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Abstract
We study L-system realizations generated by the original Weyl–Titchmarsh functions
mα(z). In the case when the minimal symmetric Schrödinger operator is non-negative,
we describe Schrödinger L-systems that realize inverse Stieltjes functions (−mα(z)).
This approach allows to derive a necessary and sufficient conditions for the functions
(−mα(z)) to be inverse Stieltjes. In particular, the criteria when (−m∞(z)) is an
inverse Stieltjes function is provided. Moreover, it is shown that the knowledge of the
value m∞(−0) and parameter α allows us to describe the geometric structure of the
L-system realizing (−mα(z)). Additionally, we present the conditions in terms of the
parameter α when themain and associated operators of a realizing (−mα(z))L-system
have the same or different angle of sectoriality which sets connections with the Kato
problem on sectorial extensions of sectorial forms. An example that illustrates the
obtained results is presented in the end of the paper.
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1 Introduction

The current paper is the third part of the project (started in [8] and continued in
[7]) that studies the realizations of the original Weyl–Titchmarsh function m∞(z)
and its linear-fractional transformation mα(z) associated with a Schrödinger operator.
We investigate the Herglotz–Nevanlinna functions −m∞(z) and 1/m∞(z) as well as
−mα(z) and 1/mα(z) that are realized as impedance functions of L-systems containing
a dissipative Schrödinger main operator Th , (Im h > 0). These L-systems will be
refereed to as Schrödinger L-systems for the rest of the paper. All formal definitions
and expositions of general and Schrödinger L-systems are given in Sects. 2 and 4. Note
that all Schrödinger L-systems �μ,h form a two-parametric family whose members
are uniquely defined by a real-valued parameter μ and a complex boundary value h
(Im h > 0) of the main dissipative operator.

In this paper we concentrate on the case when the realizing Schrödinger L-systems
are based on non-negative symmetric Schrödinger operator with (1, 1) deficiency
indices and have accretive main and accumulative state-space operators.1 It was
shown in [1, Theorem 9.9.4] (see also [9]) that the impedance functions of L-systems
with accumulative state-space operators are inverse Stieltjes functions. Following our
approach developed in [7], we set focus on the situation when the realizing accu-
mulative Schrödinger L-systems are sectorial (see Sect. 2 for the definition) and the
functions (−mα(z)) are themembers of sectorial classes S−1,β and S−1,β1,β2 of inverse
Stieltjes functions that are described in Sect. 3. Section5 is dedicated to the general
realization results from [8] for the functions (−m∞(z)), 1/m∞(z), and (−mα(z)).
In particular, we recall there that (−m∞(z)), 1/m∞(z), and (−mα(z)) can be real-
ized as the impedance function of Schrödinger L-systems �0,i , �∞,i , and �tan α,i ,
respectively.

Section6 contains the main results of the paper when the realization results
from Section5 are applied to Schrödinger L-systems with non-negative symmetric
Schrödinger operator to obtain important additional properties. Remark 7 of Section6
provides us with the set of criteria for the functions (−mα(z)) to be Stiejtjes or inverse
Stijeltjes. In particular, Theorem 6 and Remark 7 give the necessary and sufficient con-
ditions for (−m∞(z)) to be an inverse Stieltjes function. Using the results provided
in Sect. 4, we obtain new properties of L-systems �tan α,i whose impedance function
belong to certain sectorial classes of inverse Stieltjes functions. We emphasize that
these results are formulated in terms of the parameter α defining the function mα(z).
Also, the knowledge of the limit value m∞(−0) and the value of parameter α lets
us find the exact angles of sectoriality of the main Ti and associate Ã operators of a
realizing L-system that establishes the connection to Kato’s problem about sectorial
extension of sectorial forms (see [21]).

We conclude the paper with providing an example that illustrates themain concepts.
All the results obtained in this article contribute to a further development of the theory
of open physical systems conceived by M. Livšic in [23].

1 The situation when the state-space operator of the realizing Schrödinger L-system was accretive was
thoroughly considered in [7].
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2 Preliminaries

For a pair of Hilbert spacesH1,H2 we denote by [H1,H2] the set of all bounded linear
operators from H1 to H2. Let Ȧ be a closed, densely defined, symmetric operator in
a Hilbert spaceH with inner product ( f , g), f , g ∈ H. Any non-symmetric operator
T inH such that Ȧ ⊂ T ⊂ Ȧ∗ is called a quasi-self-adjoint extension of Ȧ.

Consider the rigged Hilbert space (see [1, 14, 15]) H+ ⊂ H ⊂ H−, where H+ =
Dom( Ȧ∗) and

( f , g)+ = ( f , g) + ( Ȧ∗ f , Ȧ∗g), f , g ∈ Dom(A∗).

LetR be the Riesz-Berezansky operator R (see [1, 14, 15]) which mapsH− ontoH+
such that ( f , g) = ( f ,Rg)+ (∀ f ∈ H+, g ∈ H−) and ‖Rg‖+ = ‖g‖−. Note that
identifying the space conjugate to H± with H∓, we get that if A ∈ [H+,H−], then
A

∗ ∈ [H+,H−]. An operator A ∈ [H+,H−] is called a self-adjoint bi-extension of a
symmetric operator Ȧ if A = A

∗ and A ⊃ Ȧ. Let A be a self-adjoint bi-extension of
Ȧ and let the operator Â inH be defined as follows:

Dom( Â) = { f ∈ H+ : A f ∈ H}, Â = A�Dom( Â).

The operator Â is called a quasi-kernel of a self-adjoint bi-extension A (see [30],
[1, Section 2.1]). A self-adjoint bi-extension A of a symmetric operator Ȧ is called
t-self-adjoint (see [1, Definition 4.3.1]) if its quasi-kernel Â is a self-adjoint operator
in H. An operator A ∈ [H+,H−] is called a quasi-self-adjoint bi-extension of an
operator T if A ⊃ T ⊃ Ȧ and A

∗ ⊃ T ∗ ⊃ Ȧ. We will be mostly interested in
the following type of quasi-self-adjoint bi-extensions. Let T be a quasi-self-adjoint
extension of Ȧ with nonempty resolvent set ρ(T ). A quasi-self-adjoint bi-extension
A of an operator T is called (see [1, Definition 3.3.5]) a (∗)-extension of T if ReA
is a t-self-adjoint bi-extension of Ȧ. In what follows we assume that Ȧ has deficiency
indices (1, 1). In this case it is known [1] that every quasi-self-adjoint extension T of
Ȧ admits (∗)-extensions. The description of all (∗)-extensions via Riesz-Berezansky
operator R can be found in [1, Section 4.3].

Recall that a linear operator T in a Hilbert space H is called accretive [21] if
Re (T f , f ) ≥ 0 for all f ∈ Dom(T ). We call an accretive operator T β-sectorial [21]
if there exists a value of β ∈ (0, π/2) such that

(cot β)| Im(T f , f )| ≤ Re (T f , f ), f ∈ Dom(T ). (2.1)

We say that the angle of sectoriality β is exact for a β-sectorial operator T if

tan β = sup
f ∈Dom(T )

| Im(T f , f )|
Re (T f , f )

.

An accretive operator is called extremal accretive if it is not β-sectorial for any β ∈
(0, π/2). A (∗)-extensionA of T is called accretive if Re (A f , f ) ≥ 0 for all f ∈ H+.
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This is equivalent to that the real part ReA = (A + A
∗)/2 is a nonnegative t-self-

adjoint bi-extension of Ȧ. A (∗)-extensions A of an operator T is called accumulative
if

(ReA f , f ) ≤ ( Ȧ∗ f , f ) + ( f , Ȧ∗ f ), f ∈ H+. (2.2)

The following definition is a “lite” version of the definition of L-system given for
a scattering L-system with one-dimensional input–output space. It is tailored for the
case when the symmetric operator of an L-system has deficiency indices (1, 1). The
general definition of an L-system can be found in [1, Definition 6.3.4] (see also [12]
for a non-canonical version).

Definition 1 An array

� =
(

A K 1
H+ ⊂ H ⊂ H− C

)
(2.3)

is called an L-system if:

(1) T is a dissipative (Im(T f , f ) ≥ 0, f ∈ Dom(T )) quasi-self-adjoint extension of
a symmetric operator Ȧ with deficiency indices (1, 1);

(2) A is a (∗)-extension of T ;
(3) ImA = K K ∗, where K ∈ [C,H−] and K ∗ ∈ [H+,C].
Operators T and A are called a main and state-space operators respectively of the
system �, and K is a channel operator. It is easy to see that the operator A of the
system (2.3) is such that ImA = (·, χ)χ , χ ∈ H− and pick K c = c · χ , c ∈ C (see
[1]). A system � in (2.3) is called minimal if the operator Ȧ is a prime operator inH,
i.e., there exists no non-trivial reducing invariant subspace of H on which it induces
a self-adjoint operator. Minimal L-systems of the form (2.3) with one-dimensional
input–output space were also considered in [6].

We associate with an L-system � the function

W�(z) = I − 2i K ∗(A − z I )−1K , z ∈ ρ(T ), (2.4)

which is called the transfer function of the L-system �. We also consider the function

V�(z) = K ∗(ReA − z I )−1K , (2.5)

that is called the impedance function of an L-system � of the form (2.3). The transfer
function W�(z) of the L-system � in (2.4) and function V�(z) of the form (2.5) are
connected by the following relations valid for Im z �= 0, z ∈ ρ(T ),

V�(z) = i[W�(z) + I ]−1[W�(z) − I ],
W�(z) = (I + iV�(z))−1(I − iV�(z)).

An L-system � of the form (2.3) is called an accretive L-system ([4, 11, 18]) if its
state-space operator operator A is accretive, that is Re (A f , f ) ≥ 0 for all f ∈ H+,
and accumulative ([10]) if its state-space operator A is accumulative, i.e., satisfies
(2.2). It is easy to see that if an L-system is accumulative, then (2.2) implies that the
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operator Ȧ of the system is non-negative and both operators T and T ∗ are accretive.
We also associate another operator Ã to an accumulative L-system �. It is given by

Ã = 2Re Ȧ∗ − A, (2.6)

where Ȧ∗ is in [H+,H−]. Obviously, Re Ȧ∗ ∈ [H+,H−] and Ã ∈ [H+,H−]. Clearly,
Ã is a bi-extension of Ȧ and is accretive if and only if A is accumulative. It is also
not hard to see that even though Ã is not a (∗)-extensions of the operator T but the
form (Ã f , f ), f ∈ H+ extends the form ( f , T f ), f ∈ Dom(T ). An accretive L-
system is called sectorial [4] if the operator A is sectorial, i.e., satisfies (2.1) for some
β ∈ (0, π/2) and all f ∈ H+. Similarly, an accumulative L-system is sectorial [10]
if its operator Ã of the form (2.6) is sectorial.

3 Sectorial Classes and Their Realizations

A scalar function V (z) is called the Herglotz–Nevanlinna function if it is holomorphic
on C \ R, symmetric with respect to the real axis, i.e., V (z)∗ = V (z̄), z ∈ C\R,
and if it satisfies the positivity condition Im V (z) ≥ 0, z ∈ C+. The class of all
Herglotz–Nevanlinna functions, that can be realized as impedance functions of L-
systems, and connections with Weyl–Titchmarsh functions can be found in [1, 6, 17,
19] and references therein. The following definition is given in [20]. A scalarHerglotz–
Nevanlinna function V (z) is a Stieltjes function if it is holomorphic in Ext[0,+∞)

and
Im[zV (z)]

Im z
≥ 0.

Now we turn to inverse Stieltjes functions. A scalar Herglotz–Nevanlinna function
V (z) is called inverse Stieltjes [20] if V (z) it is holomorphic in Ext[0,+∞) and


[V (z)/z]
Im z

≥ 0.

We consider the inverse Stieltjes functions V (z) that admit (see [20]) the following
integral representation

V (z) = γ +
∫ ∞

0

(
1

t − z
− 1

t

)
dG(t), (3.1)

where γ ≤ 0 and G(t) is a non-decreasing on [0,+∞)measure such that
∫ ∞
0

dG(t)
t+t2

<

∞. The following definition gives a description to a subclass of realizable inverse
Stieltjes functions. A scalar inverse Stieltjes function V (z) is a member of the class
S−1
0 (R) if the measure G(t) in representation (3.1) is unbounded. It was shown in [1,

Section 9.9] that a function V (z) belongs to the class S−1
0 (R) if and only if it can be

realized as the impedance function of an accumulative L-system � of the form (2.3)
with a non-negative densely defined symmetric operator Ȧ.
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The definition of sectorial subclasses S−1,β of scalar inverse Stieltjes functions is
the following. An inverse Stieltjes function V (z) belongs to S−1,β if

Kβ =
n∑

k,l=1

[
V (zk)/zk − V (z̄l)/z̄l

zk − z̄l
− (cot β)

V (z̄l)

z̄l

V (zk)

zk

]
hk h̄l ≥ 0,

for an arbitrary sequences of complex numbers {zk}, (Im zk > 0) and {hk}, (k =
1, ..., n). For 0 < β1 < β2 < π

2 , we have

S−1,β1 ⊂ S−1,β2 ⊂ S−1,

where S−1 denotes the class of all inverse Stieltjes functions (which corresponds to
the case β = π

2 ).
Let� be an accumulative minimal L-system of the form (2.3). It was shown in [13]

that the impedance function V�(z) defined by (2.5) belongs to the class S−1,β if and
only if the operator Ã of the form (2.6) associated to the L-system � is β-sectorial.

Before introducing the next definition we recall (see [20]) that a Herglotz-Nevanlin-
na function belongs to the class S−1 if and only if it is holomorphic on Ext [0,+∞)

and non-positive on (−∞, 0). Let 0 ≤ β1 < π
2 , 0 < β2 ≤ π

2 , and β1 ≤ β2. We say
that a scalar inverse Stieltjes function V (z) of the class S−1

0 (R) belongs to the class
S−1,β1,β2 if

tan(π − β1) = lim
x→0− V (x), tan(π − β2) = lim

x→−∞ V (x).

Note, that if β2 = π
2 in the above, we understand the left side of the second equality

as a limit (as β2 tends to π/2 from the left) that equals −∞.
The following connection between the classes S−1,β and S−1,β1,β2 was established

in [13]. Let � be an accumulative L-system of the form (2.3) with a densely defined
non-negative symmetric operator Ȧ such that the associated operator Ã of the form
(2.6) is β-sectorial. Then the impedance function V�(z) defined by (2.5) belongs to
the class S−1,β1,β2 , the main operator T of � is (β2 − β1)-sectorial with the exact
angle of sectoriality (β2 − β1), and tan β2 ≤ tan β. Note, that this connection also
remains valid for the case when the operator Ã is accretive but not β-sectorial for any
β ∈ (0, π/2). Also, under the same set of assumptions, we have that, if β is the exact
angle of sectoriality of the operator T , then V�(z) ∈ S−1,0,β and is such that γ = 0
in (3.1).

Let � be a minimal accumulative L-system of the form (2.3) as above and Ã is the
associated to � operator defined via (2.6). It was shown in [13] that if the impedance
function V�(z) belongs to the class S−1,β1,β2 and β2 �= π/2, then Ã is β-sectorial,
where tan β is given by

tan β = tan β2 + 2
√
tan β1(tan β2 − tan β1). (3.2)
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Moreover, both Ã and T are β-sectorial operators with the exact angle β ∈ (0, π/2)
if and only if V�(z) ∈ S−1,0,β and

tan β =
∫ ∞

0

dG(t)

t
, (3.3)

where G(t) is the measure from integral representation (3.1) of V�(z) (see [13, The-
orem 13]).

4 L-Systems with Schrödinger Operator and Their Impedance
Functions

Let H = L2[	,+∞), 	 ≥ 0, and l(y) = −y′′ + q(x)y, where q is a real locally
summable on [	,+∞) function. Suppose that the symmetric operator

{
Ȧy = −y′′ + q(x)y
y(	) = y′(	) = 0

(4.1)

has deficiency indices (1,1). Let D∗ be the set of functions locally absolutely con-
tinuous together with their first derivatives such that l(y) ∈ L2[	,+∞). Consider
H+ = Dom( Ȧ∗) = D∗ with the scalar product

(y, z)+ =
∫ ∞

	

(
y(x)z(x) + l(y)l(z)

)
dx, y, z ∈ D∗.

LetH+ ⊂ L2[	,+∞) ⊂ H− be the corresponding triplet of Hilbert spaces. Consider
the operators

{
Th y = l(y) = −y′′ + q(x)y
hy(	) − y′(	) = 0

,

{
T ∗

h y = l(y) = −y′′ + q(x)y
hy(	) − y′(	) = 0

, (4.2)

where Im h > 0. Let Ȧ be a symmetric operator of the form (4.1) with deficiency
indices (1,1), generated by the differential operation l(y) = −y′′ + q(x)y. Let also
ϕk(x, λ)(k = 1, 2) be the solutions of the following Cauchy problems:

⎧⎨
⎩

l(ϕ1) = λϕ1
ϕ1(	, λ) = 0
ϕ′
1(	, λ) = 1

,

⎧⎨
⎩

l(ϕ2) = λϕ2
ϕ2(	, λ) = −1
ϕ′
2(	, λ) = 0

.

It is well known [22, 24] that there exists a function m∞(λ) introduced by H. Weyl
[31] for which

ϕ(x, λ) = ϕ2(x, λ) + m∞(λ)ϕ1(x, λ)

belongs to L2[	,+∞). The function m∞(λ) is not a Herglotz–Nevanlinna function
but (−m∞(λ)) and (1/m∞(λ)) are.
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Now we shall construct an L-system based on a non-self-adjoint Schrödinger oper-
ator Th with Im h > 0. It was shown in [1, 3] that the set of all (∗)-extensions of
a non-self-adjoint Schrödinger operator Th of the form (4.2) in L2[	,+∞) can be
represented in the form

Aμ,h y = −y′′ + q(x)y − 1

μ − h
[y′(	) − hy(	)] [μδ(x − 	) + δ′(x − 	)],

A
∗
μ,h y = −y′′ + q(x)y − 1

μ − h
[y′(	) − hy(	)] [μδ(x − 	) + δ′(x − 	)].

(4.3)

Moreover, the formulas (4.3) establish a one-to-one correspondence between the set of
all (∗)-extensions of a Schrödinger operator Th of the form (4.2) and all real numbers
μ ∈ [−∞,+∞]. One can easily check that the (∗)-extension A in (4.3) of the non-
self-adjoint dissipative Schrödinger operator Th , (Im h > 0) of the form (4.2) satisfies
the condition

ImAμ,h = Aμ,h − A
∗
μ,h

2i
= (., gμ,h)gμ,h,

where

gμ,h = (Im h)
1
2

|μ − h| [μδ(x − 	) + δ′(x − 	)]

and δ(x − 	), δ′(x − 	) are the delta-function and its derivative at the point 	, respec-
tively. Furthermore,

(y, gμ,h) = (Im h)
1
2

|μ − h| [μy(	) − y′(	)],

where y ∈ H+, gμ,h ∈ H−, and H+ ⊂ L2[	,+∞) ⊂ H− is the triplet of Hilbert
spaces discussed above.

It was also shown in [1] that the quasi-kernel Âξ of ReAμ,h is given by

{
Âξ y = −y′′ + q(x)y
y′(	) = ξ y(	)

, where ξ = μRe h − |h|2
μ − Re h

. (4.4)

Let E = C, Kμ,hc = cgμ,h, (c ∈ C). It is clear that

K ∗
μ,h y = (y, gμ,h), y ∈ H+, (4.5)

and ImAμ,h = Kμ,h K ∗
μ,h . Therefore, the array

�μ,h =
(

Aμ,h Kμ,h 1
H+ ⊂ L2[	,+∞) ⊂ H− C

)
, (4.6)

is an L-system with the main operator Th , (Im h > 0) of the form (4.2), the state-space
operator Aμ,h of the form (4.3), and with the channel operator Kμ,h of the form (4.5).
It was established in [1, 3, 5] that the transfer and impedance functions of �μ,h are
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W�μ,h (z) = μ − h

μ − h

m∞(z) + h

m∞(z) + h
, (4.7)

and

V�μ,h (z) = (m∞(z) + μ) Im h

(μ − Re h) m∞(z) + μRe h − |h|2 . (4.8)

It was shown in [1, Section 10.2] that if the parameters μ and ξ are related via (4.4),
then the two L-systems �μ,h and �ξ,h of the form (4.6) have the following property

W�μ,h (z) = −W�ξ,h (z), V�μ,h (z) = − 1

V�ξ,h (z)
, where ξ = μRe h − |h|2

μ − Re h
.

5 Realizations of−m∞(z), 1/m∞(z) andm˛(z)

It is known [22, 24] that the original Weyl–Titchmarsh function m∞(z) has a property
that (−m∞(z)) is a Herglotz–Nevanlinna function. The question whether (−m∞(z))
can be realized as the impedance function of a Schrödinger L-system is answered in
the following theorem that was proved in [8].

Theorem 2 ([8]) Let Ȧ be a symmetric Schrödinger operator of the form (4.1) with
deficiency indices (1, 1) and locally summable potential inH = L2[	,∞). If m∞(z) is
the Weyl–Titchmarsh function of Ȧ, then the Herglotz–Nevanlinna function (−m∞(z))
can be realized as the impedance function of a Schrödinger L-system �μ,h of the form
(4.6) with μ = 0 and h = i .

Conversely, let �μ,h be a Schrödinger L-system of the form (4.6)with the symmetric
operator Ȧ such that V�μ,h (z) = −m∞(z), for all z ∈ C± and μ ∈ R ∪ {∞}. Then
the parameters μ and h defining �μ,h are such that μ = 0 and h = i .

A similar result for the function 1/m∞(z) was also proved in [8].

Theorem 3 ([8]) Let Ȧ be a symmetric Schrödinger operator of the form (4.1) with
deficiency indices (1, 1) and locally summable potential inH = L2[	,∞). If m∞(z) is
the Weyl–Titchmarsh function of Ȧ, then the Herglotz–Nevanlinna function (1/m∞(z))
can be realized as the impedance function of a Schrödinger L-system �μ,h of the form
(4.6) with μ = ∞ and h = i .

Conversely, let �μ,h be a Schrödinger L-system of the form (4.6)with the symmetric
operator Ȧ such that V�μ,h (z) = 1

m∞(z) , for all z ∈ C± and μ ∈ R ∪ {∞}. Then the
parameters μ and h defining �μ,h are such that μ = ∞ and h = i .

We note that both L-systems �0,i and �∞,i obtained in Theorems 2 and 3 share the
same main operator {

Ti y = −y′′ + q(x)y
y′(	) = i y(	)

.

Now we recall the definition of Weyl–Titchmarsh functions mα(z). Let Ȧ be a
symmetric operator of the form (4.1) with deficiency indices (1,1), generated by the
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differential operation l(y) = −y′′ + q(x)y. Let also ϕα(x, z) and θα(x, z) be the
solutions of the following Cauchy problems:

⎧⎨
⎩

l(ϕα) = zϕα

ϕα(	, z) = sin α

ϕ′
α(	, z) = − cosα

,

⎧⎨
⎩

l(θα) = zθα

θα(	, z) = cosα

θ ′
α(	, z) = sin α

.

It is known [16, 24, 25] that there exists an analytic in C± function mα(z) for which

ψ(x, z) = θα(x, z) + mα(z)ϕα(x, z) (5.1)

belongs to L2[	,+∞). It is easy to see that if α = π , then mπ (z) = m∞(z). The
functions mα(z) and m∞(z) are connected (see [16, 25]) by

mα(z) = sin α + m∞(z) cosα

cosα − m∞(z) sin α
. (5.2)

We know [24, 25] that for any real α the function −mα(z) is a Herglotz–Nevanlinna
function. Also, modifying (5.2) slightly we obtain

− mα(z) = sin α + m∞(z) cosα

− cosα + m∞(z) sin α
= cosα + 1

m∞(z) sin α

sin α − 1
m∞(z) cosα

. (5.3)

The following realization theorem (see [8]) for Herglotz–Nevanlinna functions
−mα(z) is similar to Theorem 2.

Theorem 4 ([8]) Let Ȧ be a symmetric Schrödinger operator of the form (4.1) with
deficiency indices (1, 1) and locally summable potential in H = L2[	,∞). If mα(z) is
the function of Ȧ described in (5.1), then the Herglotz–Nevanlinna function (−mα(z))
can be realized as the impedance function of a Schrödinger L-system �μ,h of the form
(4.6) with

μ = tan α and h = i . (5.4)

Conversely, let �μ,h be a Schrödinger L-system of the form (4.6)with the symmetric
operator Ȧ such that

V�μ,h (z) = −mα(z),

for all z ∈ C± and μ ∈ R ∪ {∞}. Then the parameters μ and h defining �μ,h are
given by (5.4), i.e., μ = tan α and h = i .

We note that when α = π we obtain μα = 0, mπ (z) = m∞(z), and the realizing
Schrödinger L-system�0,i is thoroughly described in [8, Section 5]. If α = π/2, then
we get μα = ∞, −mα(z) = 1/m∞(z), and the realizing Schrödinger L-system �∞,i
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(see [8, Section 5]). Assuming that α ∈ (0, π ] and neither α = π nor α = π/2 we
give the description of a Schrödinger L-system �μα,i realizing −mα(z) as follows.

�tan α,i =
(

Atan α,i Ktan α,i 1
H+ ⊂ L2[	,+∞) ⊂ H− C

)
, (5.5)

where

Atan α,i y = l(y) − 1

tan α − i
[y′(	) − iy(	)][(tan α)δ(x − 	) + δ′(x − 	)],

A
∗
tan α,i y = l(y) − 1

tan α + i
[y′(	) + iy(	)][(tan α)δ(x − 	) + δ′(x − 	)],

Ktan α,i c = c gtan α,i , (c ∈ C) and

gtan α,i = (tan α)δ(x − 	) + δ′(x − 	).

Also,
V�tan α,i (z) = −mα(z)

W�tan α,i (z) = tan α − i

tan α + i
· m∞(z) − i

m∞(z) + i
= (−e2αi )

m∞(z) − i

m∞(z) + i
.

The realization theorem for Herglotz–Nevanlinna functions 1/mα(z) is similar to
Theorem 3 and can be found in [8].

6 Non-negative Schrödinger Operator and Sectorial L-Systems

Now let us assume that Ȧ is a non-negative (i.e., ( Ȧ f , f ) ≥ 0 for all f ∈ Dom( Ȧ))
symmetric operator of the form (4.1) with deficiency indices (1,1), generated by the
differential operation l(y) = −y′′ + q(x)y. The following theorem takes place.

Theorem 5 ([27–29], see also [5]) Let Ȧ be a nonnegative symmetric Schrödinger
operator of the form (4.1)with deficiency indices (1, 1) and locally summable potential
in H = L2[	,∞). Consider operator Th of the form (4.2). Then

(1) operator Ȧ has more than one non-negative self-adjoint extension, i.e., the
Friedrichs extension AF and the Kreı̆n-von Neumann extension AK do not coin-
cide, if and only if m∞(−0) < ∞;

(2) operator Th, (h = h̄) coincides with the Kreı̆n-von Neumann extension AK if and
only if h = −m∞(−0);

(3) operator Th is accretive if and only if

Re h ≥ −m∞(−0);

(4) operator Th, (h �= h̄) is β-sectorial if and only if Re h > −m∞(−0) holds;
(5) operator Th, (h �= h̄) is accretive but not β-sectorial for any β ∈ (0, π

2 ) if and
only if Re h = −m∞(−0)
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(6) If Th, (Im h > 0) is β-sectorial, then the exact angle β can be calculated via

tan β = Im h

Re h + m∞(−0)
. (6.1)

For the remainder of this paper we assume that m∞(−0) < ∞. Then according to
Theorem 5 above (see also [2, 5, 26, 29]) we have the existence of the operator Th ,
(Im h > 0) that is accretive and/or sectorial. It was shown in [1] that if Th (Im h > 0)
is an accretive Schrödinger operator of the form (4.2), then for all real μ satisfying
the following inequality

μ ≥ (Im h)2

m∞(−0) + Re h
+ Re h,

formulas (4.3) define the set of all accretive (∗)-extensions Aμ,h of the operator Th .
Also, Aμ,h is accretive but not β-sectorial for any β ∈ (0, π/2) (∗)-extension of Th if
and only if in (4.3)

μ = (Im h)2

m∞(−0) + Re h
+ Re h,

(see [9, Theorem 4]). It is also shown in [1] that (∗)-extensions Aμ,h of the operator
Th are accumulative if and only if

− m∞(−0) ≤ μ ≤ Re h. (6.2)

Using formulas (4.3) and direct calculations (see also [9]) one can obtain the formula
for operator Ãμ,h of the form (2.6) as follows

Ãμ,h y = −y′′ + q(x)y − y′(a)δ(x − a) − y(a)δ′(x − a)

+ 1
μ−h [y′(a) − hy(a)] [μδ(x − a) + δ′(x − a)]. (6.3)

Nowwe are going to turn to functionsmα(z) described by (5.1)-(5.2) and associated
with the non-negative operator Ȧ above. We need to see how the parameter α in
the definition of mα(z) affects the L-system realizing (−mα(z)). This question was
partially answered in [8, Theorem 6.3]. It tells us that if the non-negative symmetric
Schrödinger operator is such that m∞(−0) ≥ 0, then the L-system�tan α,i of the form
(5.5) realizing the function (−mα(z)) is accretive if and only if

tan α ≥ 1

m∞(−0)
. (6.4)

In the case when m∞(−0) = 0 in the above, inequality (6.4) is understood as yielding
tan α = +∞. Then (see [8, Theorem 6.4]) the realizing L-system �tan α,i is extremal
accretive, that is accretive but not β-sectorial for any β ∈ (0, π/2).
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Fig. 1 Accumulative and accretive L-systems �tan α,i

We are going to use inequality (6.2) to see the values of μ = tan α that generate
accumulative L-systems �tan α,i . This approach yields

− m∞(−0) ≤ tan α ≤ 0. (6.5)

The established criteria for a function (−mα(z)) to be realized with an accretive or
accumulative L-system �tan α,i are graphically shown on Fig. 1. This figure describes
the dependence of the properties of realizing (−mα(z)) L-systems on the value of μ

and hence α. The bold part of the real line depicts values of μ = tan α that produce
accretive or accumulative L-systems �μ,i .

Note that if m∞(−0) = 0 in (6.4), then α = π/2 and −m π
2
(z) = 1/m∞(z). Also,

from [8, Theorem 6.2] we know that if m∞(−0) ≥ 0, then 1/m∞(z) is realized by
an accretive system �∞,i . We also note that when tan α = 0 and hence α = 0 we
obtain m0(z) = m∞(z), and the realizing−m∞(z) Schrödinger L-system is�0,i . The
following theorem shows how the additional requirement of non-negativity affects the
realization of functions −m∞(z) and 1/m∞(z).

Theorem 6 Let Ȧ be a non-negative symmetric Schrödinger operator of the form (4.1)
with deficiency indices (1, 1) and locally summable potential in H = L2[	,∞). If
m∞(z) is the Weyl–Titchmarsh function of Ȧ such that m∞(−0) ≥ 0, then the L-
system �0,i realizing the function (−m∞(z)) is accumulative and the L-system �∞,i

realizing the function 1/m∞(z) is accretive.

Proof Sincem∞(−0) ≥ 0, we can apply (6.5) to conclude that−m0(z) = −m∞(z) ≤
0 implies that the L-system�0,i realizing the function (−m∞(z)) is accumulative (see
[1, Section 9.9]). The fact that the L-system �∞,i realizing the function 1/m∞(z) is
accretive under the conditions of current theorem was proved in [8]. ��
Remark 7 Some of analytic properties of the functions (−m∞(z)), 1/m∞(z), and
(−mα(z)) were described in [8, Theorem 6.5]. Taking into account these results and
the above reasoning we have that under the current set of assumptions:

(1) the function 1/m∞(z) is Stieltjes if and only if m∞(−0) ≥ 0;
(2) the function (−m∞(z)) is inverse Stieltjes if and only if m∞(−0) ≥ 0;
(3) the function (−mα(z)) given by (5.2) is Stieltjes if and only if

0 <
1

m∞(−0)
≤ tan α,
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and inverse Stieltjes if and only if

−m∞(−0) ≤ tan α ≤ 0.

Now once we established a criteria for an L-system realizing (−mα(z)) to be accu-
mulative, we can look into more of its properties. We are going to turn to the case
when our realizing L-system �tan α,i is accumulative sectorial. To begin with let �μ,h

be an L-system of the form (4.6), whereAμ,h is an accumulative (∗)-extension (4.3) of
the accretive Schrödinger operator Th . Let also the operator Ãμ,h be of the form (6.3).
Below is the list of some known facts (see [10, 13]) about possible accumulativity and
sectoriality of �μ,h .

• If Ãμ,h is β-sectorial, then the impedance function V�μ,h (z) defined by (2.5)
belongs to the class S−1,β1,β2 .

• The operator Th of �μ,h is (β2 − β1)-sectorial with the exact angle of sectoriality
(β2 − β1), and tan β2 ≤ tan β.

• In the case when β1 = 0 and β2 = π/2 the operator Th is accretive but not
β-sectorial.

• If β is the exact angle of sectoriality of the operator Th , then V�μ,h (z) ∈ S−1,0,β .

• if the impedance function V�μ,h (z) belongs to the class S−1,β1,β2 , then Ãμ,h is
β-sectorial, where tan β is defined via (3.2).

• Both Ãμ,h and Th are β-sectorial operators with the exact angle β ∈ (0, π/2) if
and only if V�μ,h (z) ∈ S−1,0,β and tan β is given by (3.3).

At this point we would like to consider a function (−mα(z)) and Schrödinger L-
system�tan α,i of the form (5.5) that realizes it. According to Theorem 6 this L-system
�tan α,i can be accumulative if and only if (6.5) holds, that is−m∞(−0) ≤ tan α ≤ 0.
Moreover, according to [9, Theorem 6], �tan α,i is accumulative sectorial if and only
if

− m∞(−0) ≤ tan α < 0, (6.6)

and accumulative extremal (see [9, Theorem 7]) if and only if tan α = 0. Also,
if we assume that L-system �tan α,i is β-sectorial, then its impedance function
V�tan α,i (z) = −mα(z) belongs (see [13]) to certain sectorial classes of inverse Stieltjes
functions discussed in Sect. 3. Namely, (−mα(z)) ∈ S−1,β . The following theorem
provides more refined properties of (−mα(z)) for this case.

Theorem 8 Let �tan α,i be the accumulative L-system of the form (5.5) realizing the
function (−mα(z)) associated with the non-negative operator Ȧ. Let also Ãtan α,i be
a β-sectorial operator associated with �tan α,i and defined by (2.6). Then the function
(−mα(z)) belongs to the class S−1,β1,β2 , tan β2 ≤ tan β, and

tan β1 = tan α + m∞(−0)

1 − (tan α)m∞(−0)
, (6.7)

and
tan β2 = − cot α. (6.8)
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Fig. 2 Associated operator Ãtan α,i

Moreover, the operator Ti is (β2 − β1)-sectorial with the exact angle of sectoriality
(β2 − β1).

Proof It is given that �tan α,i is accumulative and hence (6.6) holds. For further con-
venience we re-write (−mα(z)) as

−mα(z) = sin α + m∞(z) cosα

− cosα + m∞(z) sin α
= tan α + m∞(z)

(tan α)m∞(z) − 1
.

Since under our assumption Ãtan α,i is β-sectorial, then (see [9, 13]) the impedance
function V�tan α,i (z) = −mα(z) belongs to certain sectorial classes discussed in Sect. 3.
Particularly, −mα(z) ∈ S−1,β and −mα(z) ∈ S−1,β1,β2 , where (see [9])

tan(π − β1) = − tan β1 = lim
x→−0

(−mα(x)) = tan α + m∞(−0)

(tan α)m∞(−0) − 1
,

and

tan(π − β2) = − tan β2 = lim
x→−∞(−mα(x)) = tan α + m∞(−∞)

(tan α)m∞(−∞) − 1

=
tan α

m∞(−∞)
+ 1

tan α − 1
m∞(−∞)

= 1

tan α
= cot α.

Multiplying the above by (−1) one confirms (6.7) and (6.8). In order to show the rest,
we apply [13, Theorem 9]. This theorem states that if Ã is a β-sectorial operator of the
form (2.5) associated to an accumulative L-system �, then the impedance function
V�(z) belongs to the class S−1,β1,β2 , tan β2 ≤ tan β, and T is (β2 −β1)-sectorial with
the exact angle of sectoriality (β2 − β1). ��

The next theorem explains two “endpoint” cases of accumulative realization for the
function (−mα(z)).

Theorem 9 Let �tan α,i be the accumulative L-system of the form (5.5) realizing the
function (−mα(z)) with a sectorial main operator Ti whose exact angle of sectoriality
is β ∈ (0, π/2). Let also Ãtan α,i be an associated operator defined by (2.5). Then
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(1) Ãtan α,i is β-sectorial (with the same angle of sectoriality as Ti ) if and only if
tan α = −m∞(−0) in (6.3);

(2) Ãtan α,i is accretive but not β-sectorial for any β ∈ (0, π/2) if and only if in (4.3)
α = 0.

Proof The proof directly follows from [9, Theorems 6 and 7] after one sets μ =
tan α = −m∞(−0) for part (1) and μ = Re h = tan 0 = 0 for part (2). ��

The result of Theorem 9 is graphically illustrated by Fig. 2. Also we have shown that
within the conditions of Theorem 9 the α-sectorial sesquilinear form ( f , T f ) defined
on a subspace Dom(T ) ofH+ can be extended to the α-sectorial form (Ã f , f ) defined
onH+ preserving the exact (for both forms) angle of sectoriality α. A general problem
of extending sectorial sesquilinear forms was mentioned by T. Kato in [21].

Now we state and prove the following.

Theorem 10 Let �tan α,i be an accumulative L-system of the form (5.5) that realizes
(−mα(z)) with the main θ -sectorial operator Ti whose exact sectoriality angle is θ .
Let also α∗ ∈ (arctan(−m∞(−0)), 0) be a fixed value that defines the associated
operator Ãtan α∗,i via (2.5), (4.3), and (−mα(z)) ∈ S−1,β1,β2 . Then the associated
operator Ãtan α,i is β-sectorial for any α ∈ (arctan(−m∞(−0)), α∗) with

tan β = tan β1 + 2
√
tan β1 tan β2. (6.9)

Moreover, if α = arctan(−m∞(−0)), then

β = θ = arctan

(
1

m∞(−0)

)
.

Proof We note first that the conditions of our theorem imply the following: tan α∗ ∈
(−m∞(−0), 0). Thus, according to [8, Theorem 8] applied forμ = tan α the operator
Ãtan α,i is β-sectorial for some β ∈ (0, π/2) for any α such that

−m∞(−0) ≤ tan α < tan α∗.

Formula (6.9) also follows from the corresponding formula in [8, Theorem 8] taken
into account that β1 and β2 are defined via (6.7) and (6.8), respectively. Finally, since
Ti is θ -sectorial, formula (6.1) yields tan θ = 1

m∞(−0) . Applying part (1) of Theorem
9 gives us that β = θ . This completes the proof. ��

Note that Theorem 10 provides us with a value β which serves as a universal angle of
sectoriality for the entire indexed family of associated operators Ã of the form (6.3)
as depicted on Fig. 3.
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Fig. 3 Angle of sectoriality β.
Here α0 = arctan(−m∞(−0))

7 Example

We conclude this paper with a simple illustration. Consider the differential expression
with the Bessel potential

lν = − d2

dx2
+ ν2 − 1/4

x2
, x ∈ [1,∞)

of order ν > 0 in the Hilbert space H = L2[1,∞). The minimal symmetric operator

{
Ȧ y = −y′′ + ν2−1/4

x2
y

y(1) = y′(1) = 0

generated by this expression and boundary conditions has deficiency numbers (1, 1)
for any ν > 0 (see [3]). Let ν = 3/2. It is known [1] that in this case

m∞(z) = − i z − 3
2
√

z − 3
2 i√

z + i
− 1

2
=

√
z − i z + i√

z + i
= 1 − i z√

z + i

and m∞(−0) = 1. The minimal symmetric operator then becomes

{
Ȧ y = −y′′ + 2

x2
y

y(1) = y′(1) = 0.

The main operator Th of the form (4.2) is written for h = i as

{
Ti y = −y′′ + 2

x2
y

y′(1) = i y(1)

will be shared by all the family ofL-systems realizing functions (−mα(z))described by
(5.1)-(5.2). This operator is accretive and β-sectorial since Re h = 0 > −m∞(−0) =
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−1 with the exact angle of sectoriality given by (see (6.1))

tan β = Im h

Re h + m∞(−0)
= 1

0 + 1
= 1 or β = π

4
.

A family of L-systems �tan α,i of the form (5.5) that realizes functions (−mα(z))
described by (5.1)–(5.3) as

−mα(z) = (
√

z − i z + i) cosα + (
√

z + i) sin α

(
√

z − i z + i) sin α − (
√

z + i) cosα
,

was constructed in [8]. According to (6.5) the L-systems �tan α,i in (5.5) are accumu-
lative if

−1 = −m∞(−0) ≤ tan α ≤ 0.

Using part (2) of Theorem 9, we get that the realizing L-system�tan α,i in (5.5) is such
that the associated operator Ãtan α,i is extremal accretive if μ = tan α = 0 or α = 0.
Therefore the L-system

�0,i =
(

A0,i K0,i 1
H+ ⊂ L2[1,+0) ⊂ H− C

)
,

where

A0,i y = −y′′ + 2

x2
y − i [y′(1) − iy(1)] δ′(x − 1),

A
∗
0,i y = −y′′ + 2

x2
y + i [y′(1) + iy(1)] δ′(x − 1),

K0,i c = cg0,i , (c ∈ C) and g0,i = δ′(x − 1). This L-system �0,i realizes the function
−m0(z) = −m∞(z). Also,

V�0,i (z) = −m0(z) = −m∞(z) = i z√
z + i

− 1

W�0,i (z) = −m∞(z) − i

m∞(z) + i
= (i − 1)

√
z + i z − 1 − i

(1 + i)
√

z − i z − 1 + i
.

(7.1)

The associate operator Ã0,i is given by (6.3) as

Ã0,i y = −y′′ + 2

x2
y − y′(1)δ(x − 1) − y(1)δ′(x − 1) + [y(1) + iy′(1)] δ′(x − 1)

= −y′′ + 2

x2
y − y′(1)[δ(x − 1) − iδ′(x − 1)].

The adjoint operator of Ã0,i is

Ã
∗
0,i y = −y′′ + 2

x2
y − y′(1)[δ(x − 1) + iδ′(x − 1)],
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and consequently

Re Ã0,i y = −y′′ + 2

x2
y − y′(1)δ(x − 1) and Im Ã0,i y = y′(1)δ′(x − 1).

The operator Ã0,i above is accretive according to [13] which is also independently
confirmed by direct evaluation

(Re Ã0,i y, y) = ‖y′(x)‖2L2 + 2‖y(x)/x‖2L2 ≥ 0.

Moreover, according to Theorem 9 it is extremal, that is accretive but not β-sectorial
for any β ∈ (0, π/2). Indeed, it is easy to see that

(Im Ã0,i y, y) = −|y′(1)|2,

and hence we can have inequality (2.1) for all y ∈ H+ only if β = π
2 . Thus, this

is the case of the extremal operator. In addition, we have shown that the function
−m0(z) = −m∞(z) = i z√

z+i − 1 in (7.1) belongs to the sectorial class S−1, π
4 , π

2 of
inverse Stieltjes functions.
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