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Abstract

In this paper we extend some of the recent results in connection with the Krein resolvent
formula which provides a complete description of all canonical resolvents and utilizes Weyl–
Titchmarsh functions in the spaces with indefinite metrics. We show that coefficients in Krein’s
formula can be expressed in terms of analogues of the von Neumann parametrization formulas
in the indefinite case. We consider properties of Weyl–Titchmarsh functions and show that two
Weyl–Titchmarsh functions corresponding to π -self-adjoint extensions of a densely defined
π -symmetric operator are connected via linear-fractional transformation with the coefficients
presented in terms of von Neumann’s parameters.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In [9] Gesztesy, Makarov, and one of the authors revisited Krein’s formula asso-
ciated with self-adjoint extensions of a densely defined symmetric operator. They
showed that the coefficients in Krein’s formula can be expressed in terms of the
classical von Neumann parametrization formulas. The purpose of this note is to gen-
eralize and extend some recent results [4,9] to the case of the space with indefinite
metrics with finite indefinite rank. All operators are considered in Pontryagin spaces
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�κ with an indefinite inner product and hence the notions of adjoint, symmetric, and
unitary operators are replaced with π-adjoint, π-symmetric, and π-unitary operators,
respectively (see definitions in Section 2). The concept of Weyl–Titchmarsh function
in spaces �κ , so called Q-function, was introduced and studied by Krein and Langer
[12,13]. A systematic study of Weyl–Titchmarsh functions defined in terms of spaces
of boundary values in Hilbert and Krein spaces was conducted in [3,5,6,14,15]. In
this paper we follow the definition and approach developed in [7–9] and extend it to
the indefinite case. We show that in the case of a Hilbert space (κ = 0) our results
completely match the formulas established earlier in [9].

We conclude our note with an example where the main space is �1 (i.e. having
indefinite rank of one). All the components of our framework, including the coeffi-
cients of the Krein formula and Weyl–Titchmarsh functions, are explicitly derived.

Throughout the paper we follow the notation of [9].

2. Operators in Pontryagin spaces �κ

We start with the basic construction following some results from the theory of
operators in �κ spaces [11–13]. Let �κ be a Pontryagin space [2,11], i.e., a Hilbert
space H where along with the usual scalar product (x, y) there is an indefinite scalar
product

[x, y] = (Jx, y), (1)

where J = P+ − P− is a bounded linear operator such that J = J ∗, J 2 = I , and P+
and P− are complementary orthoprojections, P+ + P− = I . Putting �± = P±�κ

we have

�κ = �+ � �−, dim �− = κ. (2)

Here and below the direct orthogonal sum with respect to an indefinite scalar prod-
uct (1) is denoted by � and called π-orthogonal sum. Similarly, the π-orthogonal
complement of a lineal L will be denoted by L[⊥]. The positive definite (x, y) and
indefinite [x, y] scalar products are related by

(x, y)= [x+, y+] − [x−, y−],
[x, y] = (x+, y+)− (x−, y−),

where x = x+ + x−, y = y+ + y−, x+, y+ ∈ �+, and x−, y− ∈ �−.
The set of vectors f ∈ L that are π-orthogonal to L, i.e. f [⊥]L is called [11]

the isotropic part of the linear manifold L. If the isotropic part of L has non-zero
elements we say that the scalar product [·, ·] is degenerate [12] on L. Denote by
L+ (respectively, L−, L0) the set of all x ∈ �κ for which [x, x] > 0 (respectively,
[x, x] < 0, [x, x] = 0). The setL+ (respectively L−,L0) is called positive (negative,
neutral) part of L. Every subspace L ∈ �κ can be decomposed into a direct sum of
π-orthogonal subspaces
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L = L+ �L0 �L−,

where L+, L0, and L− are, respectively, positive, neutral, and negative subspaces,
some of which may degenerate into null subspaces. For a subspace L above we
write signL = (l+, l0, l−) where l± = dimL± and l0 = dimL0 [12].

Let Ȧ be a closed linear operator in �κ with a domain D(Ȧ) that is dense in �κ .
The operator Ȧ+ is called π-adjoint to Ȧ if its domain D(Ȧ+) consists of elements
g ∈ �κ such that there exist h ∈ �κ and

[Ȧf, g] = [f, h], ∀f ∈ D(Ȧ), and Ȧ+g = h.

An operator Ȧ is said to be π-symmetric if Ȧ ⊆ Ȧ+, i.e. [Ȧf, g] = [f, Ȧg], for all
f ∈ D(Ȧ), and π-self-adjoint if Ȧ = Ȧ+.

It is easy to see that

Ȧ+ = J Ȧ∗J,

where Ȧ∗ is the operator in H adjoint to Ȧ.
We recall [11] that a π-symmetric operator Ȧ in �κ cannot have more than κ

eigenvalues, counting multiplicities, in the upper (lower) half-plane. If the opera-
tor A is π-self-adjoint, then these non-real eigenvalues are located symmetrically
with respect to the real axis. For an arbitrary complex number λ and a π-symmetric
operator Ȧ in �κ we set [11]

Mλ = (Ȧ− λ)D(Ȧ), Nλ̄ = M[⊥]
λ . (3)

If λ (Im λ /= 0) is not an eigenvalue of Ȧ, then Mλ is a subspace of �κ and Nλ is
called [11] a deficiency subspace corresponding to λ. The number n+ = dimNλ is
called [11] an upper deficiency index of Ȧ in �κ and has the same value for all points
λ with Im λ > 0 that are not eigenvalues. Similarly we define a lower deficiency
index n− = dimNλ for all points λ with Im λ < 0 that are not eigenvalues as well.
The two values n+ and n− are, in general, different. Let �Ȧ be the set of all non-
real λ for which the scalar product [·, ·] is degenerate on Nλ. According to [12]
the set �Ȧ of a π-symmetric operator Ȧ contains no interior points, its complement
(C+ ∪ C−) \ �Ȧ is an open set, and on every component of this open set signNλ is
constant.

It was shown in [12] that every π-symmetric operator Ȧ in the space �κ ad-
mits π-self-adjoint extensions in �κ if and only if its deficiency indices coincide.
Also according to [12] for every π-symmetric operator Ȧ there is a number �Ȧ > 0
such that the spectrum of every π-self-adjoint extension A of Ȧ lies in the strip
{z | |Im z| < �Ȧ}. For the sake of simplicity we will only consider π-symmetric
operators Ȧwith �Ȧ < 1. As it also follows from the Krein–Langer theorem [12], the
deficiency subspaces N±i of such a π-symmetric operator Ȧ with equal deficiency
indices are always positive.
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3. Self-adjoint extensions in �κ

Let Ȧ be a closed densely defined symmetric operator in �κ with equal deficiency
indices def(Ȧ) = (n, n) and �Ȧ < 1. We denote by N± the deficiency subspaces of
Ȧ corresponding to i, and note that

N± = ker(Ȧ+ ∓ i).

For any π-self-adjoint extensionA of Ȧ in �κ with ζ ∈ ρ(A), Im ζ /= 0 its π-unitary
Cayley transform CA,ζ is given by

CA,ζ = (
A− ζ̄

)
(A− ζ )−1.

Let A be a π-self-adjoint extension of Ȧ in �κ . Since �Ȧ < 1 we get that i ∈ ρ(A),
the resolvent set of A. We introduce

CA = (A+ i)(A− i)−1. (4)

In addition, we remind that two self-adjoint extensions A1 and A2 of Ȧ relatively
prime if D(A1) ∩ D(A2) = D(Ȧ). The direct sum of two linear subspaces V and
W of H is denoted by V +̇W in the following.

The following lemma is a modification of the similar result in [4,9] for the case
of spaces �κ .

Lemma 1. Let A, A1, and A2 be π-self-adjoint extensions of Ȧ such that i is not
an eigenvalue for either operator. Then

(i) The Cayley transform of A maps N− onto N+
CAN− = N+. (5)

(ii) D(A) = D(Ȧ) +̇ (I − C−1
A )N+.

(iii) N+ is an invariant subspace for CA1C
−1
A2

and CA2C
−1
A1
. In addition, A1 and A2

are relatively prime if and only if

1 /∈ σp

(
CA1C

−1
A2

∣∣∣
N+

)
. (6)

(iv) Suppose A1 and A2 are relatively prime w.r.t. Ȧ. Then

ran
(
(A2 − i)−1 − (A1 − i)−1

) = N+, (7)

ker

((
(A2 − i)−1 − (A1 − i)−1

)∣∣∣
N−

)
= {0}. (8)

Proof. Most of these facts are standard and their proofs can be replicated from the
proof of the relevant lemma in [9] with some minor adjustments due to the indefinite
metrics of the space �κ . That is why we only sketch the main steps.
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(i) Pick g ∈ D(Ȧ), f = (Ȧ− i)g, then CAf = (Ȧ+ i)g ∈ ran(Ȧ+ i) yields
CAran(Ȧ− i) ⊆ ran(Ȧ+ i). Similarly one infers C−1

A ran(Ȧ+ i) ⊆ ran(Ȧ− i) and

hence CAran(Ȧ− i) = ran(Ȧ+ i). Since CA is π-unitary, CAran(Ȧ− i) =
ran(Ȧ+ i). Positive definiteness of N+ [12] and H = ker(Ȧ+ − i)� ran(Ȧ+ i)
then yield CAN− = N+.
(ii) By the analogues of von Neumann’s formula for the case of densely defined
operator in �κ [11], we have

D(A) = D(Ȧ) +̇N+ +̇UAN+ (9)

for some linear π-isomorphism UA : N+ → N−. Since I − C−1
A = 2i(A+ i)−1,

(I − C−1
A )N+ = 2i(A+ i)−1N+ ⊆ D(A), one concludes

UA = −C−1
A

∣∣∣
N+

. (10)

(iv) Let g ∈ D(Ȧ), f = (Ȧ+ i)g, then for all h ∈ H[
f,

(
(A2 − i)−1 − (A1 − i)−1

)
h
]

=
[(
(A2 + i)−1 − (A1 + i)−1

)
(Ȧ+ i)g, h

]
= 0,

yields

ran((A2 − i)−1 − (A1 − i)−1) ⊆ ran(Ȧ+ i)[⊥] = ker(Ȧ+ − i) = N+.

Next, let 0 /= f+ ∈ N+ and f+[⊥]ran
(
(A2 − i)−1 − (A1 − i)−1

)
. In particular,

f+[⊥]
(
(A2 − i)−1 − (A1 − i)−1

)
C−1
A1
f+.

Using that, (A1 − i)−1C−1
A1
f+ = −(i/2)

(
I − C−1

A1

)
f+ and

(A2 − i)−1C−1
A1
f+ = (A2 − i)−1C−1

A2

(
CA2C

−1
A1
f+

)

= −(i/2)
(
I − C−1

A2

) (
CA2C

−1
A1
f+

)

= −(i/2)
(
CA2C

−1
A1

− C−1
A1

)
f+,

and hence(
(A2 − i)−1 − (A1 − i)−1

)
C−1
A1
f+ = −(i/2)

(
CA2C

−1
A1

− I
)
f+. (11)

Thus, f+[⊥]
(
CA2C

−1
A1

− I
)
f+, that is,

[
f+, CA2C

−1
A1
f+

]
= [f+, f+].
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Since CA2C
−1
A1

∣∣∣
N+

is π-unitary, one concludes CA2C
−1
A1
f+ = f+ = CA1C

−1
A2
f+ and

hence

1 ∈ σp

(
CA1C

−1
A2

|N+
)
. (12)

But (12) contradicts the hypothesis that A1 and A2 are relatively prime w.r.t. Ȧ.

Consequently, ran
(
(A2 − i)−1 − ran((A1 − i)−1)

) = N+, which is (7).

To prove (8) we note that every f− ∈ N− is of the form f− = C−1
A1
f+ for some

f+ ∈ N+ using (i). Suppose ((A2 − i)−1 − (A1 − i)−1)C−1
A1
f+ = 0. By (11), this

yields CA1C
−1
A2
f+ = f+ and hence 1 ∈ σp

(
CA1C

−1
A2

∣∣∣
N+

)
. Since A1 and A2 are

relatively prime w.r.t. Ȧ one concludes f− = C−1
A1
f+ = 0. �

4. Function P1,2(z)

Next, assuming A�, � = 1, 2 to be π-self-adjoint extensions of Ȧ and following
[9], we define

P1,2(z)= (A1 − z)(A1 − i)−1
(
(A2 − z)−1 − (A1 − z)−1

)

× (A1 − z)(A1 + i)−1, z, i ∈ ρ(A1) ∩ ρ(A2). (13)

We collect the following properties of P1,2(z).

Lemma 2. Let z, z′, i ∈ ρ(A1) ∩ ρ(A2).

(i) P1,2 : ρ(A1) ∩ ρ(A2) → [�κ ,�κ ] is analytic and

P1,2(z)
+ = P1,2(z̄). (14)

(ii)

P1,2(z)

∣∣∣
N

[⊥]
+

= 0, P1,2(z)N+ ⊆ N+. (15)

(iii)

P1,2(z)= P1,2(z
′)+ (z − z′)P1,2(z

′)(A1 + i)

× (A1 − z′)−1(A1 − i)(A1 − z)−1P1,2(z). (16)

(iv) ran
(
P1,2(z)

∣∣
N+

)
is independent of z ∈ ρ(A1) ∩ ρ(A2).

(v) Assume A1 and A2 are relatively prime π-self-adjoint extensions of Ȧ. Then
P1,2(z)|N+ : N+ → N+ is invertible (i.e., one-to-one).

(vi) Assume A1 and A2 are relatively prime π-self-adjoint extensions of Ȧ. Then
ran(P1,2(i)) = N+.
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(vii)

P1,2(i)
∣∣
N+ = (i/2)

(
I − CA2C

−1
A1

)∣∣∣
N+

. (17)

Next, let

CA2C
−1
A1

∣∣∣
N+

= −e−2iα1,2 (18)

for some π-self-adjoint (possibly unbounded) operator α1,2 in N+. If A1 and A2
are relatively prime, then{(

m+ 1

2

)
π

}
m∈Z

∩ σp(α1,2) = ∅

and (
P1,2(i)

∣∣
N+

)−1 = tan(α1,2)− iIN+ . (19)

In addition, tan(α1,2) ∈ [N+,N+] if and only if ran(P1,2(i)) = N+.

Proof. Most of the steps in the proof can be replicated from the corresponding result
in [9] either directly or with some minor adjustments. We sketch the rest of the proof.
(i) is clear from (13) (see also [12]).
(ii) Let f ∈ D(Ȧ), g = (Ȧ+ i)f . Then

P1,2(z)g = (A1 − z)(A1 − i)−1
(
(A2 − z)−1 − (A1 − z)−1

)
(Ȧ− z)f = 0

yields P1,2(z)|ran(Ȧ+i) = 0 and hence P1,2(z)|ran(Ȧ+i)
= P1,2(z)

∣∣∣
N

[⊥]
+

= 0 since

P1,2(z) ∈ [�κ ,�κ ]. Moreover, by (13)

ran(P1,2(z)) ⊆ (A1 − z)(A1 − i)−1 ker(Ȧ+ − z) ⊆ ker(Ȧ+ − i) = N+

since
(
Ȧ+ − i

)
(A1 − z)(A1 − i)−1

∣∣∣ker(Ȧ+−z)

= (
Ȧ+ − i

) (
I − (z − i)(A1 − i)−1

) ∣∣∣ker(Ȧ+−z)

=
(
(z − i)I − (z − i)

(
Ȧ+ − i

)
(A1 − i)−1

) ∣∣∣ker(Ȧ+−z)
= 0.

This proves (15).
(iii)–(vi) Proved in [9].
(vii) As we have already mentioned above the subspace N+ is positively definite,
and thus all the results concerning the restriction onto N+ directly follow from [9]
due to the fact that N+ is a Hilbert space with respect to [·, ·]. �
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5. Weyl–Titchmarsh operator and class Nκ

In this section we define the Weyl–Titchmarsh operator-functions associated with
π-self-adjoint extensions of Ȧ and study their analytical properties.

Definition 3. Let A be a π-self-adjoint extension of Ȧ, N ⊆ N+ a closed linear
subspace of N+, and z ∈ ρ(A). Then the Weyl–Titchmarsh operator MA,N(z) ∈
[N,N] associated with the pair (A,N) is defined by

MA,N(z)= PN(zA+ I )(A− z)−1PN

∣∣∣
N

= zIN +
(

1 + z2
)
PN(A− z)−1PN

∣∣∣
N

(20)

with PN the π-orthogonal projection in H onto N.

Let N be a Hilbert space with an inner product (·, ·) and an operator-valued
function Q(z) belongs to [N,N].
Definition 4 [13]. We say that an operator-valued function Q(z) ∈ [N,N] belongs
to the class Nκ if it is meromorphic in the upper half-plane and the kernel

NQ(z, ζ ) = Q(z)−Q∗(z)
z − ζ̄

(21)

has κ negative squares, i.e. the form
n∑

j,k=0

(NQ(zj , zk)hj , hk)ξj ξ̄k,

∀zj ∈ C+, hj ∈ N, ξj ∈ C, j = 0, 1, . . . , n, (22)

contains no more than κ negative squares and for one such a set exactly κ negative
squares.

In what follows we denote Re(T ) = (T + T +)/2, Im(T ) = (T − T +)/2i for lin-
ear operators T in �κ with D(T ) = D(T +). Similarly, for a linear operator Q with
D(Q) = D(Q∗) in a Hilbert space we use the same notation to denote Re(Q) =
(Q+Q∗)/2 and Im(Q) = (Q−Q∗)/2i.

We note that since N+ is positively definite and N is a closed subspace of N+,
one can consider N a Hilbert space with the scalar product [x, y] for all x, y ∈ N.

Theorem 5. Let A be a π-self-adjoint extension of Ȧ,N a closed subspace of N+.
Then the Weyl–Titchmarsh operator MA,N(z) belongs to the class Nκ ′ , 0 � κ ′ � κ

and the following properties hold:

(1) MA,N(z) is analytic in z ∈ C\(R ∪ σp(A)) and

MA,N(z̄) = M∗
A,N(z). (23)
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(2) For z ∈ ρ(A) \ �Ȧ, |z| > �Ȧ

Im(z) Im(MA,N(z)) � 0. (24)

(3) For all f ∈ N

w − lim
y↑∞

MA,N(iy)

y
= lim

y↑∞

(
MA,N(iy)f, f

)
y

= 0. (25)

(4) For all f ∈ N, f /= 0

lim
y↑∞ y

(
ImMA,N(iy)f, f

) = ∞. (26)

(5) MA,N(z) is normalized, that is

MA,N(i) = iIN. (27)

Proof. Even though some parts of the proof are parallel to the proof of a theorem in
[13], we outline main steps for the convenience of the reader.
Using (20), an explicit computation yields

MA,N(z)−M∗
A,N(ζ )

z − ζ̄
= IN + PN

q(z)(A− z)−1 − q(ζ̄ )(A− ζ̄ )−1

z − ζ̄
PN,

where q(z) = z2 + 1 and z, ζ ∈ C\(R ∪ σp(A)), z /= ζ̄ . Let

Uiz = I + (z − i)(A− z)−1 = (A− i)(A− z)−1. (28)

Then by direct calculations one gets

MA,N(z)−M∗
A,N(ζ )

z − ζ̄
= PNU+

iζ UizPN,

z, ζ ∈ C\(R ∪ σp(A)), z /= ζ̄ . (29)

Taking this into account (22) yields for zj ∈ C+\σp(A), hj ∈ N, ξj ∈ C, j =
0, 1, . . . , n

n∑
j,k=0

(MA,N(zj , zk)hj , hk)ξj ξ̄k =
n∑

j,k=0

[Uizj hj , Uizkhk]ξj ξ̄k. (30)

Obviously, the right hand side of (30) has no more than κ negative squares. From
the definition of MA,N(z) (20) one can see that MA,N(z̄) = M∗

A,N(z). In order to
show (24) we will consider (29) for z = ζ . The analyticity of MA,N(z) on C\(R ∪
σp(A)) easily follows from (29) as well.

In order to prove (25) we follow [13] and rewrite MA,N(z) in the form

MA,N(z) = −iIN + (z + i)PN(A− i)(A− z)−1PN.

Then
MA,N(iy)

y
= − i

y
IN + y + i

y
PN(A− i)(A− iy)−1PN,
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and (25) becomes equivalent to

w − lim
y↑∞PN(A− i)(A− iy)−1PN = 0.

As it was shown in [13], for any π-self-adjoint operator A in �κ the following
decomposition holds

�κ = �κ
′ ��0, (31)

where �κ
′ ⊆ D(A) is an invariant with respect to A subspace, P ′ and P0 = I − P ′

are π-orthogonal projection operators. Moreover,

A′ = A
∣∣
�κ

′ , (32)

is a bounded π-self-adjoint in �κ
′, �0 is a Hilbert space with the inner product

(f, g) = [f, g], (∀f, g ∈ �0), and

A0 = A
∣∣
�0 (33)

is a self-adjoint operator in �0. Then

PN(A− i)(A− iy)−1PN = PN(A′ − i)(A′ − iy)−1PN

+PN(A0 − i)(A0 − iy)−1PN. (34)

Since the operator A′ is bounded, the first term in (34) behaves like O
(

1
y

)
as y ↑ ∞

and we should focus on the second term only. Consider the function

F(y; f, g) =
[
PN(A0 − i)(A0 − iy)−1PNP0f, g

]
, f, g ∈ N. (35)

For the self-adjoint operator A0 in a Hilbert space �0 we have

(A0 − z)−1 =
∫ ∞

−∞
dEλ

λ− z
,

where Eλ is a spectral function of A0. Then the function F(y; f, g) takes a form

F(y; f, g) =
∫ ∞

−∞
λ− i

λ− iy
dσfg(λ),

where σfg(λ) = [EλP0f, P0g] is a function of bounded variation. One can see that
there exists a constant γ > 0 such that for y � γ we have∣∣∣∣ λ− i

λ− iy

∣∣∣∣ < 1.

On the other hand there is a constant β > 0 such that for −β � λ � β

lim
y↑∞

∣∣∣∣ λ− i

λ− iy

∣∣∣∣ = 0.
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Consequently,

lim
y↑∞F(y; f, g) = 0,

and this completes the proof of (25).
In order to prove (26) we will show that

lim
y↑∞ y(ImMA,N(iy)f, f ) < ∞, f ∈ N. (36)

implies f [⊥]D(Ȧ)which contradicts that Ȧ is densely defined in �κ . We use decom-
position (31) and (28), (32), and (33) to get

[Uizf, Uizf ] =
[
U0

izf, U
0
izf

]
+ [

U ′
izf, U

′
izf

]
, (37)

where U0
iz = (A0 − i)(A0 − z)−1 and U ′

iz = (A′ − i)(A′ − z)−1. Since the operator

A′ is bounded the second term in (37) behaves like O
(

1
z

)
as |z| → ∞. Using (29)

for z = ζ = iy we get

y(ImMA,N(iy)f, f ) = y

∫ ∞

−∞
|λ− i|2
λ2 + y2

dσf (λ)+O

(
1

y

)
, y ↑ ∞, (38)

where σf (λ) = [EλP0f, P0f ]. One can easily see that (36) is equivalent to (38)
which is also equivalent to

∫ ∞

−∞
λ2dσf (λ) < ∞.

This last condition implies P0f ∈ D(A0) and therefore f ∈ D(A). Then f ∈ D(A) ∩
N ⊆ N+ which is possible only if f = 0 since D(Ȧ) = H. Therefore (26) takes
place.

The formula (27) can be proved by the direct substitution. �

Remark 6. We should note that the properties (25) and (26) were considered in a
different environment in [1,13].

Remark 7. The result of the Theorem 5 is valid for κ ′ = κ if the extension A is
such that

cls
{
(A− z)−1N, z ∈ ρ(A)

}
= �κ . (39)

Conversely, an operator-function of the class Nκ with properties (1)–(5) can be real-
ized as a Weyl–Titchmarsh function MA,N(z) of the form (20) associated with a
π-self-adjoint extension A of some π-symmetric operator Ȧ with the property (39)
(see [13]).
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6. The Krein formula

We need the following lemma and theorem that are modified versions of the cor-
responding results from [9].

Lemma 8. Let A�, � = 1, 2 be relatively prime π-self-adjoint extensions of Ȧ. Then
(
P1,2(z)

∣∣
N+

)−1 = (
P1,2(i)

∣∣
N+

)−1 − (z − i)PN+

× (A1 + i)(A1 − z)−1PN+
= tan(α1,2)−MA1,N+(z), z ∈ ρ(A1). (40)

The theorem below presents Krein’s resolvent formula in terms of Weyl–Titch-
marsh operator-function in spaces �κ .

Theorem 9. Let A1 and A2 be π-self-adjoint extensions of Ȧ and z ∈ ρ(A1) ∩
ρ(A2). Then

(A2 − z)−1 = (A1 − z)−1 + (A1 − i)(A1 − z)−1P1,2(z)

× (A1 + i)(A1 − z)−1 (41)

= (A1 − z)−1 + (A1 − i)(A1 − z)−1PN1,2,+

× (
tan(αN1,2,+)−MA1,N1,2,+(z)

)−1
PN1,2,+

× (A1 + i)(A1 − z)−1, (42)

where

N1,2,+ = ker
((
A1

∣∣
D(A1)∩D(A2)

)+ − i
)

(43)

and

e−2iαN1,2,+ = −CA2C
−1
A1

∣∣
N1,2,+ . (44)

Proof. If A1 and A2 are relatively prime w.r.t. Ȧ, Lemmas 1, 2, and 8 prove (41)–
(44). If A1 and A2 are arbitrary π-self-adjoint extensions of Ȧ one replaces Ȧ by the
largest common symmetric part of A1 and A2 given by A1

∣∣
D(A1)∩D(A2) . �

Corollary 10

P1,2(i)
∣∣
N1,2,+ = (i/2)

(
I − U−1

A2
UA1

) ∣∣
N1,2,+ , (45)

where

UA�
= −C−1

A�

∣∣
N+ , � = 1, 2 (46)

denotes the linear π-isometric isomorphism from N+ onto N− parameterizing the
π-self-adjoint extensions A� of Ȧ.
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Proof. Combine (9), (10), and (17). �

7. Linear fractional transformation of Weyl–Titchmarsh operators

Here we consider linear fractional transformations of the type

M(z) −→ MB(z) = (B2,1 + B2,2M(z))

× (B1,1 + B1,2M(z))−1, z ∈ C+, (47)

where
B = (Bp,q)1�p,q�2 ∈ B(N ⊕ N),

B(N ⊕ N) = {B ∈ [N ⊕ N]|B∗JB = J}, J =
(

0 −IN
IN 0

)
,

(48)

and M(z) is a Weyl–Titchmarsh operator associated with a π-self-adjoint extension
A of Ȧ in �κ . This type of transformations in Hilbert spaces was studied in depth in
[8,10].

We present the linear fractional transformation relating the Weyl–Titchmarsh oper-
ators MA�,N1,2,+ associated with two π-self-adjoint extensions A�, � = 1, 2, of Ȧ.

Theorem 11. Suppose A1 and A2 are π-self-adjoint extensions of Ȧ and z ∈ ρ(A1)

∩ ρ(A2). Then the functions MA1,N+(z) and MA2,N+(z) possess the properties
(23)–(27) and

MA2,N+(z)= (
P1,2(i)

∣∣
N+ + (

IN+ + iP1,2(i)
∣∣
N+

)
MA1,N+(z)

)
× ((

IN+ + iP1,2(i)
∣∣
N+

) − P1,2(i)
∣∣
N+MA1,N+(z)

)−1
, (49)

= e−iα1,2(cos(α1,2)+ sin(α1,2)MA1,N+(z))

× (sin(α1,2)− cos(α1,2)MA1,N+(z))
−1eiα1,2 , (50)

where
e−2iα1,2 = −CA2 C

−1
A1

∣∣∣
N+

,

P1,2(i)
∣∣
N+ = (i/2)

(
I − CA2C

−1
A1

)∣∣∣
N+

, (51)

IN+ + iP1,2(i)
∣∣
N+ = (1/2)

(
I + CA2C

−1
A1

)∣∣∣
N+

. (52)

Proof. Let us assume first that A1 and A2 are relatively prime π-self-adjoint exten-
sions of Ȧ. The properties (23)–(27) were proved in Theorem 5. Then using (40) and
(42) and following [9] one computes

MA2,N+(z)= (zI + (1 + z2)PN+(A2 − z)−1PN+)
∣∣
N+

= MA1,N+(z)+ (1 + z2)PN+(A1 − i)(A1 − z)−1PN+
× (tan(α1,2)−MA1,N+(z))

−1PN+(A1 + i)(A1 − z)−1PN+
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= (−iIN+ + tan(α1,2))
−1(IN+ + tan(α1,2)MA1,N+(z))

× (tan(α1,2)−MA1,N+(z))
−1((−iIN+ + tan(α1,2))

= e−iα1,2(cos(α1,2)+ sin(α1,2)MA1,N+(z))(sin(α1,2)

− cos(α1,2)MA1,N+(z))
−1eiα1,2 .

Eq. (49) then immediately follows from (50) since P1,2(i)
∣∣
N+ = (tan(α1,2)−

iIN+)
−1 by (19).

Now we treat the general case where the extensions A1 and A2 are not relatively
prime π-self-adjoint extensions of Ȧ. We choose a π-self-adjoint extension A3 of
Ȧ such that (A1, A3) and (A2, A3) are relatively prime w.r.t. Ȧ. (Existence of A3
can be easily established using the criterion (6)). Then express MA1,N+(z) in terms
of MA3,N+(z) and operator α3,1 according to (49) and (50) and similarly, express
MA2,N+(z) in terms of MA3,N+(z) and some operator α3,2. One obtains,

MA1,N+(z)= e−iα3,1(cos(α3,1)+ sin(α3,1)MA3,N+(z))

× (sin(α3,1)− cos(α3,1)MA3,N+(z))
−1eiα3,1 , (53)

MA2,N+(z)= e−iα3,2(cos(α3,2)+ sin(α3,2)MA3,N+(z))

× (sin(α3,2)− cos(α3,2)MA3,N+(z))
−1eiα3,2 . (54)

Computing MA3,N+(z) from (53) yields

MA3,N+(z)= −eiα3,1(cos(α3,1)− sin(α3,1)MA1,N+(z))

× (sin(α3,1)+ cos(α3,1)MA1,N+(z))
−1e−iα3,1 . (55)

Insertion of (55) into (54) yields (49)–(50) taking into account (51) and (52). �

A comparison of (50) and (47), (48) then yields

B(α1,2) =
(

e−iα1,2 sin(α1,2) −e−iα1,2 cos(α1,2)

e−iα1,2 cos(α1,2) e−iα1,2 sin(α1,2)

)
∈ A(N ⊕ N) (56)

for the corresponding matrix B in (47) and (48).

8. Example

We conclude with a simple illustration.
Let us define �1 as a set of all L2([0, 2π], dx) functions with the scalar product

[f, g] =
∫ 2π

0
f (x)g(x) dx − 1

π

∫ 2π

0
f (x) dx

∫ 2π

0
g(x) dx.
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Let also Ȧ be a π-symmetric operator defined by

Ȧf = 1

i

df

dx
(57)

with

D(Ȧ) = {
f ∈ �1 | f, f ′ ∈ ACloc([0, 2π]), f (0) = f (2π) = 0

}
. (58)

The corresponding π-adjoint operator Ȧ+ is then defined by

Ȧ+g = 1

i

dg

dx
− 1

π i
[g(2π)− g(0)] (59)

with

D(Ȧ+) = {
g ∈ �1 | g, g′ ∈ ACloc([0, 2π])} . (60)

Now one can verify that the deficiency spaces are given by

Nλ = ker(Ȧ+ − λ)

=
{
h(x) ∈ D(Ȧ+) | h(x) = c ·

(
eiλx − e2π iλ − 1

λπ i

)
, c ∈ C

}
, (61)

and Ȧ has deficiency indices (1,1). Let us consider a family of π-self-adjoint exten-
sions of Ȧ parameterized by ϕ ∈ (0, 2π]

Aϕf = 1

i

df

dx
− 1

π i
[f (2π)− f (0)] (62)

with

D(Aϕ) =
{
f ∈ D(Ȧ+) | f (0)+ e−iϕf (2π) = 0

}
. (63)

In order to compute the resolvent (Aϕ − λ)−1, we consider

(Aϕ − λ)y = f, f ∈ D(Aϕ).

This reads
1

i
y′ − y(2π)− y(0)

π i
− λy = f (x),

and we solve it for y(x)

y(x) = ieiλx
∫ x

0
e−iλtf (t) dt + (eiϕ + 1)(1 − eiλx)

λπ i
C + Ceiλx.

From (62) and (63) follows that the resolvent formula y(x) = (Aϕ − λ)−1f (x) has
the form

y(x)= ieiλx
∫ x

0
e−iλtf (t) dt + ie2πλi

([eiϕ − πλi + 1]eiλx − eiϕ − 1
)

(1 + πλi)eiϕ − (1 − πλi + eiϕ)e2πλi + 1

×
∫ 2π

0
e−iλtf (t) dt.
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Let us now select two π-self-adjoint extensions A1 = Aπ and A2 = A2π of Ȧ. Both
extensions are defined by (62) with

D(A1) = {
f ∈ D(Ȧ+) | f (0)− f (2π) = 0

}
, (64)

D(A2) = {
f ∈ D(Ȧ+) | f (0)+ f (2π) = 0

}
, (65)

respectively. It is clear that A1 and A2 are relatively prime with respect to Ȧ. Then

(A1 − λ)−1f (x) = ieiλx
∫ x

0
e−iλtf (t) dt − ie2πλieiλx

e2πλi − 1

∫ 2π

0
e−iλtf (t) dt (66)

and

(A2 − λ)−1f (x)= ieiλx
∫ x

0
e−iλtf (t) dt + ie2πλi

([2 − πλi]eiλx − 2
)

πλi − (2 − πλi)e2πλi + 2

×
∫ 2π

0
e−iλtf (t) dt. (67)

A straightforward calculation yields(
(A2 − λ)−1 − (A1 − λ)−1

)
f (x)

= −2πλe2πλi

4e2πλi + πλi(e4πλi − 1)− 2e4πλi − 2

(
eiλx − e2π iλ − 1

λπ i

)

×
∫ 2π

0
e−iλtf (t) dt. (68)

It is easy to see that (68) can be written in the form(
(A2 − λ)−1 − (A1 − λ)−1

)
f (x) = K · [f, g]g, g ∈ Nλ,

where vector g ∈ Nλ is of the form

g = g(x) = eiλx − e2π iλ − 1

λπ i
,

and the constant K is

K = −2πλe2πλi

4e2πλi + πλi(e4πλi − 1)− 2e4πλi − 2
.

Eq. (68) illustrates the Krein resolvent formula for the π-self-adjoint extensions A1
and A2.

Using (67) and (68) we get formulas for C−1
A1

and CA2 . Direct computations yield

C−1
A1

[
e−x + e−2π − 1

π

]
= −e−2π

[
ex − e2π − 1

π

]
,

CA2

[
ex − e2π − 1

π

]
= e2π

[
e−x + e−2π − 1

π

]
.
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Therefore,

CA2C
−1
A1

∣∣∣N+ = −e−2iα1,2

∣∣∣
N+

= −IN+ ,

and α1,2 = π . Performing straightforward though tedious calculations we find that

P12(z)

∣∣∣∣∣N+ = z(π − 2 + (2 + π)e−2π )
(
e2π iz − 1

)
(πzi + 2 + (πzi − 2)e2π iz)(1 − e−2π )

,

and

P12(i)
∣∣
N+ = iIN+ ,

that confirms (17). Computing the two functions MA1,N+(z) and MA2,N+(z) we get

MA1,N+(z) = (2 + π iz + (π iz − 2)e2π iz)(1 − e−2π )

z(1 − e2π iz)(π − 2 + (π + 2)e−2π )
, (69)

and

MA2,N+(z) = z(π − 2 + (2 + π)e−2π )(e2π iz − 1)

(πzi + 2 + (πzi − 2)e2π iz)(1 − e−2π )
. (70)

Direct check confirms that both functions belong to the class N1 and satisfy proper-
ties (23)–(27). Now one can easily verify that for α1,2 = π we have

MA2,N+(z) = − 1

MA1,N+(z)
.
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