt(r1)

1√
−gtt(r1)

+ a
1√

−gtt(r1)
gtφ(r1)

]

= − E

∆
√
−gtt(r1)

[
(r21 + a2)gtt(r1) + agtφ(r1)

]
.

Therefore, from eq.(4) we get that

h ν1 =
E√

−gtt(r1)
.

This photon if received by another observer at r = r2, has a frequency

hν2 =
E√

−gtt(r2)
.

Then, since the energy of the photon E is constant along the geodesic 2.

ν2
ν1

=

√
gtt(r1)

gtt(r2)
.

Thus, the frequency of the received photon decreases as it moves away from the black hole (see figure 1). This is an
example of gravitational redshift. Clearly, as r1 → r∞ + , ν2 → 0 . This is why we call r∞ + an infinite redshift
surface. Similar remarks apply to the surface r∞ − if we pick 0 < r2 < r1 < r∞ −, and let r1 → r∞ −. Clearly, the
infinite redshift surfaces intersect the horizons at the poles.

2If you are not familiar with this argument, we will show this explicitly when we study the geodesic equation in Kerr geometry.
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Figure 1: Gravitational reshift from a beam of light emitted from near r∞ +. In the next section, we will see that
r∞ + forms a boundary of the outer ergosphere.

2.5 The Ergospheres

In the late sixties, Vishveshwara [3] pointed out that there are regions in K̄ where ∂t ceases to be timelike (even
outside the horizon). This feature brings about new and interesting physics. It is easily verified that gtt > 0 in the
region bounded by r∞ − and r∞ +. Therefore, in

D = {r : r∞ − < r < r∞ +} ,

∂t is spacelike.

Definition 8. ϵ+ = { D ∩ Block Ī } is the outer Ergosphere, and, ϵ− = { D ∩ Block Ī̄ĪI } is the inner Ergosphere.
ϵ = ϵ− ∪ ϵ+ is the Ergosphere.

Amusingly, ∂t, ∂r, ∂θ, ∂φ are spacelike in the ergosphere!

Lemma 2. In the ergosphere ϵ, ∇µt 3 is past-directed and timelike.

Proof. To see this, note that eq.(3) implies that

gµν∇µt∇νt = gµν∇µt∇νt = gtt < 0 .

Therefore, ∇µt is timelike in the ergosphere. Since n is future pointing in the ergosphere,

gµν l
µ∇νt = lµ∇µt = l0 =

r2 + a2

∆
> 0

implies that ∇µt is past-directed timelike in the ergosphere.

Let α(λ) be the path taken by a causal particle in ergosphere, such that u = α̇ is its 4-velocity. As we shall see,
even though ∂t is not timelike in the ergosphere, the coordinate function t does increase for causal particles in the
ergosphere.

Lemma 3. In the ergosphere, for a causal particle, ṫ > 0.

3Recall that
∇µt = gµν∇νt = gµν∂νt .
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Proof. Since ∇µt is past directed and timelike, and u is future pointing and causal

0 < gµνu
µ∇νt = uµ∇µt = ṫ .

In the ergosphere, since ∂t is spacelike, an observer cannot remain static. A static observer is one whose curve
traced out in the spacetime has a fixed value of r, θ, and φ. At best, all we can have are stationary observers.
Stationary observers move along constant values of r and θ. The required rotation of an observer in the ergosphere
can be thought of as an extreme case of frame dragging.

Theorem 1. As a causal particle falls into the ergosphere, it starts to rotate along with the spacetime.

Proof. Let α(τ) be the curve traced out the by a stationary observer. The four-velocity of the observer then takes
the form

α̇ = u(τ) = (cṫ, 0, 0, φ̇).

We also require that

−1 = u2 =
[
gtt ṫ

2 + gφφ φ̇2 + 2 gtφṫ φ̇
]
.

If such an observer is to be static, φ̇ must vanish. Inside the ergosphere, all but the last term on the right hand side
of the above equation is positive. Therefore, for the above equation to hold true

gtφ φ̇ < 0

for timelike curve since ṫ > 0 even in the ergosphere. From eq.(2) the above inequality remains true only when

a φ̇ > 0.

It is easily see that this even true for photons in the ergosphere. Since, we need that

0 = u2 =
[
gttc

2 ṫ2 + gφφ φ̇2 + 2 gφ cṫ φ̇
]
.

In particular, there are no static observers in the ergosphere, for the observer is forced to rotate along with the
spacetime.

2.6 The Black Hole Region of Infalling Kerr-Schild Geometry

It is important to remember, that while we may freely interchange between the Boyer-Lindquist coordinates (ct, r, θ, φ)
and the Kerr-Schild coordinates (t̄, r̄, θ̄, φ̄), the time orientation is fixed by the vector −∂r̄.

Problem 7. Show that in the region r− < r < r+, −∂r is future pointing and timelike.

For a particle with future pointing 4-velocity u,

g(u,−∂r) < 0 → ρ2

|∆|
ṙ < 0 → ṙ < 0

when r− < r < r+. Therefore, if a particle (massless or otherwise) enters the region r < r+, it will have necessarily
have to move along decreasing values of r until it is thrown into the region r < r− where ∆ is positive and −∂r is no
longer timelike. Therefore r = r+ forms a one-way membrane, and is the event horizon of the Kerr-Schild geometry.
Similarly, particles in r < r− may never enter the region r > r−. The region r− < r < r+ is referred to as the Black
Hole region of the Kerr-Schild geometry. r = r− is also referred to as a horizon.

Problem 8. Show that in Block Ī Ī, i.e., the black hole region, −l is future pointing, and so it falls inward.

Definition 9. The infalling Kerr-Schild spacetime K̄ will also be referred to as the Kerr black hole spacetime.

From the problem above, we see that even the outgoing beam of light is drawn in by the black hole.
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2.7 The Geometry of the Kerr-Schild Horizons

The horizons are where the Boyer-Lindquist coordinate system fails. So we will carry out our analysis of the horizon
in the Kerr-Schild coordinates. The horizons are located at r̄ = r± and is denoted by H±. Since the coordinate r̄
is fixed, we say that H± is a 3-dimensional submanifold of the geometry. The tangent space of H± is spanned by
(∂t̄, ∂θ̄, ∂φ̄).

Problem 9. Show that,
V± = (r2± + a2)∂t̄ + a∂φ̄

is a future-pointing null vector in H± outside of the poles. At the poles however

V± = (r2± + a2)∂t̄

is a null vector.

Problem 10. Show that V± as defined above is orthogonal to every tangent vector in H± outside of the poles.

Isn’t that curious! While V± belongs to the tangent space of H±, it is also orthogonal to every tangent vector in H±
which includes itself. For this reason we say the H± is a null hypersurface.

Theorem 2. The integral curve of V± is a null pre-geodesic in K̄ that lies on the horizon.

Proof. Consider the outgoing principal null geodesic tangent vector fields in Blocks I and III of K given by

l =
1

∆

[
(r2 + a2)∂t +∆∂r + a∂φ

]
.

In these blocks, define a vector field

l̃ =
∆

2
l .

Then in blocks I and III

∇l̃ l̃ =
∆

2
∇l

(
∆

2
l

)
=

1

4
∆2∇l l +

1

4
∆ (∇l ∆) l =

1

4
∆ (∇l ∆) l .

I.e.,
∇l̃ l̃ = (r −M) l̃ ,

and l̃ is a null pregeodesic in Blocks I and III. In Kerr-Schild coordinates,

l̃ =
[
(r2 + a2)∂t̄ + a∂φ̄

]
+∆

[
G

∂

∂t̄
+

∂

∂r̄
+H

∂

∂φ̄

]
= (r2 + a2)∂t̄ +∆/2 ∂r̄ + a∂φ̄ .

Since l̃ is a smooth, well defined vector field on the horizons we get that

∇l̃ l̃|H± = (r± −M) l̃ . (12)

Therefore, on the horizon, ∇l̃ l̃ is a null pre-geodesic, and, l̃|H± = V± .

Theorem 3. V± is future pointing.

Proof. On H±,

g(V±, n) = (z − 1)(r2 + a2)− z(r2 + a2)− za2 sin2 θ + a2 sin2 θ(1 + z) = −ρ2 < 0 .
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Theorem 4. Let u be a future-pointing causal vector at r±. Then in Kerr-Schild coordinates,

ur̄ ≤ 0 .

Equality is realized in the above equation iff u = c V± for some c > 0. Therefore, the entire future lightcone lies in
the blackhole region side of H+, and outside the blackhole region side of H−.

Proof. Since V± is future pointing at H±, when u ̸= V±, we have that g(V±, u) < 0. I.e.,

0 > g(V±, u) = ut̄
[
(r2± + a2) gt̄t̄ + a gt̄φ̄

]
+uφ̄

[
(r2± + a2) gt̄φ̄ + a gφ̄φ̄

]
+ ur̄

[
(r2± + a2) gt̄r̄ + a gφ̄r̄

]
=

[
ut̄(−∆) + uφ̄(a sin2 θ∆) + ur̄ρ2

]∣∣∣
H±

= ur̄ρ2
∣∣∣
H±

.

Therefore, if u ̸= cV±, u
r̄ < 0 . If u = cV±, clearly, u

r̄ = 0 .

By now, it should be clear that in K̄, at H+, the future cone points “inward”. Indeed, it is possible for a particle in
Block I of K̄ to escape to r = ∞.

Theorem 5. p is a point in Block I of K̄ if and only if there is future pointing timelike curve α(τ) from p such that
r(τ) → ∞ in the distant future.

Proof. As we have already seen, if p is in either Block II or III, it is impossible for such a timelike curve to exist.
Therefore, let p belong to Block I. We will deform the outgoing null geodesic vector l to get a necessary timelike
curve.

Let α(τ) be a curve such that α(0) = p , and

dt

dτ
=

r2 + a2

∆
,

dr

dτ
= λ ,

dθ

dτ
= 0 , and

dφ

dτ
=

a

∆
.

Here, λ is a constant such that 0 < λ < 1 . It is easy to verify that

g(α̇, α̇) = (λ2 − 1)
ρ2

∆
< 0 .

It is also easy to verify that α̇ is future pointing. By setting limits on λ, we have effectively slowed down a null
geodesic with ṙ = 1.

Figure 2 is a depiction of the light cones at the horizons.

2.8 Removing The Polar Singularities

We will now construct a coordinate system for K̄ which will be well defined on the poles (θ = 0, π). Anticipating
this coordinate system we had included the poles in K̄ even while using the Kerr-Schild coordinate system. In the
case of Minkowski spacetime, the polar singularity of the the spherical coordinate system is removed by going into
the Cartesian coordinate system (although usually, the Cartesian coordinate system is the natural starting point).
Here, too, we will want to go to a “Cartesian” like coordinate system. The new coordinates are labeled (T,X, Y, Z).
Here we will have that

X2 + Y 2 = (r̄2 + a2) sin2 θ̄ . (13)

For then r̄ = 0, θ = constant are circles of radius a sin θ, revealing the proper length of the singularity (in the
θ → π/2 limit naturally). This is accomplished by the transformations

X = (r̄ cos φ̄− a sin φ̄) sin θ̄ ,

and
Y = (r̄ sin φ̄+ a cos φ̄) sin θ̄ .

10



r±

n

V±

t

φ

Figure 2: Geometry of the Kerr horizon. The light cone points inward at r±. The future light cone intersects the
tangent space of the horizon at exactly V±. Notice that V± has a t̄ and φ̄ component.

Just like in the spherical coordinate system, we set

Z = r̄ cos θ , and T = t̄− r̄ .

Then 
∂t̄
∂r̄
∂θ̄
∂φ̄

 = A


∂T
∂X
∂Y
∂Z

 , (14)

where the matrix A is given by

A =


1 0 0 0
−1 cos φ̄ sin θ̄ sin φ̄ sin θ̄ cos θ̄
0 X cot θ̄ Y cot θ̄ −r̄ sin θ̄
0 −Y X 0

 . (15)

Note that detA = ρ2 sin θ̄ is singular at the poles. This is in fact, necessary to remove the polar singularities. By
inverting the matrix above, we get 

∂T
∂X
∂Y
∂Z

 = A−1


∂t̄
∂r̄
∂θ̄
∂φ̄

 ,

where

A−1 =
1

ρ2


ρ2 0 0 0
r̄X r̄X X cot θ̄ A13

r̄Y r̄Y Y cot θ̄ A23

(r̄2 + a2) cos θ̄ (r̄2 + a2) cos θ̄ −r̄ sin θ̄ a cos θ̄

 . (16)

Here
A13 = −(r̄ sin φ̄+ a cos φ̄ cos2 θ̄)/ sin θ̄

and
A23 = (r̄ cos φ̄− a sin φ̄ cos2 θ̄)/ sin θ̄ .

The dual bases transform as 
dt̄
dr̄
dθ̄
dφ̄

 = (A−1)T


dT
dX
dY
dZ

 .

11



(A−1)T is easily obtained from eq.(16). The components of vectors now transform as
V t̄

V r̄

V θ̄

V φ̄

 = (A−1)T


V T

V X

V Y

V Z

 ,

and similarly, the components of dual vectors transform as
wt̄

wr̄

wθ̄

wφ̄

 = A


wT

wX

wY

wZ

 .

It is possible to obtain the K̄ metric in the Kerr-Schild-Polar coordinates by the usual method, but there is a more
enlightening/efficient method. Consider the dual of the infalling null geodesic vector field

−n♭ = (∂r̄)
♭ = ( gt̄r̄, gr̄r̄, gθ̄r̄, gφ̄r̄ ) = ( 1, 0, 0, −a sin2 θ̄ ).

Or
−n♭ = dt̄− a sin2 θ̄ dφ̄.

It is easy to check that the metric in eq.(10) can be written as

g =
[
−dt̄⊗dt̄+dt̄⊗dr̄+dr̄⊗dt̄+(r2+a2) sin2 θ̄dφ̄⊗dφ̄+ρ2dθ̄⊗dθ̄−a sin2 θ̄dr̄⊗dφ̄−a sin2 θ̄dφ̄⊗dr̄

]
+ zn♭⊗n♭ .

After some algebra, it is easily shown that the terms in the square Brackets is the Minkowski metric:

[
− dt̄⊗ dt̄+ dt̄⊗ dr̄ + dr̄ ⊗ dt̄+ (r2 + a2) sin2 θ̄dφ̄⊗ dφ̄+ ρ2dθ̄ ⊗ dθ̄ − a sin2 θ̄dr̄ ⊗ dφ̄− a sin2 θ̄dφ̄⊗ dr̄

]
=

[
− dT ⊗ dT + dr̄ ⊗ dr̄ + (r2 + a2) sin2 θ̄dφ̄⊗ dφ̄+ ρ2dθ̄ ⊗ dθ̄ − a sin2 θ̄dr̄ ⊗ dφ̄− a sin2 θ̄dφ̄⊗ dr̄

]
=

[
− dT ⊗ dT + dX ⊗ dX + dY ⊗ dY + dZ ⊗ dZ

]
.

On the other hand

n♭ = dt̄− a sin2 θ̄dφ̄ =
1

ρ2

[
ρ2dT + rXdX + rY dY + (r2 + a2) cos θ̄dZ

]

+
a sin θ̄

ρ2

[
(r sin φ̄+ a cos φ̄ cos2 θ̄)− (r cos φ̄− a sin φ̄ cos2 θ̄)dY − a sin θ̄ cos θ̄dZ

]
.

Collecting and simplifying, we get

n♭ =
[
dT +

r(XdX + Y dY )− a(XdY − Y dX)

r2 + a2
+

Z

r
dZ

]
.

Consequently,

g = −dT 2 + dX2 + dY 2 + dZ2 +
2Mr

ρ2

[
dT +

r(XdX + Y dY )− a(XdY − Y dX)

r2 + a2
+

Z

r
dZ

]2
,

12
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Figure 3: The shaded regions are the ergospheres. The central ring indicates the true singularity of the Kerr geometry.
The innermost circle is the surface r = 0, which is described by the eq.(13). The interior of this region will be taken
up in the following section. Also see Figure 6.

Or finally in the (T,X, Y, Z) coordinate system the metric of K̄ is given by

g = −dT 2 + dX2 + dY 2 + dZ2 +
2Mr̄3

r̄4 + a2 Z2

[
dT +

r(XdX + Y dY )− a(XdY − Y dX)

r2 + a2
+

Z

r
dZ

]2
. (17)

Here, r̄ is determined (modulo sign) by the implicit equation

r̄4 − (X2 + Y 2 + Z2 − a2) r̄2 − a2 Z2 = 0 .

Since K̄ spacetime is what we are concerned about, we first fix r̄ and then solve for T,X, Y, Z. Also, from eq.(17),
the metric is well defined on the axis of the Kerr geometry.

Figure 3 shows some of the interesting regions we have discussed in the notes.

2.9 The Domain of the Radial Coordinate and the Dual Axis

The argument presented here is taken directly from [5]. Consider the expression

g00 = −1 +
2Mr

r2 + a2 cos2 θ

in the Boyer-Lindquist coordinates. If we are to interpret g00 as functions in the usual sense along the z axis, we get
that

g00(z) = −1 +
2M |z|
z2

.

A plot of this expression is shown in Figure 4. This function is not differentiable when r = 0 and θ = 0, π. Hence,
this interpretation leads to a singularity in the curvature tensor when r = 0 and θ = 0, π. That is curious indeed,
considering the fact that the metric tensor is well defined at these locations. If we proceed in this manner, the
Kerr metric is sourced by a thin disk of concentrated matter. These ideas have been explored in the literature. For
example see [4]. However, if we do not want any avoidable singularities, there is another way forward. Suppose we
allow r to take values from −∞ to ∞, the expression for g00 becomes

g00(r) = −1 +
2Mr

r2

for all real values of r. A plot of this expression is shown in Figure 5, thus rendering it smooth across r = 0. Hence,
we take the topology of K̄ to be

R2(t̄, r̄)× S2(θ̄, φ̄)− RS ,

where the coordinate ranges are given by

−∞ < t̄ < ∞ , −∞ < r̄ < ∞ , 0 ≤ θ̄ ≤ π , 0 ≤ φ̄ < 2π .

13



Figure 4: g00 along the z axis in the usual interpretation of a spherical coordinate system.

Figure 5: g00 along r ∈ (−∞,∞).

Then we are back to the case when the Riemann tensor is only singular when ρ2 = 0. 4

There is a price to pay for such extensions. For example, the θ = 0 symmetry axis runs from r equals −∞ to ∞.
A similar second copy of the symmetry axis exists for θ = π (see figure 6).

Definition 10. Henceforth block Ī Ī Ī of K̄ is the region −∞ < r̄ < r−.

3 Maximal Slow-Kerr Geometry

Slow means M2 > a2. We will restrict ourselves to this case. [1] has a description of the extreme case as well. This
happens when M2 = a2. When a2 > M2, the original Boyer-Lindquist spacetime is already maximal. In this case,
there are no horizons, and the geometry possesses a naked singularity.

In the last chapter, we expanded the Kerr geometry to include negative values of r. You may wonder why we
should consider a further extension. To this end, consider the infalling null geodesic n = −∂r̄ in K̄. The geodesic
curve of this vector field starts at r → ∞ and crosses the horizons and either ends up at the ring singularity, or enters
the r < 0 universe and will eventually reach r → −∞. However, the outgoing geodesic l in block Ī while it proceeds
to r → ∞, in the past cannot be extended to r−r+ (since nothing can emerge outward from the event horizon). Mind
you, this is not a problem for physics since one could argue that some cause had to source the photon just outside
the event horizon. Nevertheless, mathematically, such an extension is possible where the outgoing geodesic will have
emerged from a “white hole”. We will explore such possibilities in this chapter. In such a maximal spacetime, all
causal geodesics can either be extended to all values of the affine parameter or end up in a singularity.

4Consider a sample component of the Riemann tensor given below.

Rt̄
θθ,φ̄ = −3Mar sin2(θ)(r2 + a2)

(r2 − 3a2 cos2(θ))

(ρ2)3
.

This expression is only singular when r = 0 and θ = π/2. The singularities in the other components of the Riemann tensor have similar
characteristics.

14



r = 0

θ = 0 axis

axisθ = π

r+
r−

Figure 6: The radial coordinate is scaled at er. Inside r = 0 we have the region r < 0. The origin of the diagram
corresponds to e−∞ and hence does not belong to K̄. Hence, the disconnected symmetry axis.

3.1 The Nature of Kerr-Schild Coordinates

Problem 11. Show that, up to an integration constant,

T (r) ≡
∫

r2 + a2

∆
dr = r +

r2+ + a2

r+ − r−
ln |r − r+| −

r2− + a2

r+ − r−
ln |r − r−| . (18)

Problem 12. Show that, up to an integration constant,

A(r) ≡
∫

a

∆
dr =

a

r+ − r−
ln

∣∣∣∣r − r+
r − r−

∣∣∣∣ . (19)

From the above two problems, we find that

t̄ = t+ T (r),

limr→±∞ T (r) = ∓∞,

φ̄ = φ+A(r),

limr→r± A(r) = ±∞ .

(20)

3.2 The Outgoing Kerr-Schild Spacetime

The Outgoing Kerr-Schild Spacetime K⋆ are given by coordinates (t⋆, r⋆, θ⋆, φ⋆). They are related to the Boyer-
Lindquist coordinates by the transformation

r⋆ = r, θ⋆ = θ, dt⋆ = dt− r2 + a2

∆
dr, and dφ⋆ = dφ− a

∆
dr. (21)

“⋆” is placed on r and θ so that no confusions arise while performing coordinate transformations. The transformations
of vectors and forms are generated as before in the K̄ spacetime, except that in the transformation matrix A, the
functions G and H are replaced by

G = −r2 + a2

∆
and H = − a

∆
. (22)
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In K⋆, the spacetime metric in coordinates (t⋆, r⋆, θ⋆, φ⋆) become

g⋆µν =


z − 1 −1 0 −za sin2 θ
−1 0 0 a sin2 θ
0 0 ρ2 0

−za sin2 θ a sin2 θ 0 Σ2 sin2 θ/ρ2

 . (23)

Since det A = 1, once again √
−g⋆ = ρ2 sin θ.

Note

t⋆ = t− T (r),

φ⋆ = φ−A(r).
(24)

It follows from mere inspection that the K⋆ metric in eq.(23) does not suffer from a coordinate singularity at ∆ = 0,
and can be extended to the axes θ⋆ = 0 and θ⋆ = π just as for the spacetime K̄. Since the functions G and H only
depend on r it is easily verified that on K ∩ K⋆

∂t⋆ = ∂t ,

∂θ⋆ = ∂θ ,

∂φ⋆ = ∂φ .

(25)

Theorem 6. K⋆ is time orientable.

Proof. Using the modified transformation matrix A, the null geodesic tangent vector field l in the K⋆ coordinate
system becomes

l=∂r⋆ .

Therefore, ∂r⋆ is a smooth, nowhere vanishing, lightlike vector field that is well defined on

R2(t̄, r̄)× RS2(θ̄, φ̄)− RS .

Definition 11. The lightcone containing ∂r⋆ is defined to be future pointing in K⋆.

As r → ∞, since g(∂r⋆ , ∂t⋆) = g(∂r⋆ , ∂t) = −1 our choice of time orientation agrees with the flow of time for large
values of r⋆. Here since causal curves flow out of the horizon, K⋆ describes a white hole.

Definition 12. The two horizons H− and H+ divide K⋆ into three open regions. Block I⋆ is the region defined by
r⋆ > r+, Block II⋆ is the region defined by r− < r⋆ < r+, and Block III⋆ is the region defined by r⋆ < r−.

Theorem 7. In K⋆, V ⋆
± = (r2± + a2)∂t⋆ + a∂φ⋆ is the future pointing null-pregeodesic generator of the horizons.

Proof. The proof is similar to K̄ case. It suffices to note that

g⋆(V ⋆
±, ∂r⋆) = −ρ2 < 0 .

Theorem 8. In Block II⋆ of K⋆,

−n = ∂r⋆ − 2

∆
[(r2 + a2)∂t⋆ + a∂φ⋆ ]

is future pointing and null.

Proof. The proof is similar to K̄ case.
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3.3 The Maximal Submanifold Around The Outer Horizon

In this section, we will want to cut and paste Boyer-Lindquist blocks with appropriate orientations of time so that
geodesics that do not end in RS are complete. As a first step, we will require that all the principal null geodesics that
do not end in RS are complete. There will be two distinct regions of interest. One that is centered around the region
r = r+, and the other that is centered around the other horizon r = r−. Around each of these horizons, we will
construct open submanifolds D(r±). The maximal geometry will consist of a sequence of alternating submanifolds
D(r+) and D(r−).

Problem 13. From problems 18 and 12, we see that

A− a

r2± + a2
T = − a

r2± + a2

[
r + (r± + r∓) ln |r − r∓|

]
.

Consequently, A− aT/(r2+ + a2) is analytic when r ̸= r−, and A− aT/(r2− + a2) is analytic when r ̸= r+.

Definition 13. Define real valued functions U+ and V + on Ī by

tanU+ = exp(−κ+ t⋆), tanV + = exp(κ+ t̄) ,

and on Ī Ī by
tanU+ = − exp(−κ+ t⋆), tanV + = exp(κ+ t̄) .

Also in Ī, and Ī Ī, set

θ+ = θ̄ , φ+ =
1

2

[
φ̄+ φ⋆ − a

r2+ + a2
(t̄+ t⋆)

]
.

Here,

κ± =
r± − r∓

2(r2± + a2)
.

These functions are defined only on the Boyer-Lindquist blocks which do not include the horizons.

Note:
r2− + a2

r2+ + a2
=

r−
r+

= −κ+

κ−
.

Theorem 9. The functions U+, V +, θ+, φ+ can be analytically extended to r+.

Proof. There is no need to elaborate on θ+. Since t̄ is well defined in K̄, we have that tanV + is well defined at r+.
In terms of t̄

tanU+ = sgn(r − r+) exp(−κ+t̄) exp(2κ+T (r)) .

From the expression for T (r) in problem 18 we find that

tanU+ = sgn(r − r+) exp(−κ+t̄) exp(2κ+r)|r − r+||r − r−|−r−/r+ ,

but, sgn(r − r+)|r − r+| = (r − r+), and |r − r−| = r − r− in this patch, and so

tanU+ = (r − r+)(r − r−)
−r−/r+ exp[κ+(2r − t̄)] . (26)

Therefore, U+ is well defined at r+. Also, writing φ+ in K̄ coordinates we find that

φ+ = φ̄− a

r2+ + a2
t̄ −

[
A(r)− a

r2+ + a2
T (r)

]
.

From problem 13 we find that the term in the square brackets above is analytic for r ̸= r−. Therefore, φ+ is well
defined at r+.

Theorem 10. The functions U+, V +, θ+, φ+ form a coordinate system when r > r−.
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Proof. Let
u+ = tanU+ and v+ = tanV + . (27)

Therefore, since we are not worried about orientation,
dθ+

dv+

du+

dφ+

 =


1 0 0 0
0 κ+v

+ 0 0
0 ∂t̄u

+ ∂r̄u
+ 0

0 − a
r2++a2 −

[
dA
dr − a

r2++a2
dT
dr

]
1




dθ̄
dt̄
dr̄
dφ̄

 . (28)

The determinant of the above map is

κ+ (v+)
∂(u+)

∂r̄
.

Since v+ ̸= 0 (t̄ ̸= −∞), {u+, v+, θ+, φ+} is a coordinate system so long as

∂u+

∂r̄
̸= 0 .

From problem 14 below we have that
∂u+

∂r̄
> 0 .

Since the tangent functions is a smooth invertible function on its principal domain, and since (tanU+, tanV +, θ+, φ+)
is a valid coordinate system, so is (U+, V +, θ+, φ+).

Problem 14. From eq.(26) we see that

u+ = (r − r+)(r − r−)
−r−/r+ exp[κ+(2r − t̄)] .

Show that here
∂u+

∂r̄
> 0 .

We will now consider the various coordinate limits of the boundary of Ī in the “bar” coordinate system. For example,
from eq.24,

tanU+ = exp(−κ+ t̄) exp(2κ+T (r)) .

Therefore, as r → r+, eq.(20) implies that U+ → 0. In a similar manner we can compile the following list.

• As r̄ → r+, we have that U+ → 0 (included from above for completeness).

• As r̄ → ∞, we have that U+ → π/2.

• As t̄ → ∞, we have that V + → π/2.

• As t̄ → −∞, we have that V + → 0.

Note, as t̄ → ∞, we could not have concluded that U+ → 0 since we have no information about T (r).

Now we repeat the same analysis as above on Ī in the “star” coordinate system.

• As r⋆ → r+, we have that V + → 0.

• As r⋆ → ∞, we have that V + → π/2.

• As t⋆ → ∞, we have that U+ → 0.

• As t⋆ → −∞, we have that U+ → π/2.
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Figure 7 contains much more information than we have covered so far, but for the moment, the limits on block Ī
should agree with the list above. It is a simple exercise to verify that the limits on Ī Ī is also as expected. Note that
the regions defined by V + = π/2, U+ = ±π/2 does not belong to our spacetime, and for now, the region defined by
V + = 0 has not yet been included in our analysis.

We will now create another copy of Ī and Ī Ī which are exactly the same submanifolds as before. On these copies we
will define U+ and V + with the opposite sign from the previous definition 13. Later on, we will impose an opposite
causal orientation on these sets. To distinguish the two set of submanifolds we denote these submanifolds as Ī ′ and
Ī Ī ′. To be clear Ī ′ is the same as K̄ restricted to r̄ > r+, and Ī Ī ′ is the same as K̄ restricted to r− < r̄ < r+.

Definition 14. Define real valued functions U+ and V + on Ī ′ by

tanU+ = − exp(−κ+ t⋆), tanV + = − exp(κ+ t̄) ,

and on Ī Ī ′ by
tanU+ = exp(−κ+ t⋆), tanV + = − exp(κ+ t̄) .

Also in Ī ′, and Ī Ī ′, set

θ+ = θ , φ+ =
1

2

[
φ̄+ φ⋆ − a

r2+ + a2
(t̄+ t⋆)

]
.

Here,

κ± =
r± − r∓

2(r2± + a2)
.

These functions are defined only on the Boyer-Lindquist blocks, which do not include the horizons.

The analogs of theorems 9 and 10 continue to hold here. Also, exactly in the same way as in the previous case, the
various labels on the boundaries of blocks Ī ′ and Ī Ī ′ can be completed in a similar manner and is listed in figure 7.

Just as t⋆ → ∞, r̄ = r+ when V + > 0 was included using the extended coordinate system (U+, V +, θ̄, φ+) in theorem
10 using K̄ spacetime, we can include the horizons t⋆ → ∞, r̄ = r+ when V + < 0 using K̄ in figure 7. Similarly,
using K⋆ coordinates, we can include the horizons when V + = 0 in figure 7.

To conclude, we have discussed all the features in figure 7 save two items: The labelled vector fields n, l,−n, l and
their importance, and the region described by U+ = 0 = V +. This will be taken up in the following sections.

3.4 The Orientation of Time Around The Outer Horizon

Definition 15. We have already seen that

• in block Ī, n, l is future-pointing null.

• in block Ī Ī, n,−l is future-pointing null.

Blocks Ī ′ and Ī Ī ′ are defined to have the opposite time orientation with respect to their Ī and Ī Ī counterparts. I.e.,

• In block Ī ′, −n,−l is future-pointing null.

• In block Ī Ī ′, −n, l is future-pointing null.

In the remainder of this section, we show that the direction of future is continuously assigned.

Theorem 11. In Ī, along n, t̄ is a constant, and t∗ is increasing.
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Proof. In K̄, since n = ∂r̄, we have that t̄ is a constant along n. Since

t∗ = t̄− 2T (r)

we have that
dt⋆

dr̄
= −2

(r2 + a2)

∆
< 0 .

Therefore, t⋆ decreases along increasing r̄. But n flows along decreasing values of r̄.

The following exercises check the result above for the remaining three blocks.

Problem 15. In Ī, along l, t⋆ is a constant, and t̄ is increasing.

Problem 16. In Ī Ī, along n, t̄ is a constant, and t⋆ is decreasing.

Problem 17. In Ī Ī, along l, t⋆ is a constant, and t̄ is decreasing. Note, here it is −l that is future pointing, so do
not let Figure 7 confuse you.

Problem 18. In Ī ′, along n, t̄ is a constant, and t⋆ is increasing.

Problem 19. In Ī ′, along l, t⋆ is a constant, and t̄ is increasing.

Problem 20. In Ī Ī ′, along n, t̄ is a constant, and t⋆ is decreasing.

And finally

Problem 21. In Ī Ī ′, along l, t⋆ is a constant, and t̄ is decreasing.

From theorem 11, definition 15, and the problems above, we see that n,−n, l,−l are correctly drawn in figure 7.
Furthermore, the assignment of future cones is continuous.

• Along Ī and Ī Ī, n is smooth.

• Along Ī ′ and Ī Ī ′, −n is smooth.

• Along Ī Ī ′ and Ī, l is smooth.

• Along Ī ′ and Ī Ī, −l is smooth.

3.5 The Kerr Metric About The Extended Outer Horizon

We will now write the Kerr metric in the chart (U+, V +, θ+, φ+). It will turn out that the metric is valid when
U+ = 0 = V + and so we include this point as well.

Definition 16. Following O’Neill [1]

• The manifold defined by
−π/2 < U+, V + < π/2, 0 ≤ θ ≤ π, 0 ≤ φ+ < 2π

with be referred to as D(r+). Here φ+ is understood to be a cyclic coordinate.

• U+ = 0 = V + is the crossing sphere of D(r+).

• The region defined by t̄ → −∞, r⋆ = r+ is the horizontal-long horizon. This includes the crossing sphere.

• The region defined by t⋆ → ∞, r̄ = r+ is the vertical long horizon. This includes the crossing sphere.
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Figure 7: The Spacetime described by the chart (U+, V +, θ, φ+).

• The topology of D(r+) can be now fixed as

(−π/2, π/2)× (−π/2, π/2)× S2(θ+, φ+)

We will initially write the metric in the (u+, v+, θ+, φ+) coordinate system (see eq.(27) for the definitions of u+ and
v+). First, a few preliminaries.

Theorem 12. The radius function r is well defined on D(r+).

Proof. Using the expressions for tanU+ and tanV + in all four of patches, we see that

u+v+ = (r − r+) exp(2κ+r)(r − r−)
κ+/κ− . (29)

Since r is already defined everywhere except at the crossing sphere, we will show that the above equation can be
inverted to solve for r near r = r+. Let

f(r) = exp(2κ+r)(r − r−)
κ+/κ− .

Then
d

dr
u+v+ = f(r) + (r − r+)

df

dr
.

Therefore
d

dr
u+v+|r+ = f(r+) ̸= 0 .

The next result stems from a direct computation.
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Theorem 13. In D(r+), in every Boyer-Lindquist block

|u+| = exp(κ+(T (r)− t)) |v+| = exp(κ+(T (r) + t)) (30)

and
φ+ = φ− a

r2+ + a2
t . (31)

Inverting the above equations we get

T (r) =
1

2κ+
ln |u+v+| t =

1

2κ+
ln |v+/u+| , (32)

and
φ = φ+ +

a

r2+ + a2
t . (33)

Theorem 14. In the Boyer-Lindquist blocks of D(r+)

dr =
(r − r−) G+(r)

2κ+(r2 + a2)
(u+dv+ + v+du+) ,

dt =
G+(r)

2κ+(r − r+)
(u+dv+ − v+du+) ,

and

dφ = dφ+ +
a G+(r)

(r − r+)(r+ − r−)
(u+dv+ − v+du+) .

As expected
dθ = dθ+ .

Here, the analytic function

G+(r) = (r − r+)/(u
+v+) = exp(−2κ+r)(r − r−)

−κ+/κ− .

Proof. From problem 18,

dr =
∆

r2 + a2
dT ,

and from eq.(32) we get that

dT =
1

2κ+u+v+
d(u+v+) .

The above two equations give the required form of dr in the theorem. The remainder of the differentials are obtained
in the same manner.

Since the above Boyer-Lindquist differentials are dense in D(r+), a mere substitution of the results of the theorem
above into eq.(1) leads to the metric on D(r+).

Theorem 15. In (u+, v+, θ+ = θ, φ+) coordinate system, the metric on D(r+) takes the form

G2
+a

2 sin2 θ

4κ2
+ρ

2

(r − r−)(r + r+)

(r2 + a2)(r2+ + a2)

[
ρ2

r2 + a2
+

ρ2+
r2+ + a2

]
(u+2dv+2 + v+2du+2)

+
G+(r − r−)

4κ2
+ρ

2

[
ρ4

(r2 + a2)2
+

ρ4+
(r2+ + a2)2

]
(du+ ⊗ dv+ + dv+ ⊗ du+)

+
G2

+a
2 sin2 θ

4κ2
+ρ

2

(r + r+)
2

(r2+ + a2)
(u+2dv+2 + v+2du+2 − u+v+du+ ⊗ dv+ − u+v+dv+ ⊗ du+)

+
G+a sin

2 θ

κ+ρ2(r2+ + a2)

[
ρ2+(r − r−) + (r2 + a2) (r + r+)

]
(u+dv+ − v+du+)dφ+

ρ2dθ2 + gφφ dφ+2 . (34)
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Proof. This is nothing more than a simple calculation that is presented in [1].5

To go from (u+, v+, θ+ = θ, φ+) to (U+, V +, θ+ = θ, φ+), all we need is the substitution

du+ = sec2 U+dU+ and dv+ = sec2 V +dV + .

Lemma 4. The metric given by eq.(34) is non-degenerate on the crossing sphere, and is extendable to the poles.

Proof. Extendibility to the poles is implied by the coordinates T,X, Y, Z. On the crossing sphere, u+ = 0 = v+, and
the metric reduces to

G+(r+ − r−)ρ
2
+

2κ2
+(r

2
+ + a2)2

(du+ ⊗ dv+ + dv+ ⊗ du+) + ρ2dθ2 + gφφ dφ+2 , (35)

and this is clearly non-degenerate.

Theorem 16. The Boyer-Lindquist coordinate vector fields are given by

∂t = κ+

[
− u+∂u+ + v+∂v+

]
− a

r2+ + a2
∂φ+ ,

∂r = κ+
r2 + a2

∆

[
u+∂u+ + v+∂v+

]
,

∂θ = ∂θ+ ,

and
∂φ = ∂φ+ ,

of course, on the axis ∂φ+ = 0.

Proof. Clearly,
∂t = ∂t(u

+) ∂u+ + ∂t(v
+) ∂v+ + ∂t(φ

+) ∂φ+ .

A simple substitution and differentiation gives the necessary result.

3.6 The Long Horizon(s)

The principal null geodesics that live on the r+ horizon never leaves D(r+). Consequently, we must make sure that,
as such, they are complete. Consider the long vertical horizon in D(r+). Excluding the crossing sphere, this is the
disjoint line U+ = 0 , V + > 0, and U+ = 0 , V + < 0. These future pointing pre-geodesics are integral curves of

V+ ≡ (r2+ + a2)∂t̄ + a∂φ̄

when V + > 0 (problem 9) and
V ′
+ ≡ −[(r2+ + a2)∂t̄ + a∂φ̄]

when V + < 0 because of the reverse time orientation.

Theorem 17. In coordinates (t̄, r̄, θ̄, φ̄),

((r2+ + a2)f(s), r+, θ0, af(s) + β0)

is the integral curve of
V+ = (r2+ + a2)∂t̄ + a∂φ̄ .

s is an affine parameter when f(s) = α−1
0 ln(α0 s) + C for 0 < s < ∞ 6, where α0 = (r+ −M). Here, C and β0 are

integration constants.
5However, there maybe a sign error in O’Neills version: there is a negative sign in the fourth line of the above equation.
6If you are worried about lims→0 t̄(s) → −∞; don’t be. That is exactly the case in the long vertical horizon near the crossing sphere.

Apparently φ̄(s) behaves the same way.
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Proof. Let
α(s) ≡ ((r2+ + a2)f(s), r+, θ0, af(s)) .

Clearly,
α̇ = ḟ (r2+ + a2, 0, 0, a) = ḟ V+ ,

where · is the derivative with respect to s. Then,

∇α̇ α̇ = ḟ2∇V+
V+ + [ḟ V+(ḟ)] V+ .

Also, we have from eq.(12) that
∇V+

V+ = (r+ −M) V+ = α0 V+ . (36)

But, ḟ when viewed as a function on the curve α(s),

ḟ(s) = ḟ(t̄(s), φ̄(s)) ,

and so

ḟ V+(ḟ) = ḟ

(
(r2+ + a2)

∂

∂t̄
+ a

∂

∂φ̄

)
ḟ

= (r2+ + a2)ḟ
∂ḟ

∂t̄
+ aḟ

∂ḟ

∂φ̄

=
dt̄

ds
∂t̄ḟ +

dφ̄

ds
∂φ̄ḟ = f̈ .

Therefore, if s is to be an affine parameter, we must have

∇α̇ α̇ = [f̈ + α0 ḟ2] V+ = 0 ,

i.e.,
f̈ + α0 ḟ2 = 0 .

This has the unique solution
f(s) = α−1

0 ln |α0 s+ C1|+ C ,

here C and C1 are integration constants. Setting C1 = 0 amounts to fixing the parameter lower limit to be s → 0.

In exactly the same way we get the following result.

Theorem 18. In coordinates (t̄, r̄, θ̄, φ̄),

((r2+ + a2)f(s), r+, θ0, af(s) + β′
0) .

is the integral curve of
V ′
+ = −[(r2+ + a2)∂t̄ + a∂φ̄] .

s is an affine parameter when f(s) = α−1
0 ln(−α0 s) + c for −∞ < s < 0, where α0 = (r+ −M). Here, c and β′

0 are
integration constants.

We now paste the two intergral curves together using coordinates (U+, V +, θ+, φ+).

Theorem 19. The null geodesic generator in the long vertical horizon of D(r+) is complete 7 , and its integral curve
is given by

U+ = 0 , V + = arctan s , θ = const , and φ+ = const, ∀s ∈ R .

7The affine parameter s of the geodesics runs from −∞ to ∞.
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Proof. Since r = r+, clearly U+ = 0, and from theorem (17) we see that

V + = arctan exp(κ+t̄) = arctan exp[
κ+(r

2
+ + a2)

α0
ln(β s) ] .

Here β is a new constant defined by C = 1/αo ln(β/αo), where C is the constant in theorem (17). Note

κ+(r
2
+ + a2)

α0
=

κ+(r
2
+ + a2)

(r+ − r−)/2
= 1 .

Therefore,
V + = arctan(β s)

when 0 < s < ∞. Here

φ+ = φ̄− a

r2+ + a2
t̄ −

[
A(r)− a

r2+ + a2
T (r)

]
.

Substituting φ̄ = af(s) + β0 and t̄ = (r2+ + a2)f(s) from theorem (17), we see that

φ+ = β+
0 −

[
A(r+)−

a

r2+ + a2
T (r+)

]
which is finite from corollary (13). Clearly φ+ is a constant. The exact same is true for the V + < 0 portion, except
that here −∞ < s < 0. We can glue two such curves at the limiting point s → 0 when θ0 and φ+ are the same. This
geodesic curve is the complete. Incidently a change in the affine parameter given by β s → s gives the necessary
result.

3.7 The Maximal Submanifold Around The Inner Horizon

In exactly the same manner as we defined D(r+), we will include the r = r− horizon in the submanifold D(r−).

Definition 17. Define real valued functions U− and V − by:

On Ī Ī, tanU− = exp(−κ− t⋆) , tanV − = − exp(κ− t̄) ,

On Ī Ī Ī, tanU− = − exp(−κ− t⋆) , tanV − = − exp(κ− t̄) ,

and

On Ī Ī ′, tanU− = − exp(−κ− t⋆) , tanV − = exp(κ− t̄) ,

On Ī Ī Ī ′, tanU− = exp(−κ− t⋆) , tanV − = exp(κ− t̄) ,

φ− =
1

2

[
φ̄+ φ⋆ − a

r2− + a2
(t̄+ t⋆)

]
,

and θ− = θ. These function are defined only on the Boyer-Lindquist blocks (which do not include the horizons). As
before, we will set u− = tanU− and v− = tanV −.

In exactly the same way as in the case of D(r+),

Theorem 20. The functions (U−, V −, θ−, φ−) can be analytically extended to r− in D(r−).

Problem 22. Complete figure 8 for D(r−) (I have not labelled t⋆ = ±∞ in blocks Ī Ī ′ and Ī Ī Ī ′). Make sure to
point out future-pointing pairs of n, l,−n,−l in each of the four blocks. Argue why your choice of time orientation
is smooth in D(r−).

Problem 23. In D(r−), verify that the long horizon contain complete geodesic generators.
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Figure 8: Penrose diagram for the spacetime submanifold D(r−). r− ∈ D(r−). The boundary of the rectangle is
not included in the open submanifold D(r−).

3.8 The Kerr Metric about the Extended Inner Horizon

The results below are the D(r−) analogue of the corresponding theorems in section 3.5, so we state them without
proof.

Theorem 21. In D(r−), in every Boyer-Lindquist block

|u−| = exp(κ−(T (r)− t)) |v−| = exp(κ−(T (r) + t)) (37)

and
φ− = φ− a

r2− + a2
t . (38)

Inverting the above equations we get

T (r) =
1

2κ−
ln |u−v−| t =

1

2κ−
ln |v−/u−| , (39)

and
φ = φ− +

a

r2− + a2
t . (40)

Theorem 22. In the Boyer-Lindquist blocks of D(r−)

dr =
(r − r+) G−(r)

2κ−(r2 + a2)
(u−dv− + v−du−) ,

dt =
G−(r)

2κ−(r − r−)
(u−dv− − v−du−) ,

and

dφ = dφ− +
a G−(r)

(r − r−)(r− − r+)
(u−dv− − v−du−) .

As expected
dθ = dθ+ .

Here, the analytic function

G−(r) = (r − r−)/(u
−v−) = − exp(−2κ−r)(r+ − r)−κ−/κ+ .
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Theorem 23. In the (u−, v−, θ− = θ, φ−) coordinate system, the metric on D(r−) takes the form

G2
−a

2 sin2 θ

4κ2
−ρ

2

(r − r+)(r + r−)

(r2 + a2)(r2− + a2)

[
ρ2

r2 + a2
+

ρ2−
r2− + a2

]
(u−2dv−2 + v−2du−2)

+
G−(r − r+)

4κ2
−ρ

2

[
ρ4

(r2 + a2)2
+

ρ4−
(r2− + a2)2

]
(du− ⊗ dv− + dv− ⊗ du−)

+
G2

−a
2 sin2 θ

4κ2
−ρ

2

(r + r−)
2

(r2− + a2)
(u−2dv−2 + v−2du−2 − u−v−du− ⊗ dv− − u−v−dv− ⊗ du−)

+
G−a sin

2 θ

κ−ρ2(r2− + a2)

[
ρ2−(r − r+) + (r2 + a2) (r + r−)

]
(u−dv− − v−du−)× dφ−

+ρ2dθ2 + gφφ dφ−2 . (41)

Proof. This is nothing more than a simple calculation that is presented in [1].8

Once again, we see that the metric is not singular at the crossing sphere of D(r−). To go from (u−, v−, θ− = θ, φ−)
to (U−, V −, θ− = θ, φ−), all we need is the substitution

du− = sec2 U−dU− and dv− = sec2 V −dV − .

Lemma 5. The metric in eq.(41) is non-degenerate on the crossing sphere, and is extendable to the poles.

Proof. On the crossing sphere, u− = 0 = v−, and the metric reduces to

G−(r− − r+)ρ
2
−

2κ2
−(r

2
− + a2)2

(du− ⊗ dv− + dv− ⊗ du−) + ρ2dθ2 + gφφ dφ−2 , (42)

and this is clearly non-degenerate.

Theorem 24. The Boyer-Lindquist coordinate vector fields are given by

∂t = κ−
[
− u−∂u− + v−∂v−

]
− a

r2− + a2
∂φ− ,

∂r = κ−
r2 + a2

∆

[
u−∂u− + v−∂v−

]
,

∂θ = ∂θ− ,

and
∂φ = ∂φ− ,

of course, on the axis ∂φ− = 0.

3.9 Ad Infinitum ...

It should be clear by now as to how we can stack an infinite array of alternating D(r±) blocks to form the maximal
Kerr geometry. The resulting Penrose diagram is schematically represented in figure (9). By construction, the
principal null geodesics are complete (including the null generators of horizons). This is the maximal slow-Kerr
geometry.

8However, there maybe a sign error in O’Neills version: there is a negative sign in the fourth line of the above equation.
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Figure 9: Penrose diagram representing the maximal Kerr geometry. Here, the central D(r+) is sandwiched between
two D(r−). In the complete maximal extension, such alternating open submanifolds continue ad infinitum.
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