ON CLASSES OF REALIZABLE OPERATOR-VALUED R-FUNCTIONS

S.V. Belyi and E.R. Tsekanovskii

Abstract

In this paper we consider realization problems (see [5]-[7]) for operator-valued R-functions acting on a Hilbert space $E(\operatorname{dim} E<\infty)$ as linear-fractional transformations of the transfer operator-valued functions (characteristic functions) of linear stationary conservative dynamic systems (Brodskii-Livs̆ic rigged operator colligations). We specialize three subclasses of the class of all realizable operator-valued R-functions [7]. We give complete proofs of direct and inverse realization theorems for each subclass announced in [5], [6].

1. Introduction

Realization theory of different classes of operator-valued (matrix-valued) functions as transfer operator-functions of linear systems plays an important role in modern operator and systems theory. Almost all realizations in the modern theory of non-selfadjoint operators and its applications deal with systems (operator colligations) in which the main operators are bounded linear operators [8], [10-16], [17], [23]. The realization with an unbounded operator as a main operator in a corresponding system has not been investigated thoroughly because of a number of essential difficulties usually related to unbounded non-selfadjoint operators.

This paper is the logical continuation of the results stated and proved in [7]. We consider realization problems for operator-valued R-functions acting on a finite dimensional Hilbert space E as linear-fractional transformations of the transfer operator-functions of linear stationary conservative dynamic systems (l.s.c.d.s.) θ of the form

$$
\left\{\begin{array}{l}
(\mathbb{A}-z I) x=K J \varphi_{-} \\
\varphi_{+}=\varphi_{-}-2 i K^{*} x
\end{array} \quad\left(\operatorname{Im} \mathbb{A}=K J K^{*}\right)\right.
$$

or

$$
\theta=\left(\begin{array}{ccc}
\mathbb{A} & K & J \\
\mathfrak{H}_{+} \subset \mathfrak{H} \subset \mathfrak{H}_{-} & & E
\end{array}\right) .
$$

In the system θ above \mathbb{A} is a bounded linear operator, acting from \mathfrak{H}_{+}into \mathfrak{H}_{-}, where $\mathfrak{H}_{+} \subset \mathfrak{H} \subset \mathfrak{H}_{-}$is a rigged Hilbert space, $\mathbb{A} \supset T \supset A, \mathbb{A}^{*} \supset T^{*} \supset A, A$ is a Hermitian operator in \mathfrak{H}, T is a non-Hermitian operator in \mathfrak{H}, K is a linear bounded operator from E into $\mathfrak{H}_{-}, J=J^{*}=J^{-1}$ is acting in $E, \varphi_{ \pm} \in E, \varphi_{-}$is an input vector, φ_{+}is an output
vector, and $x \in \mathfrak{H}_{+}$is a vector of the inner state of the system θ. The operator-valued function

$$
W_{\theta}(z)=I-2 i K^{*}(\mathbb{A}-z I)^{-1} K J \quad\left(\varphi_{+}=W_{\theta}(z) \varphi_{-}\right)
$$

is the transfer operator-valued function of the system θ.
In [7] we established criteria for a given operator-valued R-function $V(z)$ to be realized in the form

$$
V(z)=i\left[W_{\theta}(z)+I\right]^{-1}\left[W_{\theta}(z)-I\right] J .
$$

It was shown that an operator-valued R-function

$$
V(z)=Q+F \cdot z+\int_{-\infty}^{+\infty}\left(\frac{1}{t-z}-\frac{t}{1+t^{2}}\right) d G(t)
$$

acting on a Hilbert space $E(\operatorname{dim} E<\infty)$ with some invertibility condition can be realized if and only if

$$
F=0 \quad \text { and } \quad Q e=\int_{-\infty}^{+\infty} \frac{t}{1+t^{2}} d G(t) e
$$

for all $e \in E$ such that

$$
\int_{-\infty}^{+\infty}(d G(t) e, e)_{E}<\infty
$$

In terms of realizable operator-valued R-functions we specialize in subclasses of the following types:
(1) a subclass for which $\overline{\mathfrak{D}(A)}=\mathfrak{H}, \mathfrak{D}(T) \neq \mathfrak{D}\left(T^{*}\right)$
(2) a subclass for which $\overline{\mathfrak{D}(A)} \neq \mathfrak{H}, \mathfrak{D}(T)=\mathfrak{D}\left(T^{*}\right)$
(3) a subclass for which $\overline{\mathfrak{D}(A)} \neq \mathfrak{H}, \mathfrak{D}(T) \neq \mathfrak{D}\left(T^{*}\right)$

To prove the direct and inverse realization theorems for operator-valued R-functions in each subclass we build a functional model which generally speaking is an unbounded version of the Brodskii-Livšic model with diagonal real part. This model for bounded linear operators was constructed in [11]. In the recent paper [4] the realization problems for contractive operator-valued functions are considered in terms of systems of the special kind. However, as it follows from [5], [7] not every contractive in the lower half-plane function can be realized by the Brodskii-Livšic rigged operator colligation.

2. Preliminaries

Let \mathfrak{H} denote a Hilbert space with inner product (x, y) and let A be a closed linear Hermitian operator, i.e. $(A x, y)=(x, A y)(\forall x, y \in \mathfrak{D}(A))$, acting on a Hilbert space \mathfrak{H} with generally speaking, non-dense domain $\mathfrak{D}(A)$. Let $\mathfrak{H}_{0}=\overline{\mathfrak{D}(A)}$ and A^{*} be the adjoint to the operator A (we consider A as acting from \mathfrak{H}_{0} into \mathfrak{H}).

We denote $\mathfrak{H}_{+}=\mathfrak{D}\left(A^{*}\right)\left(\left(\overline{\mathfrak{D}\left(A^{*}\right)}=\mathfrak{H}\right)\right.$ with inner product

$$
\begin{equation*}
(f, g)_{+}=(f, g)+\left(A^{*} f, A^{*} g\right) \quad\left(f, g \in \mathfrak{H}_{+}\right) \tag{1}
\end{equation*}
$$

and then construct the rigged Hilbert space $\mathfrak{H}_{+} \subset \mathfrak{H} \subset \mathfrak{H}_{-}$[9], [7]. Here \mathfrak{H}_{-}is the space of all linear functionals over \mathfrak{H}_{+}that are continuous with respect to $\|\cdot\|_{+}$. The norms of these spaces are connected by the relations $\|x\| \leq\|x\|_{+}\left(x \in \mathfrak{H}_{+}\right),\|x\|_{-} \leq\|x\|(x \in \mathfrak{H})$. The Riesz-Berezanskii operator (see [7]) \mathcal{R} maps \mathfrak{H}_{-}onto \mathfrak{H}_{+}such that

$$
\begin{align*}
(x, y)_{-}=(x, \mathcal{R} y)=(\mathcal{R} x, y)=(\mathcal{R} x, \mathcal{R} y)_{+} & \left(x, y \in \mathfrak{H}_{-}\right) \\
(u, v)_{+}=\left(u, \mathcal{R}^{-1} v\right)=\left(\mathcal{R}^{-1} u, v\right)=\left(\mathcal{R}^{-1} x, \mathcal{R}^{-1} y\right)_{-} & \left(u, v \in \mathfrak{H}_{+}\right) \tag{2}
\end{align*}
$$

In what follows we use symbols $(+),(\cdot)$, and $(-)$ to indicate the norms $\|\cdot\|_{+},\|\cdot\|$, and $\|\cdot\|_{-}$ by which geometrical and topological concepts are defined in $\mathfrak{H}_{+}, \mathfrak{H}$, and \mathfrak{H}_{-}, respectively.

In the above settings $\mathfrak{D}(A) \subset \mathfrak{D}\left(A^{*}\right)\left(=\mathfrak{H}_{+}\right)$and $A^{*} y=P A y(\forall y \in \mathfrak{D}(A))$, where P is an orthogonal projection of \mathfrak{H} onto \mathfrak{H}_{0}. Let

$$
\begin{equation*}
\mathfrak{L}:=\mathfrak{H} \ominus \mathfrak{H}_{0} \quad \mathfrak{M}_{\lambda}:=(A-\lambda I) \mathfrak{D}(A) \quad \mathfrak{N}_{\lambda}:=\left(\mathfrak{M}_{\bar{\lambda}}\right)^{\perp} \tag{3}
\end{equation*}
$$

The subspace \mathfrak{N}_{λ} is called a defect subspace of A for the point $\bar{\lambda}$. The cardinal number $\operatorname{dim} \mathfrak{N}_{\lambda}$ remains constant when λ is in the upper half-plane. Similarly, the number $\operatorname{dim} \mathfrak{N}_{\lambda}$ remains constant when λ is in the lower half-plane. The numbers $\operatorname{dim} \mathfrak{N}_{\lambda}$ and $\operatorname{dim} \mathfrak{N}_{\bar{\lambda}}$ $(\operatorname{Im} \lambda<0)$ are called the defect numbers or deficiency indices of operator A [1]. The subspace \mathfrak{N}_{λ} which lies in \mathfrak{H}_{+}is the set of solutions of the equation $A^{*} g=\lambda P g$.

Let now P_{λ} be the orthogonal projection onto \mathfrak{N}_{λ}, set

$$
\begin{equation*}
\mathfrak{B}_{\lambda}=P_{\lambda} \mathfrak{L}, \quad \mathfrak{N}_{\lambda}^{\prime}=\mathfrak{N}_{\lambda} \ominus \overline{\mathfrak{B}_{\lambda}} \tag{4}
\end{equation*}
$$

It is easy to see that $\mathfrak{N}_{\lambda}^{\prime}=\mathfrak{N}_{\lambda} \cap \mathfrak{H}_{0}$ and $\mathfrak{N}_{\lambda}^{\prime}$ is the set of solutions of the equation $A^{*} g=\lambda g$ (see [27]), when $A^{*}: \mathfrak{H} \rightarrow \mathfrak{H}_{0}$ is the adjoint operator to A.

The subspace $\mathfrak{N}_{\lambda}^{\prime}$ is the defect subspace of the densely defined Hermitian operator $P A$ on \mathfrak{H}_{0} (see [24]). The numbers $\operatorname{dim} \mathfrak{N}_{\lambda}^{\prime}$ and $\operatorname{dim} \mathfrak{N}_{\bar{\lambda}}^{\prime}(\operatorname{Im} \lambda<0)$ are called semi-defect numbers or the semi-deficiency indices of the operator A [19]. The von Neumann formula

$$
\begin{equation*}
\mathfrak{H}_{+}=\mathfrak{D}\left(A^{*}\right)=\mathfrak{D}(A)+\mathfrak{N}_{\lambda}+\mathfrak{N}_{\bar{\lambda}}, \quad(\operatorname{Im} \lambda \neq 0) \tag{5}
\end{equation*}
$$

holds, but this decomposition is not direct for a non-densely defined operator A. There exists a generalization of von Neumann's formula [2], [26] to the case of a non-densely defined Hermitian operator (direct decomposition). We call an operator A regular, if $P A$ is a closed operator in \mathfrak{H}_{0}. For a regular operator A we have

$$
\begin{equation*}
\mathfrak{H}_{+}=\mathfrak{D}(A)+\mathfrak{N}_{\lambda}^{\prime}+\mathfrak{N}_{\bar{\lambda}}^{\prime}+\mathfrak{N}, \quad(\operatorname{Im} \lambda \neq 0) \tag{6}
\end{equation*}
$$

where $\mathfrak{N}:=\mathcal{R} \mathfrak{L}, \mathcal{R}$ is the Riesz-Berezanskii operator. This is a generalization of von Neumann's formula. For $\lambda= \pm i$ we obtain the $(+)$-orthogonal decomposition

$$
\begin{equation*}
\mathfrak{H}_{+}=\mathfrak{D}(A) \oplus \mathfrak{N}_{i}^{\prime} \oplus \mathfrak{N}_{-i}^{\prime} \oplus \mathfrak{N} . \tag{7}
\end{equation*}
$$

Let \tilde{A} be a closed Hermitian extension of the operator A. Then $\mathfrak{D}(\tilde{A}) \subset \mathfrak{H}_{+}$and $P \tilde{A} x=A^{*} x(\forall x \in \mathfrak{D}(\tilde{A}))$. According to [27] a closed Hermitian extension \tilde{A} is said to be regular if $P \tilde{A}$ is closed. This implies that $\mathfrak{D}(\tilde{A})$ is $(+)$-closed. According to the theory of extensions of closed Hermitian operators A with non-dense domain [18], an operator $U\left(\mathfrak{D}(U) \subseteq \mathfrak{N}_{i}, \mathfrak{R}(U) \subseteq \mathfrak{N}_{-i}\right)$ is called an admissible operator if $(U-I) f_{i} \in \mathfrak{D}(A)$ $\left(f_{i} \in \mathfrak{D}(U)\right)$ only for $f_{i}=0$. Then (see [3]) any symmetric extension \tilde{A} of the non-densely defined closed Hermitian operator A, is defined by an isometric admissible operator U, $\mathfrak{D}(U) \subseteq \mathfrak{N}_{i}, \mathfrak{R}(U) \subseteq \mathfrak{N}_{-i}$ by the formula

$$
\tilde{A} f_{\tilde{A}}=A f_{A}+\left(-i f_{i}-i U f_{i}\right), \quad f_{A} \in \mathfrak{D}(A)
$$

where $\mathfrak{D}(\tilde{A})=\mathfrak{D}(A) \dot{+}(U-I) \mathfrak{D}(U)$. The operator \tilde{A} is self-adjoint if and only if $\mathfrak{D}(U)=\mathfrak{N}_{i}$ and $\mathfrak{R}(U)=\mathfrak{N}_{-i}$.

Let us denote now by $P_{\mathfrak{N}}^{+}$the orthogonal projection operator in \mathfrak{H}_{+}onto \mathfrak{N}. We introduce a new inner product $(\cdot, \cdot)_{1}$ defined by

$$
\begin{equation*}
(f, g)_{1}=(f, g)_{+}+\left(P_{\mathfrak{N}}^{+} f, P_{\mathfrak{N}}^{+} g\right)_{+} \tag{8}
\end{equation*}
$$

for all $f, g \in \mathfrak{H}_{+}$. The obvious inequality

$$
\|f\|_{+}^{2} \leq\|f\|_{1}^{2} \leq 2\|f\|_{+}^{2}
$$

shows that the norms $\|\cdot\|_{+}$and $\|\cdot\|_{1}$ are topologically equivalent. It is easy to see that the spaces $\mathfrak{D}(A), \mathfrak{N}_{i}^{\prime}, \mathfrak{N}_{-i}^{\prime}, \mathfrak{N}$ are (1)-orthogonal. We write \mathfrak{M}_{1} for the Hilbert space $\mathfrak{M}=\mathfrak{N}_{i}^{\prime} \oplus \mathfrak{N}_{-i}^{\prime} \oplus \mathfrak{N}$ with inner product $(f, g)_{1}$. We denote by \mathfrak{H}_{+1} the space \mathfrak{H}_{+}with norm $\|\cdot\|_{1}$, and by \mathcal{R}_{1} the corresponding Riesz-Berezanskii operator related to the rigged Hilbert space $\mathfrak{H}_{+1} \subset \mathfrak{H} \subset \mathfrak{H}_{-1}$.

Denote by $\left[\mathfrak{H}_{1}, \mathfrak{H}_{2}\right]$ the set of all linear bounded operators acting from a Hilbert space \mathfrak{H}_{1} into a Hilbert space \mathfrak{H}_{2}.

Definition. An operator $\mathbb{A} \in\left[\mathfrak{H}_{+}, \mathfrak{H}_{-}\right]$is a bi-extension of A if both $\mathbb{A} \supset A$ and $\mathbb{A}^{*} \supset A$ hold.

If $\mathbb{A}=\mathbb{A}^{*}$, then \mathbb{A} is called self-adjoint bi-extension of the operator A. It was mentioned in [7] that every self-adjoint bi-extension \mathbb{A} of the regular Hermitian operator A is of the form:

$$
\mathbb{A}=A P_{\mathfrak{D}(A)}^{+}+\left[A^{*}+\mathcal{R}_{1}^{-1}\left(S-\frac{i}{2} P_{\mathfrak{N}_{i}^{\prime}}^{+}+\frac{i}{2} P_{\mathfrak{N}_{-i}^{\prime}}^{+}\right)\right] P_{\mathfrak{M}}^{+},
$$

where S is an arbitrary (1)-self-adjoint operator in $\left[\mathfrak{M}_{1}, \mathfrak{M}_{1}\right]$. We write $\mathfrak{S}(A)$ for the class of bi-extensions of A. This class is closed in the weak topology and is invariant under taking adjoints (see [3], [27]).

Let \mathbb{A} be a bi-extension of Hermitian operator A. The operator $\hat{A} f=\mathbb{A} f, \mathfrak{D}(\hat{A})=\{f \in$ $\mathfrak{H}, \mathbb{A} f \in \mathfrak{H}\}$ is called the quasikernel of \mathbb{A}. If $\mathbb{A}=\mathbb{A}^{*}$ and \hat{A} is a quasi-kernel of \mathbb{A} such that $A \neq \hat{A}, \hat{A}^{*}=\hat{A}$ then \mathbb{A} is said to be a strong self-adjoint bi-extension of A.

Definition. We say that a closed densely defined linear operator T acting on a Hilbert space \mathfrak{H} belongs to the class Ω_{A} if:
(1) $T \supset A, T^{*} \supset A$ where A is a closed Hermitian operator;
(2) $(-i)$ is a regular point of $T .{ }^{1}$

It was mentioned in [3] that lineals $\mathfrak{D}(T)$ and $\mathfrak{D}\left(T^{*}\right)$ are $(+)$-closed, the operators T and T^{*} are $(+, \cdot)$-bounded. The following theorem [27] is an analogue to von Neumann's formulae for the class Ω_{A}.

Theorem 1. If an operator T belongs to the class Ω_{A}, then

$$
\left\{\begin{array}{l}
\mathfrak{D}(T)=\mathfrak{D}(A) \dot{+}(I-\Phi) \mathfrak{N}_{i} \\
\mathfrak{D}\left(T^{*}\right)=\mathfrak{D}(A) \dot{+}\left(\Phi^{*}-I\right) \mathfrak{N}_{-i}
\end{array}\right.
$$

where Φ and Φ^{*} are admissible operators in $\left[\mathfrak{N}_{i}, \mathfrak{N}_{-i}\right]$ and $\left[\mathfrak{N}_{-i}, \mathfrak{N}_{i}\right]$ respectively.
There is a modification of the last theorem [27], [28].
Theorem 2. I. For each operator of the class Ω_{A} there exists an operator M on the space \mathfrak{M}_{1} with the following properties:
(1) $\mathfrak{D}(M)=\mathfrak{N}_{i}^{\prime} \oplus \mathfrak{N}$ and $\mathfrak{R}(M)=\mathfrak{N}_{-i}^{\prime} \oplus \mathfrak{N}$;
(2) $M x+x=0$ only for $x=0$, and $M^{*} x+x=0$ only for $x=0$. Moreover, the following hold:

$$
\left\{\begin{array}{l}
\mathfrak{D}(T)=\mathfrak{D}(A) \oplus(M+I)\left(\mathfrak{N}_{i}^{\prime} \oplus \mathfrak{N}\right) \tag{9}\\
\mathfrak{D}\left(T^{*}\right)=\mathfrak{D}(A) \oplus\left(M^{*}+I\right)\left(\mathfrak{N}_{-i}^{\prime} \oplus \mathfrak{N}\right)
\end{array}\right.
$$

II. Conversely, for each pair of (1)-adjoint operators M and M^{*} in $\left[\mathfrak{M}_{1}, \mathfrak{M}_{1}\right]$ with the properties (1) and (2) formulas (9) give a corresponding operator T in class Ω_{A}. Moreover, if $f=g+(M+I) \varphi, g \in \mathfrak{D}(A)$, and $\varphi \in \mathfrak{N}_{i}^{\prime} \oplus \mathfrak{N}$, then

$$
\begin{equation*}
T f=A g+A^{*}(I+M) \varphi+i \mathcal{R}_{1}^{-1} P_{\mathfrak{N}}^{+}(I-M) \varphi \quad(f \in \mathfrak{D}(T)), \tag{10}
\end{equation*}
$$

Similarly, if $f=g+\left(M^{*}+I\right) \psi, g \in \mathfrak{D}(A)$, and $\psi \in \mathfrak{N}_{-i}^{\prime} \oplus \mathfrak{N}$, then

$$
\begin{equation*}
T^{*} f=A g+A^{*}\left(I+M^{*}\right) \psi+i \mathcal{R}_{1}^{-1} P_{\mathfrak{N}}^{+}\left(M^{*}-I\right) \psi \quad(f \in \mathfrak{D}(T)), \tag{11}
\end{equation*}
$$

The following theorems can be found in [27],[28].

[^0]Theorem 3. Let T be an operator of Ω_{A} class such that A is the maximal Hermitian part of T and T^{*}. Let M be the corresponding operator from the Theorem 2 with the properties (1) and (2). Then the operators $M M^{*}-I$ and $M^{*} M-I$ are invertible in \mathfrak{M}.

Definition. A regular operator A is called O-operator if its semidefect numbers (defect numbers of an operator $P A$) are equal to zero.

Theorem 4. Let T be an operator of the class Ω_{A} where A is a regular Hermitian operator. Then the following statements are valid:
(1) If A is an O-operator then

$$
\mathfrak{D}(T)=\mathfrak{D}\left(T^{*}\right)=\mathfrak{H}_{+}
$$

and the operator $T-T^{*}$ is (\cdot, \cdot)-continuous.
(2) If A is not an O-operator then either $\mathfrak{D}(T)$ or $\mathfrak{D}\left(T^{*}\right)$ does not coincide with \mathfrak{H}_{+}.

Proof. Since T is an operator of the class Ω_{A} then $\mathfrak{D}(T)$ and $\mathfrak{D}\left(T^{*}\right)$ are subspaces of \mathfrak{H}_{+}. Let M and M^{*} be the operators defined in the Theorem 2 . In this case $\mathfrak{D}(M)=\mathfrak{N}_{i}^{\prime} \oplus \mathfrak{N}$, $\mathfrak{R}(M) \subseteq \mathfrak{N}_{-i}^{\prime} \oplus \mathfrak{N}, \mathfrak{D}\left(M^{*}\right)=\mathfrak{N}_{-i}^{\prime} \oplus \mathfrak{N}$, and $\mathfrak{R}\left(M^{*}\right) \subseteq \mathfrak{N}_{i}^{\prime} \oplus \mathfrak{N}$. Formulas (9) imply that $\mathfrak{R}(M+I)$ and $\mathfrak{R}\left(M^{*}+I\right)$ are $(+)$ - and (1)-subspaces as well. Consider the (1)-orthogonal complements

$$
[\mathfrak{R}(M+I)]^{\perp} \quad \text { and } \quad\left[\mathfrak{R}\left(M^{*}+I\right)\right]^{\perp}
$$

Let us assume that A is not an O-operator. Then the semidefect numbers of A are not both zero. For any $y \in\left[\mathfrak{R}\left(M^{*}+I\right)\right]^{\perp}$ and for any $x \in \mathfrak{N}_{-i}^{\prime} \oplus \mathfrak{N}$ we have

$$
\left(\left(M^{*}+I\right) x, y\right)_{1}=0
$$

Furthermore, using (1)-orthogonality relation one can show that

$$
\begin{aligned}
\left(\left(M^{*}+I\right) x, y\right)_{1}= & \left(\left(M^{*}+I\right) x, P_{\mathfrak{N}_{i}^{\prime}}^{+} y+P_{\mathfrak{N}_{-i}^{\prime}}^{+} y+P_{\mathfrak{N}}^{+} y\right)_{1} \\
= & \left(M^{*} x, P_{\mathfrak{N}_{i}^{\prime}}^{+} y+P_{\mathfrak{N}_{-i}^{\prime}}^{+} y+P_{\mathfrak{N}}^{+} y\right)_{1}+\left(x, P_{\mathfrak{N}_{i}^{\prime}}^{+} y+P_{\mathfrak{N}_{-i}^{\prime}}^{+} y+P_{\mathfrak{N}}^{+} y\right)_{1} \\
= & \left(M^{*} x, P_{\mathfrak{N}_{i}^{\prime}}^{+} y+P_{\mathfrak{N}}^{+} y\right)_{1}+\left(M^{*} x, P_{\mathfrak{N}_{-i}^{\prime}}^{+} y\right)_{1}+\left(x, P_{\mathfrak{N}_{-i}^{\prime}}^{+} y+P_{\mathfrak{N}}^{+} y\right)_{1} \\
& +\left(x, P_{\mathfrak{N}_{i}^{\prime}}^{+} y\right)_{1} \\
= & \left(x, M\left(P_{\mathfrak{N}_{i}^{\prime}}^{+}+P_{\mathfrak{N}}^{+}\right) y\right)_{1}+\left(x,\left(P_{\mathfrak{N}_{-i}^{\prime}}^{+}+P_{\mathfrak{N}^{\prime}}^{+}\right) y\right)_{1} \\
= & 0
\end{aligned}
$$

Therefore, since M maps $\mathfrak{N}_{i}^{\prime} \oplus \mathfrak{N}$ into $\mathfrak{N}_{-i}^{\prime} \oplus \mathfrak{N}$ we have that

$$
\begin{equation*}
M\left(P_{\mathfrak{N}_{i}^{\prime}}^{+}+P_{\mathfrak{N}}^{+}\right) y=-\left(P_{\mathfrak{N}_{-i}^{\prime}}^{+}+P_{\mathfrak{N}}^{+}\right) y \tag{12}
\end{equation*}
$$

Let us denote $z=\left(P_{\mathfrak{N}_{i}^{\prime}}^{+}+P_{\mathfrak{N}}^{+}\right) y$. Then, obviously,

$$
\begin{equation*}
P_{\mathfrak{N}}^{+}(M+I) z=0, \quad\left(z \in \mathfrak{N}_{i}^{\prime} \oplus \mathfrak{N}\right) \tag{13}
\end{equation*}
$$

Hence, if $y \in\left[\mathfrak{R}\left(M^{*}+I\right)\right]^{\perp}$ then

$$
z=\left(P_{\mathfrak{N}_{i}^{\prime}}^{+}+P_{\mathfrak{N}}^{+}\right) y \in \operatorname{Ker}\left[P_{\mathfrak{N}}^{+}(M+I) z\right] \quad \text { and } \quad y=z-P_{\mathfrak{N}_{-i}^{\prime}}^{+} M z
$$

Let now $z \in \operatorname{Ker}\left[P_{\mathfrak{N}}^{+}(M+I)\right]$. We show that the vector $y=z-P_{\mathfrak{N}_{-i}^{\prime}}^{+} M z$ belongs to $\left[\Re\left(M^{*}+I\right)\right]^{\perp}$. To do that it is sufficient to show that for indicated vector y the relation (12) holds. Indeed,

$$
\begin{aligned}
-\left(P_{\mathfrak{N}_{-i}^{\prime}}^{+}+P_{\mathfrak{N}}^{+}\right) y & =-P_{\mathfrak{N}^{+}}^{+} z+P_{\mathfrak{N}_{-i}^{\prime}}^{+} M z=P_{\mathfrak{N}^{+}}^{+} M z+P_{\mathfrak{N}_{-i}^{\prime}}^{+} M z \\
& =M z=M\left(P_{\mathfrak{N}_{i}^{\prime}}^{+}+P_{\mathfrak{N}}^{+}\right) y
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\left[\mathfrak{R}\left(M^{*}+I\right)\right]^{\perp}=\left(I-P_{\mathfrak{N}_{i}^{\prime}}^{+} M\right)\left\{\operatorname{Ker}\left[P_{\mathfrak{N}}^{+}(M+I)\right]\right\} \tag{14}
\end{equation*}
$$

It can be shown similarly, that

$$
\begin{equation*}
[\mathfrak{R}(M+I)]^{\perp}=\left(I-P_{\mathfrak{N}_{i}^{\prime}}^{+} M\right)\left\{\operatorname{Ker}\left[P_{\mathfrak{N}}^{+}\left(M^{*}+I\right)\right]\right\} \tag{15}
\end{equation*}
$$

Let us assume that $\left[\mathfrak{R}\left(M^{*}+I\right)\right]^{\perp}=0$. It is easy to see that equality $\left(I-P_{\mathfrak{N}_{i}^{\prime}}^{+} M\right) z=0$ implies that if $z=0$ then $\operatorname{Ker}\left[P_{\mathfrak{N}}^{+}\left(M^{*}+I\right)\right]=0$. Then operator $\left(M^{*}+I\right)$ maps $\mathfrak{N}_{-i}^{\prime} \oplus \mathfrak{N}$ onto \mathfrak{M}. Therefore, there exists vector $x \neq 0, x \in \mathfrak{N}_{-i}^{\prime} \oplus \mathfrak{N}$ such that $P_{\mathfrak{N}}^{+}\left(M^{*}+I\right) x=0$ and so $\operatorname{Ker}\left[P_{\mathfrak{N}}^{+}\left(M^{*}+I\right)\right] \neq 0$. Thus, $[\mathfrak{R}(M+I)]^{\perp} \neq 0$. Together with formulas (9) that proves the first part of the theorem.

Let now A be a regular O-operator, i.e. $\mathfrak{N}_{i}^{\prime}=\mathfrak{N}_{-i}^{\prime}=\{0\}$ and consequently $\mathfrak{M}=\mathfrak{N}$. Let us assume that x is $(+)$-orthogonal to $\mathfrak{D}(T)$. According to the formulas (9) x is $(+)$ orthogonal to $\mathfrak{D}(A)$ and therefore belongs to \mathfrak{N}. On the other hand (9) imply that x is $(+)$-orthogonal to $(M+I) \mathfrak{N}$. Hence, $\left(M^{*}+I\right) x=0$. Using Theorem 1 we conclude that $x=0$. Therefore, $\mathfrak{D}(T)$ is $(+)$-dense in \mathfrak{H}_{+}. In the same way one can prove that $\mathfrak{D}\left(T^{*}\right)$ is $(+)$-dense in \mathfrak{H}_{+}.

Definition. An operator \mathbb{A} in $\left[\mathfrak{H}_{+}, \mathfrak{H}_{-}\right]$is called a $(*)$-extension of an operator T of the class Ω_{A} if both $\mathbb{A} \supset T$ and $\mathbb{A}^{*} \supset T^{*}$.

This $(*)$-extension is called correct, if an operator $\mathbb{A}_{R}=\frac{1}{2}\left(\mathbb{A}+\mathbb{A}^{*}\right)$ is a strong selfadjoint bi-extension of an operator A. It is easy to show that if \mathbb{A} is a $(*)$-extension of T, the T and T^{*} are quasi-kernels of \mathbb{A} and \mathbb{A}^{*}, respectively.

Definition. We say the operator T of the class Ω_{A} belongs to the class Λ_{A} if
(1) T admits a correct (*)-extension;
(2) A is a maximal common Hermitian part of T and T^{*}.

The following theorem can be found in [28].
Theorem 5. Let an operator T belong to Ω_{A} and M be an operator in $[\mathfrak{M}, \mathfrak{M}]$ that is related to T by Theorem 2. Then T belongs to Λ_{A} if and only if there exists either (1)-isometric operator or (\cdot)-isometric operator U in $\left[\mathfrak{N}_{i}^{\prime}, \mathfrak{N}_{-i}^{\prime}\right]$ such that

$$
\left\{\begin{array}{l}
(U+I) \mathfrak{N}_{i}^{\prime}+(M+I)\left(\mathfrak{N}_{i}^{\prime} \oplus \mathfrak{N}\right)=\mathfrak{M} \tag{16}\\
(U+I) \mathfrak{N}_{i}^{\prime}+(M+I)\left(\mathfrak{N}_{i}^{\prime} \oplus \mathfrak{N}\right)=\mathfrak{M}
\end{array}\right.
$$

Corollary 1. If a closed Hermitian operator A has finite and equal defect indices then the class Ω_{A} coincides with the class Λ_{A}.

Let A be a closed Hermitian operator on \mathfrak{H} and \mathfrak{h} be a Hilbert space such that \mathfrak{H} is a subspace of \mathfrak{h}. Let \tilde{A} be a self-adjoint extension of A on \mathfrak{h}, and $\tilde{E}(t)$ be the spectral function of \tilde{A}. An operator function $R_{\lambda}=\left.P_{\mathfrak{H}}(\tilde{A}-\lambda I)^{-1}\right|_{\mathfrak{H}}$ is called a generalized resolvent of A, and $E(t)=\left.P_{\mathfrak{H}} \tilde{E}(t)\right|_{\mathfrak{H}}$ is the corresponding generalized spectral function. Here

$$
\begin{equation*}
R_{\lambda}=\int_{-\infty}^{\infty} \frac{d E(t)}{t-\lambda} \quad(\operatorname{Im} \lambda \neq 0) \tag{17}
\end{equation*}
$$

If $\mathfrak{h}=\mathfrak{H}$ then R_{λ} and $E(t)$ are called canonical resolvent and canonical spectral function, respectively. According to [21] we denote by \hat{R}_{λ} the $(-, \cdot)$-continuous operator from \mathfrak{H}_{-} into \mathfrak{H} which is adjoint to $R_{\bar{\lambda}}$:

$$
\begin{equation*}
\left(\hat{R}_{\lambda} f, g\right)=\left(f, R_{\bar{\lambda}} g\right) \quad\left(f \in \mathfrak{H}_{-}, g \in \mathfrak{H}\right) . \tag{18}
\end{equation*}
$$

It follows that $\hat{R}_{\lambda} f=R_{\lambda} f$ for $f \in \mathfrak{H}$, so that \hat{R}_{λ} is an extension of R_{λ} from \mathfrak{H} to \mathfrak{H}_{-} with respect to $(-, \cdot)$-continuity. The function \hat{R}_{λ} of the parameter $\lambda,(\operatorname{Im} \lambda \neq 0)$ is called the extended generalized (canonical) resolvent of the operator A. We write \aleph to denote the family of all finite intervals on the real axis. It is known [21] that if $\Delta \in \aleph$ then $E(\Delta) \mathfrak{H} \subset \mathfrak{H}_{+}$and the operator $E(\Delta)$ is $(\cdot,+)$-continuous. We denote by $\hat{E}(\Delta)$ the $(-, \cdot)$ continuous operator from \mathfrak{H}_{-}to \mathfrak{H} that is adjoint to $E(\Delta) \in\left[\mathfrak{H}, \mathfrak{H}_{+}\right]$. Similarly,

$$
\begin{equation*}
(\hat{E}(\Delta) f, g)=(f, E(\Delta) g) \quad\left(f \in \mathfrak{H}_{-}, g \in \mathfrak{H}\right) \tag{19}
\end{equation*}
$$

One can easily see that $\hat{E}(\Delta) f=E(\Delta) f, \forall f \in \mathfrak{H}$, so that $\hat{E}(\Delta)$ is the extension of $E(\Delta)$ by continuity. We say that $\hat{E}(\Delta)$, as a function of $\Delta \in \aleph$, is the extended generalized (canonical) spectral function of A corresponding to the self-adjoint extension \tilde{A} (or to
the original spectral function $E(\Delta))$. It is known [21] that $\hat{E}(\Delta) \in\left[\mathfrak{H}_{-}, \mathfrak{H}_{+}\right], \forall \Delta \in$ \aleph, and $(\hat{E}(\Delta) f, f) \geq 0$ for all $f \in \mathfrak{H}_{-}$. It is also known [21] that the complex scalar measure $(E(\Delta) f, g)$ is a complex function of bounded variation on the real axis. However, $(\hat{E}(\Delta) f, g)$ may be unbounded for $f, g \in \mathfrak{H}_{-}$.

Now let \hat{R}_{λ} be an extended generalized (canonical) resolvent of a closed Hermitian operator A and let $\hat{E}(\Delta)$ be the corresponding extended generalized (canonical) spectral function. It was shown in [21] that for any $f, g \in \mathfrak{H}_{-}$,

$$
\begin{equation*}
\int_{-\infty}^{+\infty} \frac{|d(\hat{E}(\Delta) f, g)|}{1+t^{2}}<\infty \tag{20}
\end{equation*}
$$

and the following integral representation holds

$$
\begin{equation*}
\hat{R}_{\lambda}-\frac{\hat{R}_{i}+\hat{R}_{-i}}{2}=\int_{-\infty}^{+\infty}\left(\frac{1}{t-\lambda}-\frac{t}{1+t^{2}}\right) d \hat{E}(t) \tag{21}
\end{equation*}
$$

Lemma 6. $([1],[7])$ Let $\mathbb{A}=A P_{\mathfrak{D}(A)}^{+}+\left[A^{*}+\mathcal{R}_{1}^{-1}\left(S-\frac{i}{2} P_{\mathfrak{N}_{i}^{\prime}}^{+}+\frac{i}{2} P_{\mathfrak{N}_{-i}^{\prime}}^{+}\right)\right] P_{\mathfrak{M}}^{+}$be a strong self-adjoint bi-extension of a regular Hermitian operator A with the quasi-kernel \hat{A} and let $\hat{E}(\Delta)$ be the extended generalized (canonical) spectral function of \hat{A}. Then for every $f \in \mathfrak{H} \oplus L, f \neq 0$, and for every $g \in \mathfrak{H}_{-}$there is an integral representation

$$
\begin{equation*}
\left(\bar{R}_{\lambda} f, g\right)=\int_{-\infty}^{+\infty}\left(\frac{1}{t-\lambda}-\frac{t}{1+t^{2}}\right) d(\hat{E}(t) f, g)+\frac{1}{2}\left(\left(\hat{R}_{i}+\hat{R}_{-i}\right) f, g\right) \tag{22}
\end{equation*}
$$

Here $L=\mathfrak{R}\left[\mathcal{R}_{1}^{-1}\left(P_{\mathfrak{M}}^{+} S-\frac{i}{2} P_{\mathfrak{N}_{i}^{\prime}}^{+}+\frac{i}{2} P_{\mathfrak{N}_{-i}^{\prime}}^{+}\right)\right], \bar{R}_{\lambda}=\overline{(\mathbb{A}-\lambda I)^{-1}}$.
Theorem 7. ([7]) Let $\mathbb{A}=A P_{\mathfrak{D}(A)}^{+}+\left[A^{*}+\mathcal{R}_{1}^{-1}\left(S-\frac{i}{2} P_{\mathfrak{N}_{i}^{\prime}}^{+}+\frac{i}{2} P_{\mathfrak{N}_{-i}^{\prime}}^{+}\right)\right] P_{\mathfrak{M}}^{+}$be a strong self-adjoint bi-extension of a regular Hermitian operator A with the quasi-kernel \hat{A} and let $\hat{E}(\Delta)$ be the generalized (canonical) spectral function of $\hat{A}, F=\mathfrak{H}_{+} \ominus \mathfrak{D}(\hat{A}), L=$ $\mathcal{R}_{1}^{-1}\left(P_{\mathfrak{M}}^{+} S-\frac{i}{2} P_{\mathfrak{N}_{i}^{\prime}}^{+}+\frac{i}{2} P_{\mathfrak{N}_{-i}^{\prime}}^{+}\right) F$. Then for any $f \in L \dot{+} \mathfrak{L}, f \neq 0$,

$$
\begin{equation*}
\int_{-\infty}^{+\infty} d(\hat{E}(t) f, f)=\infty, \quad \text { if } \quad f \notin \mathfrak{L} \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{-\infty}^{+\infty} d(\hat{E}(t) f, f)<\infty, \quad \text { if } \quad f \in \mathfrak{L} \tag{24}
\end{equation*}
$$

Moreover, there exist real constants b and c such that

$$
\begin{equation*}
c\|f\|_{-}^{2} \leq \int_{-\infty}^{+\infty} \frac{d(\hat{E}(t) f, f)}{1+t^{2}} \leq b\|f\|_{-}^{2} \tag{25}
\end{equation*}
$$

for all $f \in L \dot{+} \mathfrak{L}$.
In a weaker form Theorem 7 also appears at [1]. We briefly sketch the proof of this theorem.

Proof. Let us choose a point z with $\operatorname{Im} z \neq 0$ to be a regular point of the operator \mathbb{A} and consider function $f(z)$ defined for all $f \in L \dot{+} \mathfrak{L}$ by the formula:

$$
f(z)=\left((\mathbb{A}-z I)^{-1} f, f\right)
$$

It can be seen that $f(z)=\overline{f(\bar{z})}$ and

$$
\operatorname{Im} f(z)=\operatorname{Im} z\left\|(\mathbb{A}-\bar{z} I)^{-1} f\right\|^{2}
$$

which means that $f(z)$ is an analytic R-function (see [17]) and according to the Lemma 6 has the integral representation

$$
\left.f(z)=\int_{-\infty}^{+\infty}\left(\frac{1}{t-z}-\frac{t}{1+t^{2}}\right) d(\hat{E}(t) f, f)+\frac{1}{2}\left(\left(\hat{R}_{i}+\hat{R}_{-i}\right) f, f\right)\right)
$$

This representation implies that

$$
\lim _{\eta \rightarrow \infty} \frac{\operatorname{Im} f(i \eta)}{\eta}=0
$$

and therefore (see [13], [17])

$$
\sup _{\eta>0} \eta \operatorname{Im} f(i \eta)=\int_{-\infty}^{+\infty} d(\hat{E}(t) f, f)
$$

Now, let us pick $f \in L \dot{+} \mathfrak{L}$ such that $f \notin \mathfrak{L}$ and show that in this case

$$
\sup _{\eta>0} \eta \operatorname{Im} f(i \eta)=\infty
$$

It can be shown that for any $f \in L \dot{+} \mathfrak{L}$ there are $x_{0}(i \eta) \in \mathfrak{D}(\hat{A}), f_{1} \in F$ and $f_{2} \in \mathfrak{L}$ such that

$$
(\mathbb{A}+i \eta I)^{-1} f=x_{0}(i \eta)+f_{1}
$$

$$
x_{0}(i \eta)=(\hat{A}+i \eta I)^{-1}\left[f_{2}-\mathcal{R}_{1} P_{\mathfrak{N}} S f_{1}-\left(\mathbb{A}^{*}+i \eta I\right) f_{1}\right]
$$

or

$$
i \eta\left(x_{0}(i \eta)+f_{1}\right)=-\hat{A} x_{0}(i \eta)-A^{*} f_{1}+f_{2}-\mathcal{R}_{1} P_{\mathfrak{N}} S f_{1}
$$

The vectors $x_{0}(i \eta)$ and f_{1} are $(+1)$-orthogonal and hence

$$
\left\|(\mathbb{A}+i \eta I)^{-1} f\right\|_{+}^{2}=\left\|x_{0}(i \eta)\right\|_{+}^{2}+\left\|f_{1}\right\|_{+}^{2}
$$

If we assume that the number set $\left\{\left\|x_{0}(i \eta)\right\|_{+}^{2}\right\}$ is bounded, i.e.

$$
\sup \left\{\left\|x_{0}(i \eta)\right\|_{+}\right\}=c<\infty
$$

then, due to the $(+, \cdot)$-continuity of the operator \hat{A} (see $[28]$), there exists a constant $d>0$, such that for all $x_{0}(i \eta) \in \mathfrak{D}(\hat{A})$

$$
\left\|\hat{A} x_{0}(i \eta)\right\| \leq d\left\|x_{0}(i \eta)\right\|_{+} \leq d \sqrt{c}
$$

and

$$
\begin{aligned}
\left\|x_{0}(i \eta)+f_{1}\right\| & \leq \frac{1}{\eta}\left\|f_{2}-\hat{A} x_{0}(i \eta)-A^{*} f_{1}\right\| \\
& \leq \frac{1}{\eta}\left(d \sqrt{c}+\left\|f_{2}\right\|+\left\|A^{*} f_{1}\right\|\right)
\end{aligned}
$$

This implies $\lim _{\eta \rightarrow \infty} x_{0}(i \eta)=-f_{1}$. The set $\left\{x_{0}(i \eta)\right\}$ is bounded in \mathfrak{H}_{+}and therefore weakly compact. This means there exists such an element $x_{0} \in \mathfrak{H}_{+}$that

$$
\lim _{\eta_{n} \rightarrow \infty}\left(x_{0}\left(i \eta_{n}\right), \varphi\right)=\left(x_{0}, \varphi\right), \quad \forall \varphi \in \mathfrak{H}_{-},
$$

where $\left\{x_{0}\left(i \eta_{n}\right)\right\}$ is a sequence of the elements of the set $\left\{x_{0}(i \eta)\right\}$ and $x_{0} \in \mathfrak{H}_{+}$. Thus $x_{0}=-f_{1}$. On the other hand

$$
\mathfrak{D}(\hat{A})=\mathfrak{D}(A) \oplus \operatorname{Ker}\left[P_{\mathfrak{M}}^{+} S-\frac{i}{2} P_{\mathfrak{N}_{i}^{\prime}}+\frac{i}{2} P_{\mathfrak{N}_{-i}^{\prime}}\right],
$$

is a subspace in \mathfrak{H}_{+}and must be weakly closed providing $x_{0} \in \mathfrak{D}(\hat{A})$. Considering the fact that $f_{1} \in F, F=\mathfrak{H}_{+} \ominus \mathfrak{D}(\hat{A})$, and $x_{0}=-f_{1}$ we obtain a contradiction. Hence for all $f \in L \dot{+} \mathfrak{L}, f \notin \mathfrak{L}$

$$
\int_{-\infty}^{+\infty} d(\hat{E}(t) f, f)=\sup _{\eta>0} \eta \operatorname{Im} f(i \eta)=\infty
$$

To prove relation (23) we assume that $f \in \mathfrak{L}$. In this case $f_{1}=0$ and $(\mathbb{A}+i \eta I)^{-1} f=x_{0}(i \eta)$. The latter yields

$$
\left\|(\hat{A}+i \eta I) x_{0}(i \eta)\right\|^{2}=\|f\|^{2} .
$$

Further it is not hard to get the inequality

$$
\left.\left.\eta^{2} \| x_{0}\right) i \eta\right)\left\|^{2} \leq\right\|(\hat{A}+i \eta I) x_{0}(i \eta)\left\|^{2}=\right\| f \|^{2}
$$

that implies

$$
\eta \operatorname{Im} f(i \eta)=\eta^{2}\left\|(\mathbb{A}+i \eta I)^{-1} f\right\| \leq\|f\|^{2}<\infty
$$

The last inequality proves (24).
It can be shown that $(\mathbb{A}+i I)^{-1} \in \mathfrak{N}_{-i}$ for all $f \in L \dot{+} \mathfrak{L}$. The norms $\|\cdot\|$ and $\|\cdot\|_{+}$are equivalent on $\mathfrak{N}_{ \pm i}$ and so are the norms $\|\cdot\|$ and $\|\cdot\|_{-}$(see [28]). Therefore

$$
c\|f\|_{-}^{2} \leq \operatorname{Im} f(i) \leq b\|f\|_{-}^{2}, \quad b>0, c>0-\text { const. }
$$

Combining this with

$$
\operatorname{Im} f(i)=\frac{1}{2 i}\left(\left(\bar{R}_{i}-\bar{R}_{-i}\right) f, f\right)=\int_{-\infty}^{+\infty} \frac{d(\hat{E}(t) f, f)}{1+t^{2}}
$$

we obtain the relation (25).
Corollary 2. In the settings of Theorem 7 for all $f, g \in L \dot{+}$

$$
\begin{equation*}
\left|\left(\frac{\hat{R}_{i}+\hat{R}_{-i}}{2} f, g\right)\right| \leq a \sqrt{\int_{-\infty}^{+\infty} \frac{d(\hat{E}(t) f, f)}{1+t^{2}}} \cdot \sqrt{\int_{-\infty}^{+\infty} \frac{d(\hat{E}(t) g, g)}{1+t^{2}}} \tag{26}
\end{equation*}
$$

where $a>0$ is a constant (see [1]).

3. Linear Stationary Conservative Dynamic Systems

In this section we consider linear stationary conservative dynamic systems (l. s. c. d. s.) θ of the form

$$
\left\{\begin{array}{l}
(\mathbb{A}-z I)=K J \varphi_{-} \tag{27}\\
\varphi_{+}=\varphi_{-}-2 i K^{*} x
\end{array} \quad\left(\operatorname{Im} \mathbb{A}=K J K^{*}\right)\right.
$$

In a system θ of the form (27) \mathbb{A}, K and J are bounded linear operators in Hilbert spaces, φ_{-}is an input vector, φ_{+}is an output vector, x is an inner state vector of the system θ. For our purposes we need the following more precise definition:

Definition. The array

$$
\theta=\left(\begin{array}{ccc}
\mathbb{A} & K & J \tag{28}\\
\mathfrak{H}_{+} \subset \mathfrak{H} \subset \mathfrak{H}_{-} & & E
\end{array}\right)
$$

is called a linear stationary conservative dynamic system (l.s.c.d.s.) or Brodskĭ̈-Livšic rigged operator colligation if
(1) \mathbb{A} is a correct (*)-extension of an operator T of the class Λ_{A}.
(2) $J=J^{*}=J^{-1} \in[E, E], \quad \operatorname{dim} E<\infty$
(3) $\mathbb{A}-\mathbb{A}^{*}=2 i K J K^{*}$, where $K \in\left[E, \mathfrak{H}_{-}\right] \quad\left(K^{*} \in\left[\mathfrak{H}_{+}, E\right]\right)$

In this case, the operator K is called a channel operator and J is called a direction operator [10], [20]. A system θ of the form (30) will be called a scattering system (dissipative operator colligation) if $J=I$. We will associate with the system θ an operator-valued function

$$
\begin{equation*}
W_{\theta}(z)=I-2 i K^{*}(\mathbb{A}-z I)^{-1} K J \tag{29}
\end{equation*}
$$

which is called a transfer operator-valued function of the system θ or a characteristic operator-valued function of Brodskii-Livšic rigged operator colligations. It may be shown [10], that the transfer operator-function of the system θ of the form (28) has the following properties:

$$
\begin{array}{ll}
W_{\theta}^{*}(z) J W_{\theta}(z)-J \geq 0 & (\operatorname{Im} z>0, z \in \rho(T)) \\
W_{\theta}^{*}(z) J W_{\theta}(z)-J=0 \quad(\operatorname{Im} z=0, z \in \rho(T)) \tag{30}\\
W_{\theta}^{*}(z) J W_{\theta}(z)-J \leq 0 \quad(\operatorname{Im} z<0, z \in \rho(T))
\end{array}
$$

where $\rho(T)$ is the set of regular points of an operator T. Similar relations take place if we change $W_{\theta}(z)$ to $W_{\theta}^{*}(z)$ in (30). Thus, a transfer operator-valued function of the system θ of the form (28) is J-contractive in the lower half-plane on the set of regular points of an operator T and J-unitary on real regular points of an operator T.

Let θ be a l. s. c. d. s. of the form (28). We consider an operator-valued function

$$
\begin{equation*}
V_{\theta}(z)=K^{*}\left(\mathbb{A}_{R}-z I\right)^{-1} K \tag{31}
\end{equation*}
$$

The transfer operator-function $W_{\theta}(z)$ of the system θ and an operator-function $V_{\theta}(z)$ of the form (31) are connected by the relation

$$
\begin{equation*}
V_{\theta}(z)=i\left[W_{\theta}(z)+I\right]^{-1}\left[W_{\theta}(z)-I\right] J \tag{32}
\end{equation*}
$$

As it is known [1] an operator-function $V(z) \in[E, E]$ is called an operator-valued R function if it is holomorphic in the upper half-plane and $\operatorname{Im} V(z) \geq 0$ when $\operatorname{Im} z>0$.

It is known [17], [22], [27] that an operator-valued R-function acting on a Hilbert space $E(\operatorname{dim} E<\infty)$ has an integral representation

$$
\begin{equation*}
V(z)=Q+F \cdot z+\int_{-\infty}^{+\infty}\left(\frac{1}{t-z}-\frac{t}{1+t^{2}}\right) d G(t) \tag{33}
\end{equation*}
$$

where $Q=Q^{*}, F \geq 0$ in the Hilbert space $E, G(t)$ is non-decreasing operator-function on $(-\infty,+\infty)$ for which

$$
\int_{-\infty}^{+\infty} \frac{d G(t)}{1+t^{2}} \in[E, E]
$$

Definition. We call an operator-valued R-function acting on a Hilbert space E $(\operatorname{dim} E<\infty)$ realizable if in some neighborhood of the point $(-i)$, thefunction $V(z)$ can be represented in the form

$$
\begin{equation*}
V(z)=i\left[W_{\theta}(z)+I\right]^{-1}\left[W_{\theta}(z)-I\right] J \tag{34}
\end{equation*}
$$

where $W_{\theta}(z)$ is a transfer operator-function of some l.s.c.d.s. θ with the direction operator $J\left(J=J^{*}=J^{-1} \in[E, E]\right)$.

Definition. An operator-valued R-function $V(z) \in[E, E] \quad(\operatorname{dim} E<\infty)$ will be said to be a member of the class $N(R)$ if in the representation (33) we have

$$
\begin{aligned}
\text { i) } \quad F=0 \\
\text { ii) } \quad Q e=\int_{-\infty}^{+\infty} \frac{t}{1+t^{2}} d G(t) e
\end{aligned}
$$

for all $e \in E$ such that

$$
\int_{-\infty}^{+\infty}(d G(t) e, e)_{E}<\infty
$$

The next result is proved in [7].
Theorem 8. Let θ be a l.s.c.d.s. of the form (28), $\operatorname{dim} E<\infty$. Then the operator-function $V_{\theta}(z)$ of the form (31), (32) belongs to the class $N(R)$.

The following converse result was also established in [7]. ${ }^{2}$
Theorem 9. Suppose that the operator-valued function $V(z)$ is acting on a finite-dimensional Hilbert space E and belong to the class $N(R)$. Then $V(z)$ admits a realization by the system θ of the form (28) with a preassigned direction operator J for which $I+i V(-i) J$ is invertible.

Remark. It was mentioned in [7] that when $J=I$ the invertibility condition for $I+i V(\lambda) J$ is satisfied automatically.

Now we are going to introduce three distinct subclasses of the class of realizable operatorvalued functions $N(R)$.

Definition. An operator-valued R-function $V(z) \in[E, E] \quad(\operatorname{dim} E<\infty)$ of the class $N(R)$ is said to be a member of the subclass $N_{0}(R)$ if in the representation (33)

$$
\int_{-\infty}^{+\infty}(d G(t) e, e)_{E}=\infty, \quad(e \in E, e \neq 0)
$$

[^1]Consequently, the operator-function $V(z)$ of the class $N_{0}(R)$ has the representation

$$
\begin{equation*}
V(z)=Q+\int_{-\infty}^{+\infty}\left(\frac{1}{t-z}-\frac{t}{1+t^{2}}\right) d G(t), \quad\left(Q=Q^{*}\right) \tag{35}
\end{equation*}
$$

Note, that the operator Q can be an arbitrary self-adjoint operator on the Hilbert space E.

Definition. An operator-valued R-function $V(z) \in[E, E](\operatorname{dim} E<\infty)$ of the class $N(R)$ is said to be a member of the subclass $N_{1}(R)$ if in the representation (33)

$$
\begin{equation*}
\int_{-\infty}^{+\infty}(d G(t) e, e)_{E}<\infty, \quad(e \in E) \tag{36}
\end{equation*}
$$

It is easy to see that the operator-valued function $V(z)$ of the class $N_{1}(R)$ has a representation

$$
\begin{equation*}
V(z)=\int_{-\infty}^{+\infty} \frac{1}{t-z} d G(t) \tag{37}
\end{equation*}
$$

Definition. An operator-valued R-function $V(z) \in[E, E], \quad(\operatorname{dim} E<\infty)$ of the class $N(R)$ is said to be a member of the subclass $N_{01}(R)$ if the subspace

$$
E_{\infty}=\left\{e \in E: \int_{-\infty}^{+\infty}(d G(t) e, e)_{E}<\infty\right\}
$$

possesses a property: $E_{\infty} \neq \emptyset, \quad E_{\infty} \neq E$.
One may notice that $N(R)$ is a union of three distinct subclasses $N_{0}(R), N_{1}(R)$ and $N_{01}(R)$. The following theorem is an analogue of the Theorem 8 for the class $N_{0}(R)$.

Theorem 10. Let θ be a l. s. c. d. s. of the form (28), $\operatorname{dim} E<\infty$ where A is a linear closed Hermitian operator with dense domain and $\mathfrak{D}(T) \neq \mathfrak{D}\left(T^{*}\right)$. Then the operatorvalued function $V_{\theta}(z)$ of the form (31), (32) belongs to the class $N_{0}(R)$.

Proof. Relying on Theorem 8 an operator-valued function $V_{\theta}(z)$ of the system θ mentioned in the statement belongs to the class $N(R)$. Since $N_{0}(R)$ is a subclass of $N(R)$, it is sufficient to show that

$$
\int_{-\infty}^{+\infty}(d G(t) e, e)_{E}=\infty, \quad(e \in E, e \neq 0)
$$

According to Theorem 7, if for some vector $f \in E$ we have that $K f \notin \mathfrak{L}$ where $\mathfrak{L}=$ $\mathfrak{H} \ominus \overline{\mathfrak{D}(A)}$, then

$$
\begin{equation*}
\int_{-\infty}^{+\infty}(d G(t) f, f)_{E}=\infty, \quad \text { where } G(t)=K^{*} E(t) K \tag{38}
\end{equation*}
$$

$E(t)$ is an extended generalized spectral function of the operator \hat{A}. Here \hat{A} is the quasikernel of an operator

$$
\mathbb{A}_{R}=\frac{\mathbb{A}+\mathbb{A}^{*}}{2}
$$

It is given that A is a closed Hermitian operator with dense domain $(\overline{\mathfrak{D}(A)}=\mathfrak{H})$, which implies that $\mathfrak{L}=\emptyset$. Thus, for any $f \in E$ such that $f \neq 0$ we have

$$
K f \notin \mathfrak{L},
$$

and (38) holds. Therefore, $V_{\theta}(z)$ belongs to the class $N_{0}(R)$.
Note that the condition (38) has also appeared in [14], [15]. Theorem 11 below is a version of the Theorem 9 for the class $N_{0}(R)$.

Theorem 11. Let an operator-valued function $V(z)$ acting on a finite-dimensional Hilbert space E belong to the class $N_{0}(R)$. Then it admits a realization by the system θ of the form (28) with a preassigned directional operator J for which $I+i V(-i) J$ is invertible, densely defined closed Hermitian operator A, and $\mathfrak{D}(T) \neq \mathfrak{D}\left(T^{*}\right)$.

Proof. Since $N_{0}(R)$ is a subclass of $N(R)$ then all conditions of Theorem 9 are satisfied and operator-valued function $V(z) \in N_{0}(R)$ is a realizable one. Thus, all we have to show is that $\overline{\mathfrak{D}(A)}=\mathfrak{H}$ and $\mathfrak{D}(T) \neq \mathfrak{D}\left(T^{*}\right)$.

We will briefly repeat the framework of the proof of Theorem 9 .
Let $C_{00}(E,(-\infty,+\infty)$ be the set of continuous compactly supported vector-valued functions $f(t)(-\infty<t<+\infty)$ with values in a finite dimensional Hilbert space E. We introduce an inner product

$$
\begin{equation*}
(f, g)=\int_{-\infty}^{+\infty}(G(d t) f(t), g(t))_{E} \tag{39}
\end{equation*}
$$

for all $f, g \in C_{00}(E,(-\infty,+\infty))$. To construct a Hilbert space we identify with zero all the functions $f(t)$ such that $(f, f)=0$, make a completion, and obtain a new Hilbert space $L_{G}^{2}(E)$.

Let \mathfrak{D}_{0} be the set of the continuous vector-valued (with values in E) functions $f(t)$ such that not only

$$
\begin{equation*}
\int_{-\infty}^{+\infty}(d G(t) f(t), f(t))_{E}<\infty \tag{40}
\end{equation*}
$$

holds but also

$$
\begin{equation*}
\int_{-\infty}^{+\infty} t^{2}(d G(t) f(t), f(t))_{E}<\infty \tag{41}
\end{equation*}
$$

is true. We introduce an operator \hat{A} on \mathfrak{D}_{0} in the following way

$$
\begin{equation*}
\hat{A} f(t)=t f(t) \tag{42}
\end{equation*}
$$

Below we denote again by \hat{A} the closure of Hermitian operator \hat{A} (42). Moreover, \hat{A} is self-adjoint in $L_{G}^{2}(E)$. Now let $\tilde{\mathfrak{H}}_{+}=\mathfrak{D}(\hat{A})$ with an inner product

$$
\begin{equation*}
(f, g)_{\tilde{\mathfrak{H}}_{+}}=(f, g)+(\hat{A} f, \hat{A} g) \tag{43}
\end{equation*}
$$

for all $f, g \in \tilde{\mathfrak{H}}_{+}$. We equip the space $L_{G}^{2}(E)$ with spaces $\tilde{\mathfrak{H}}_{+}$and $\tilde{\mathfrak{H}}_{-}$:

$$
\begin{equation*}
\tilde{\mathfrak{H}}_{+} \subset L_{G}^{2}(E) \subset \tilde{\mathfrak{H}}_{-} . \tag{44}
\end{equation*}
$$

and denote by $\tilde{\mathcal{R}}$ the corresponding Riesz-Berezanskii operator, $\tilde{\mathcal{R}} \in\left[\tilde{\mathfrak{H}}_{-}, \tilde{\mathfrak{H}}_{+}\right]$. After straightforward calculations on the vectors $e(t)=e, e \in E$ we obtain

$$
\begin{equation*}
\tilde{\mathcal{R}} e=\frac{e}{1+t^{2}}, \quad e \in E . \tag{45}
\end{equation*}
$$

Let us now consider the set

$$
\begin{equation*}
\mathfrak{D}(A)=\tilde{\mathfrak{H}}_{+} \ominus \tilde{\mathcal{R}} E, \tag{46}
\end{equation*}
$$

where by \ominus we mean orthogonality in $\tilde{\mathfrak{H}}_{+}$. We define an operator A on $\mathfrak{D}(A)$ by the following expression

$$
\begin{equation*}
A=\left.\hat{A}\right|_{\mathscr{D}(A)} \tag{47}
\end{equation*}
$$

Obviously A is a closed Hermitian operator.
Since $V(z)$ is a member of the class $N_{0}(R)$ then (38) holds for all $e \in E$. Consequently, in the $(-)$-orthogonal decomposition

$$
E=E_{\infty} \oplus F_{\infty}, \quad \text { where } \quad F_{\infty}=E_{\infty}^{\perp}
$$

the first term $E_{\infty}=0$. So that $E=F_{\infty}$ and (46) can be written as

$$
\mathfrak{D}(A)=\tilde{\mathfrak{H}}_{+} \ominus \tilde{\mathcal{R}} F_{\infty}
$$

Let us note again that in the formula above we are talking about $(+)$-orthogonal difference.
If we identify the space E with the space of functions $e(t)=e, e \in E$ we obtain

$$
\begin{equation*}
L_{G}^{2}(E) \ominus \overline{\mathfrak{D}(A)}=E_{\infty} \tag{48}
\end{equation*}
$$

The right-hand side of (48) is zero in our case and we can conclude that

$$
\overline{\mathfrak{D}(A)}=L_{G}^{2}(E)=\mathfrak{H}
$$

Let us now show that $\mathfrak{D}(T) \neq \mathfrak{D}\left(T^{*}\right)$. We already found out that our operator A is densely defined. This implies that its defect subspaces coincide with the semi-defect subspaces. In particular, $\mathfrak{N}_{ \pm i}=\mathfrak{N}_{ \pm i}^{\prime}$. Using the same technique that we used in the proof of Theorem 9 (see [7]) we obtain

$$
\begin{equation*}
\mathfrak{N}_{ \pm i}^{\prime}=\mathfrak{N}_{ \pm i}=\left\{f(t) \in L_{G}^{2}(E), \quad f(t)=\frac{e}{t \pm i}, \quad e \in E\right\} \tag{49}
\end{equation*}
$$

For the pair of admissible operators $\Phi \in\left[\mathfrak{N}_{i}, \mathfrak{N}_{-i}\right]$ and $\Phi^{*} \in\left[\mathfrak{N}_{-i}, \mathfrak{N}_{i}\right]$ where

$$
\begin{equation*}
\Phi\left(\frac{e}{t-i}\right)=\frac{e}{t+i}, \quad e \in E . \tag{50}
\end{equation*}
$$

we have that

$$
\begin{aligned}
\mathfrak{D}(T) & =\mathfrak{D}(A) \dot{+}(I-\Phi) \mathfrak{N}_{i} \\
\mathfrak{D}\left(T^{*}\right) & =\mathfrak{D}(A) \dot{+}\left(I-\Phi^{*}\right) \mathfrak{N}_{-i} .
\end{aligned}
$$

Direct calculations show that

$$
(I-\Phi)\left(\frac{e}{t-i}\right)=\frac{e}{t-i}-\frac{e}{t+i}=\frac{2 i e}{t^{2}+1}, \quad e \in E
$$

and

$$
\left(I-\Phi^{*}\right)\left(\frac{e}{t+i}\right)=\frac{e}{t+i}-\frac{e}{t-i}=-\frac{2 i e}{t^{2}+1}, \quad e \in E
$$

Therefore,

$$
\begin{equation*}
(I-\Phi) \mathfrak{N}_{i}=\left\{\frac{2 i e}{t^{2}+1}, \quad e \in E\right\} \tag{51}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(I-\Phi^{*}\right) \mathfrak{N}_{-i}=\left\{-\frac{2 i e}{t^{2}+1}, \quad e \in E\right\} \tag{52}
\end{equation*}
$$

Applying Theorem 1 we conclude that $\mathfrak{D}(T)=\mathfrak{D}\left(T^{*}\right)$ if and only if $\mathfrak{N}_{ \pm i}=0$, which is not true. Therefore, the condition $\mathfrak{D}(T) \neq \mathfrak{D}\left(T^{*}\right)$ is satisfied and the proof of the theorem is complete.

Similar results for the class $N_{1}(R)$ can be obtained in the following two theorems.

Theorem 12. Let θ be a l. s. c. d. s. of the form (28), $\operatorname{dim} E<\infty$ where A is a linear closed Hermitian O-operator and $\mathfrak{D}(T)=\mathfrak{D}\left(T^{*}\right)$. Then operator-valued function $V_{\theta}(\lambda)$ of the form (31), (32) belongs to the class $N_{1}(R)$.

Proof. As in the Theorem 10 we already know that the operator-valued function $V_{\theta}(\lambda)$ belongs to the class $N(R)$. Therefore it is enough to show that

$$
\int_{-\infty}^{+\infty}(d G(t) e, e)_{E}<\infty
$$

for all $e \in E$ and (37) holds.
Since it is given that A is closed Hermitian O-operator we can use Theorem 4 saying that for the system θ

$$
\mathfrak{D}(T)=\mathfrak{D}\left(T^{*}\right)=\mathfrak{H}_{+}=\mathfrak{D}\left(A^{*}\right) .
$$

This fact implies that the $(*)$-extension \mathbb{A} coincides with operator T. Consequently, $\mathbb{A}^{*}=$ T^{*} and our system θ has a form

$$
\theta=\left(\begin{array}{ccc}
T & K & J \tag{53}\\
\mathfrak{H}_{+} \subset \mathfrak{H} \subset \mathfrak{H}_{-} & & E
\end{array}\right)
$$

where

$$
\operatorname{Im} T=\frac{T-T^{*}}{2 i}=K J K^{*}
$$

Taking into account that $\operatorname{dim} E<\infty$ and $K: E \rightarrow \mathfrak{H}_{-}$we conclude that $\operatorname{dim} \mathfrak{R}(\operatorname{Im} T)<\infty$.
Let

$$
\begin{aligned}
T & =T_{R}+i \operatorname{Im} T, \\
T^{*} & =T_{R}-i \operatorname{Im} T,
\end{aligned}
$$

where

$$
T_{R}=\frac{T+T^{*}}{2}
$$

In our case the operator K is acting from the space E into the space \mathfrak{H}. Therefore $K e=g$ belongs to \mathfrak{H} for all $e \in E$. For the operator-valued function $V_{\theta}(\lambda)$ we can derive an integral representation for all $f \in E$

$$
\begin{align*}
\left(V_{\theta}(\lambda) f, f\right)_{E} & =\left(K^{*}\left(T_{R}-\lambda I\right)^{-1} K f, f\right)_{E}=\left(K^{*} \int_{-\infty}^{+\infty} \frac{d E(t)}{t-\lambda} K f, f\right)_{E} \tag{54}\\
& =\int_{-\infty}^{+\infty} \frac{d\left(K^{*} E(t) K f, f\right)_{E}}{t-\lambda}
\end{align*}
$$

where $E(t)$ is the complete set of spectral orthoprojections of the operator T_{R}. Denote

$$
G(t)=K^{*} E(t) K
$$

Then

$$
\begin{aligned}
\int_{-\infty}^{+\infty} d(G(t) e, e) & =\int_{-\infty}^{+\infty} d\left(K^{*} E(t) K e, e\right)=\int_{-\infty}^{+\infty} d(E(t) K e, K e) \\
& =\int_{-\infty}^{+\infty} d(E(t) g, g)=(g, g) \int_{-\infty}^{+\infty} d E(t)=(g, g) \\
& =(K e, K e)=\left(K^{*} K e, e\right)=(\operatorname{Im} T e, e)<\infty
\end{aligned}
$$

for all $e \in E$. Using standard techniques we obtain the representation (37) from the representation (54). This completes the proof of the theorem.

Theorem 13. Suppose that an operator-valued function $V(z)$ is acting on a finite-dimensional Hilbert space E and belongs to the class $N_{1}(R)$. Then it admits a realization by the system θ of the form (28) with a preassigned directional operator J for which $I+i V(-i) J$ is invertible, a linear closed regular Hermitian O-operator A with a non-dense domain, and $\mathfrak{D}(T)=\mathfrak{D}\left(T^{*}\right)$.

Proof. Similarly to Theorem 11 we can say that since $N_{1}(R)$ is a subclass of $N(R)$ then it is sufficient to show that operator A is a closed Hermitian O-operator with a non-dense domain and $\mathfrak{D}(T)=\mathfrak{D}\left(T^{*}\right)$.

Once again we introduce an operator \hat{A} by the formula (42), an operator A by the formula (47) and note that

$$
\mathfrak{D}(A)=\tilde{\mathfrak{H}}_{+} \ominus \tilde{\mathcal{R}} E .
$$

Let us recall, that since $V(z)$ belongs to the class $N_{1}(R)$ then

$$
\int_{-\infty}^{+\infty}(d G(t) e, e)_{E}<\infty, \quad \forall e \in E
$$

That means that in the $(-)$-orthogonal decomposition

$$
E=E_{\infty} \oplus F_{\infty}
$$

the second term $F_{\infty}=0$ and therefore $E=E_{\infty}$. Then

$$
\mathfrak{D}(A)=\tilde{\mathfrak{H}}_{+} \ominus \tilde{\mathcal{R}} E_{\infty}
$$

Combining this, formula (48), and the fact that $E_{\infty} \neq 0$ we obtain that $\overline{\mathfrak{D}(A)} \neq \mathfrak{H}=$ $L_{G}^{2}(E)$. Relying on the proof of Theorem 9 (see [7]) we let

$$
A_{1}=\left.\hat{A}\right|_{\mathfrak{D}\left(A_{1}\right)}, \quad \mathfrak{D}\left(A_{1}\right)=\tilde{\mathfrak{H}}+\ominus \tilde{\mathcal{R}} E_{\infty}
$$

The following obvious inclusions hold: $A \subset A_{1} \subset \hat{A}$. Moreover, a set

$$
\mathfrak{D}\left(A_{1}\right)=\tilde{\mathfrak{H}}_{+} \ominus \tilde{\mathcal{R}} E_{\infty}
$$

in our case coincides with $\mathfrak{D}(A)$ and operator A_{1} (defined on $\mathfrak{D}\left(A_{1}\right)$) with A. Now it is not difficult to see that

$$
\mathfrak{D}\left(A^{*}\right)=\mathfrak{H}_{+}=\tilde{\mathfrak{H}}_{+},
$$

the rigged Hilbert space $\tilde{\mathfrak{H}}_{+} \subset \mathfrak{H} \subset \tilde{\mathfrak{H}}_{-}$coincides with $\mathfrak{H}_{+} \subset \mathfrak{H} \subset \mathfrak{H}_{-}$and $\mathcal{R}=\tilde{\mathcal{R}}$. Indeed, $\tilde{\mathfrak{H}}_{+}=\mathfrak{D}(\hat{A})$ by the definition, in [7] we have shown that $\mathfrak{D}\left(A_{1}^{*}\right)=\mathfrak{D}(\hat{A})$, and $D\left(A_{1}\right)=D(A)$ above. All together it yields $\mathfrak{H}_{+}=\tilde{\mathfrak{H}}_{+}$.

Let $\mathfrak{N}_{ \pm i}^{\prime}$ be the semidefect subspaces of operator A and $\mathfrak{N}_{ \pm i}^{0}$ be the defect subspaces of operator A_{1}, described in the second part of the proof of Theorem 9 (see [7]). It was shown that

$$
\begin{equation*}
\mathfrak{N}_{ \pm i}^{0}=\left\{f(t) \in L_{G}^{2}(E), f(t)=\frac{e}{t \pm i}, e \in E_{\infty}\right\} \tag{55}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathfrak{N}_{ \pm i}^{\prime}=\mathfrak{N}_{i} \ominus \mathfrak{N}_{ \pm i}^{0} \tag{56}
\end{equation*}
$$

where \mathfrak{N}_{i} are defect spaces of the operator A. In our case $A=A_{1}$ therefore

$$
\mathfrak{N}_{ \pm i}^{\prime}=0
$$

This implies that the semidefect numbers of operator A are equal to zero. Hence, A is an O-operator.

Note that A is also a regular Hermitian operator. Thus, Theorem 4 is applicable and yields

$$
\mathfrak{D}(T)=\mathfrak{D}\left(T^{*}\right)
$$

This completes the proof of the theorem.
The following two theorems will complete our framework by establishing direct and inverse realization results for the remaining subclass of realizable operator-valued R-functions $N_{01}(R)$.

Theorem 14. Let θ be a l. s. c. d. s. of the form (28), $\operatorname{dim} E<\infty$ where A is a linear closed Hermitian operator with non-dense domain and $\mathfrak{D}(T) \neq \mathfrak{D}\left(T^{*}\right)$. Then the operator-valued function $V_{\theta}(z)$ of the form (31), (32) belongs to the class $N_{01}(R)$.

Proof. We know that $V_{\theta}(z)$ belongs to the class $N(R)$. To prove the statement of the theorem we only have to show that in the (-)-orthogonal decomposition $E=E_{\infty} \oplus F_{\infty}$
both components are non-zero. In other words we have to show the existence of such vectors $e \in E$ that

$$
\begin{equation*}
\int_{-\infty}^{+\infty} d(G(t) e, e)=\infty \tag{57}
\end{equation*}
$$

and vectors $f \in E, f \neq 0$ that

$$
\begin{equation*}
\int_{-\infty}^{+\infty} d(G(t) f, f)<\infty \tag{58}
\end{equation*}
$$

Let $\mathfrak{H}_{0}=\overline{\mathfrak{D}(A)}$ and $\mathfrak{L}=\mathfrak{H} \ominus \mathfrak{H}_{0}$. Since $\overline{\mathfrak{D}(A)}=\mathfrak{H}_{0} \neq \mathfrak{H}, \mathfrak{L}$ is non-empty. $K^{-1} \mathfrak{L}$ is obviously a subset of E. Moreover, according to Theorem 7 for all $f \in K^{-1} \mathfrak{L}$ (58) holds. Thus, $K^{-1} \mathfrak{L}$ is a non-zero subset of E_{∞}.

Now we have to show that the vectors satisfying (57) make a non-zero subset of E as well. Indeed, the condition

$$
\mathfrak{D}(T) \neq \mathfrak{D}\left(T^{*}\right)
$$

implies that a certain part of $\mathfrak{R}(K) \subseteq \overline{\mathfrak{R}\left(\mathbb{A}-\mathbb{A}^{*}\right)+\mathfrak{L}} \subseteq L \dot{+} \mathfrak{L}$ where L was defined in Theorem 7 essentially belongs to L. Otherwise we could have re-traced our steps and show that $\mathfrak{D}(T)=\mathfrak{D}\left(T^{*}\right)$. Therefore, there exist $g \in \mathfrak{H}_{-}, g \notin \mathfrak{L}, f \in E$ such that $K f=g \notin \mathfrak{L}$. Then according to Theorem 7 for this $f \in E$ (57) holds. The proof of the theorem is complete.

Theorem 15. Suppose that an operator-valued function $V(z)$ is acting on a finite-dimensional Hilbert space E and belongs to the class $N_{01}(R)$. Then it admits a realization by the system θ of the form (28) with a preassigned directional operator J for which $I+i V(-i) J$ is invertible, a linear closed regular Hermitian operator A with a non-dense domain, and $\mathfrak{D}(T) \neq \mathfrak{D}\left(T^{*}\right)$.

Proof. Once again all we have to show is that $\overline{\mathfrak{D}(A)} \neq \mathfrak{H}$. We have already mentioned (48) that $L_{G}^{2}(E) \ominus \overline{\mathfrak{D}(A)}=E_{\infty}$. This implies that $\mathfrak{D}(A)$ is dense in \mathfrak{H} if and only if $E_{\infty}=0$. Since the class $N_{01}(R)$ assumes the existence of non-zero vectors $f \in E$ such that (58) is true we can conclude that $E_{\infty} \neq 0$ and therefore $\overline{\mathfrak{D}(A)} \neq \mathfrak{H}$.

In the proofs of Theorems 11 and 13 we have shown that $\mathfrak{D}(T)=\mathfrak{D}\left(T^{*}\right)$ in case when $F_{\infty}=0$. If $F_{\infty} \neq 0$ then $\mathfrak{D}(T) \neq \mathfrak{D}\left(T^{*}\right)$. The definition of the class $N_{01}(R)$ implies that $F_{\infty} \neq 0$. Thus we have $\mathfrak{D}(T) \neq \mathfrak{D}\left(T^{*}\right)$. The proof is complete.

Let us consider examples of the realization in the classes $N(R)$.

Example 1. This example is to illustrate the realization in $N_{0}(R)$ class. Let

$$
T x=\frac{1}{i} \frac{d x}{d t}
$$

with

$$
\mathfrak{D}(T)=\left\{x(t) \mid x(t)-\text { abs. continuous, } x^{\prime}(t) \in L_{[0, l]}^{2}, x(0)=0\right\}
$$

be differential operator in $\mathfrak{H}=L_{[0, l]}^{2}(l>0)$. Obviously,

$$
T^{*} x=\frac{1}{i} \frac{d x}{d t}
$$

with

$$
\mathfrak{D}\left(T^{*}\right)=\left\{x(t) \mid x(t)-\text { abs. continuous, } x^{\prime}(t) \in L_{[0, l]}^{2}, x(l)=0\right\}
$$

is its adjoint. Consider a Hermitian operator A [1]

$$
\begin{aligned}
A x & =\frac{1}{i} \frac{d x}{d t} \\
\mathfrak{D}(A) & =\left\{x(t) \mid x(t)-\text { abs. continuous, } x^{\prime}(t) \in L_{[0, l]}^{2}, x(0)=x(l)=0\right\}
\end{aligned}
$$

and its adjoint A^{*}

$$
\begin{aligned}
A^{*} x & =\frac{1}{i} \frac{d x}{d t} \\
\mathfrak{D}\left(A^{*}\right) & =\left\{x(t) \mid x(t)-\text { abs. continuous, } x^{\prime}(t) \in L_{[0, l]}^{2}\right\} .
\end{aligned}
$$

Then $\mathfrak{H}_{+}=\mathfrak{D}\left(A^{*}\right)=W_{2}^{1}$ is a Sobolev space with scalar product

$$
(x, y)_{+}=\int_{0}^{l} x(t) \overline{y(t)} d t+\int_{0}^{l} x^{\prime}(t) \overline{y^{\prime}(t)} d t
$$

Construct rigged Hilbert space [9]

$$
W_{2}^{1} \subset L_{[0, l]}^{2} \subset\left(W_{2}^{1}\right)_{-}
$$

and consider operators

$$
\begin{aligned}
\mathbb{A} x & =\frac{1}{i} \frac{d x}{d t}+i x(0)[\delta(x-l)-\delta(x)] \\
\mathbb{A}^{*} x & =\frac{1}{i} \frac{d x}{d t}+i x(l)[\delta(x-l)-\delta(x)]
\end{aligned}
$$

where $x(t) \in W_{2}^{1}, \delta(x), \delta(x-l)$ are delta-functions in $\left(W_{2}^{1}\right)_{-}$. It is easy to see that

$$
\mathbb{A} \supset T \supset A, \quad \mathbb{A}^{*} \supset T^{*} \supset A
$$

and

$$
\theta=\left(\begin{array}{ccc}
\frac{1}{i} \frac{d x}{d t}+i x(0)[\delta(x-l)-\delta(x)] & K & -1 \\
W_{1}^{2} \subset L_{[0, l]}^{2} \subset\left(W_{2}^{1}\right)_{-} & & \mathbb{C}^{1}
\end{array}\right) \quad(J=-1)
$$

is the Brodskiii-Livšic rigged operator colligation where

$$
\begin{aligned}
K c & =c \cdot \frac{1}{\sqrt{2}}[\delta(x-l)-\delta(x)], \quad\left(c \in \mathbb{C}^{1}\right) \\
K^{*} x & =\left(x, \frac{1}{\sqrt{2}}[\delta(x-l)-\delta(x)]\right)=\frac{1}{\sqrt{2}}[x(l)-x(0)]
\end{aligned}
$$

and $x(t) \in W_{2}^{1}$. Also

$$
\frac{\mathbb{A}-\mathbb{A}^{*}}{2 i}=-\left(\cdot, \frac{1}{\sqrt{2}}[\delta(x-l)-\delta(x)]\right) \frac{1}{\sqrt{2}}[\delta(x-l)-\delta(x)] .
$$

The characteristic function of this colligation can be found as follows

$$
W_{\theta}(\lambda)=I-2 i K^{*}(\mathbb{A}-\lambda I)^{-1} K J=e^{i \lambda l} .
$$

Consider the following R-function (hyperbolic tangent)

$$
V(\lambda)=-i \tanh \left(\frac{i}{2} \lambda l\right) .
$$

Obviously this fucntion can be realized as follows

$$
\begin{aligned}
V(\lambda) & =-i \tanh \left(\frac{i}{2} \lambda l\right)=-i \frac{e^{\frac{i}{2} \lambda l}-e^{-\frac{i}{2} \lambda l}}{e^{\frac{i}{2} \lambda l}+e^{-\frac{i}{2} \lambda l}}=-i \frac{e^{i \lambda l}-1}{e^{i \lambda l}+1} \\
& =i\left[W_{\theta}(\lambda)+I\right]^{-1}\left[W_{\theta}(\lambda)-I\right] J . \quad(J=-1)
\end{aligned}
$$

The following simple example showing the realization for $N_{1}(R)$ class.
Example 2. Consider bounded linear operator in \mathbb{C}^{2} :

$$
T=\left(\begin{array}{cc}
i & i \\
-i & 1
\end{array}\right)
$$

Let x be an element of \mathbb{C}^{2} such that

$$
x=\binom{x_{1}}{x_{2}},
$$

and φ be a row vector $\varphi=\left(\begin{array}{ll}1 & 0\end{array}\right)$ and let $J=1$. Obviously,

$$
T^{*}=\left(\begin{array}{cc}
-i & i \\
-i & 1
\end{array}\right)
$$

It is clear that $\mathfrak{D}(T)=\mathfrak{D}\left(T^{*}\right)$. Now we can find

$$
\frac{T-T^{*}}{2 i}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

and show that φ above is the only channel vector such that

$$
\frac{T-T^{*}}{2 i} x=(x, \varphi) J \varphi
$$

Thus, operator T can be included in the system

$$
\theta=\left(\begin{array}{ccc}
T & K & J \\
\mathbb{C}^{2} & & \mathbb{C}^{1}
\end{array}\right)
$$

with

$$
\begin{aligned}
K c & =\left(\begin{array}{ll}
c & 0
\end{array}\right), \quad c \in \mathbb{C}^{1} \\
K^{*} x & =x_{1}, \quad x=\binom{x_{1}}{x_{2}} \in \mathbb{C}^{2}
\end{aligned}
$$

Then $W_{\theta}(\lambda)$ is represented by the formula

$$
W_{\theta}(\lambda)=\frac{\lambda^{2}+(1-i) \lambda-1-1}{\lambda^{2}-(1+i) \lambda-1+i} .
$$

Its linear-fractional transformation is a R-function and

$$
V_{\theta}(\lambda)=\frac{1-\lambda}{\lambda^{2}-\lambda-1}
$$

can therefore be realized as follows

$$
V_{\theta}(\lambda)=i\left[W_{\theta}(\lambda)+I\right]^{-1}\left[W_{\theta}(\lambda)-I\right] J .
$$

Example 3. In order to present the realization in $N_{01}(R)$ class we will use Examples 1 and 2.

Consider the system

$$
\theta=\left(\begin{array}{ccc}
\mathbb{A} & K & J \\
W_{1}^{2} \otimes \mathbb{C}^{2} \subset L_{[0, l]}^{2} \otimes \mathbb{C}^{2} \subset\left(W_{2}^{1}\right)_{-} \otimes \mathbb{C}^{2} & & \mathbb{C}^{2}
\end{array}\right)
$$

where \mathbb{A} is a diagonal block-matrix

$$
\mathbb{A}=\left(\begin{array}{cc}
\mathbb{A}_{1} & 0 \\
0 & T
\end{array}\right)
$$

with

$$
\mathbb{A}_{1}=\frac{1}{i} \frac{d x}{d t}+i x(0)[\delta(x-l)-\delta(x)]
$$

from Example 1, and

$$
T=\left(\begin{array}{cc}
i & i \\
-i & 1
\end{array}\right)
$$

from Example 2. Operator K here is defined as a diagonal operator block-matrix

$$
K=\left(\begin{array}{cc}
K_{1} & 0 \\
0 & K_{2}
\end{array}\right)
$$

with operators K_{1} and K_{2} from Examples 1 and 2, respectively,

$$
J=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

It can be easily shown that

$$
W_{\theta}(\lambda)=\left(\begin{array}{cc}
e^{i \lambda l} & 0 \\
0 & \frac{\lambda^{2}+(1-i) \lambda-1-1}{\lambda^{2}-(1+i) \lambda-1+i}
\end{array}\right)
$$

and

$$
V_{\theta}(\lambda)=\left(\begin{array}{cc}
-i \tanh \left(\frac{i}{2} \lambda l\right) & 0 \\
0 & \frac{1-\lambda}{\lambda^{2}-\lambda-1}
\end{array}\right)
$$

is an operator-valued function of class $N_{01}(R)$.

Acknowledgement. We would like to thank Frietz Gesztesy, Henk de Snoo, and referee for valuable discussions.

References

1. Yu.M.Arlinskiï, On inverse problem of the theory of characteristic functions of unbounded operator colligations, Dopovidi Akad. Nauk Ukrain. RSR 2 (1976), no. Ser. A, 105-109.
2. Yu.M.Arlinskii, E.R.Tsekanovskiï, Regular (*)-extension of unbounded operators, characteristic opera-tor-functions and realization problems of transfer mappings of linear systems, Preprint, VINITI,-2867.79 Dep. - 72 p.
3._. The method of equipped spaces in the theory of extensions of Hermitian operators with a nondense domain of definition, Sibirsk. Mat. Zh. 15 (1974), 243-261.
3. D.R. Arov, M.A. Nudelman, Passive linear stationary dynamical scattering systems with continuous time, Integr. Equat. Oper. Th. 24 (1996), 1-45.
4. S.V.Belyi, E.R.Tsekanovskii, Classes of operator-valued R-functions and their realization by conservative systems, Dokl. Akad. Nauk SSR 321 (1991), no. 3, 441-445.
5. __ Realization and factorization problems for J-contractive operator-valued functions in halfplane and systems with unbounded operators, Systems and Networks: Mathematical Theory and Applications 2 (1994), Akademie Verlag, 621-624.
6. , Realization theorems for operator-valued R-functions., Operator theory: Advances and Applications, 98 (1997), Birkhäuser Verlag Basel, 55-91.
7. H.Bart, I.Gohberg, M.A. Kaashoek, Minimal factorizations of matrix and operator-functions. Operator theory: Advances and Applications, Birkhäuser Verlag Basel, 1979.
8. Ju. M. Berezanskii, Expansion in eigenfunctions of self-adjoint operators, vol. 17, Transl. Math. Monographs, AMS, Providence RI, 1968.
9. M.S. Brodskiĭ, Triangular and Jordan representations of linear operators, Moscow, Nauka, 1969.
10. M.S. Brodskiĭ, M.S. Livšic, Spectral analysis of non-selfadjoint operators and intermediate systems, Uspekhi Matem. Nauk XIII (1958), no. 1 (79), 3-84.
11. J.A. Ball, Nir Cohen, De Branges-Rovnyak operator models and systems theory: a survey, In book: Operator Theory: Advances and Applications, Birkhäuser Verlag Basel 50 (1991), 93-136.
12. F. Gesztesy, E.R.Tsekanovskii, On matrix-valued Herglotz functions, preprint.
13. S. Hassi, M. Kaltenbäck, H. de Snoo, Triplets of Hilbert spaces and Friedrichs extensions associated with the subclass N_{1} of Nevanlina functions, Jour. of Operator Theory 37 (1997), 155 - 181.
14. S. Hassi, M. Kaltenbäck, H. de Snoo, On some subclasses of Nevalinna functions, Jour. Annal. Appls. 15 (1997), $45-55$.
15. J.W. Helton, Systems with infinite-dimensional state space: the Hilbert space approach, Proc. IEEE 64 (1976), no. 1, $145-160$.
16. I.S. Kač, M.G. Krein, The R-functions - analytic functions mapping the upper half-plane into itself, Supplement I to the Russian edition of F.V. Atkinson, Discrete and continuous boundary problems, (1968), Mir, Moscow (Russian) (English translation: Amer. Math. Soc. Transl. (2) 103 (1974), 1-18).
17. M.A. Krasnoselskii, On self-adjoint extensions of Hermitian operators, Ukrain. Mat. Zh. 1 (1949), 21 -38 .
18. M.S. Livšic, On spectral decomposition of linear non-selfadjoint operators, Math. Sbornik 34 (1954), no. $76,145-198$.
19. , Operators, oscillations, waves, Moscow Nauka, 1966.
20. Ju.L. Šmuljan, Extended resolvents and extended spectral functions of Hermitian operator, Math. USSR Sbornick 13 (1971), no. 3, 435-450.
22._ On operator-valued R-functions, Sibirsk. Mat. Zh. 12 (1971), no. 2, 442-452.
21. B. Sz.-Nagy, C. Foias, Harmonic analysis of operators on Hilbert space, North-Holland Pub. Co., Amsterdam, 1970.
22. E.R.Tsekanovskiĭ, Generalized self-adjoint extensions of symmetric operators, Dokl. Akad. Nauk SSR 178 (1968), 1267-1270.
23. \qquad , On the description and uniqueness of the generalized extensions of quasi-Hermitian operators, Functional Anal. Appl. 3 (1969), 79-80.
24. \qquad , Analytical properties of the resolvent matrix-valued functions and inverse problem, Abstracts of the All Union Conference on Complex Analysis, Kharkov, FTINT 3 (1971), 233-235.
25. E.R. Tsekanovskii, Ju.L. S̆muljan, The Theory of bi-extensions of operators on rigged Hilbert spaces. Unbounded operator colligations and characteristic functions., Russian Math. Surveys 32 (1977), no. 5, 69-124.
26. \qquad , Method of generalized functions in the theory of extensions of unbounded linear operators, Donetsk State Univeristy, Donetsk, 1973.
27. V.E. Tsekanovskií, E.R. Tsekanovskiĭ, Stieltjes operator-functions with the gaps and their realization by conservative systems, Proceedings of the International symposium MTNS-91 1 (1992), 37-43.
28. G. Weiss, The representation of regular linear systems on Hilbert spaces, International series of Numerical Mathematics 91 (1989), 401-415.

Department of Mathematics
Troy State University
Troy, AL 36082
E-mail address: sbelyi@trojan.troyst.edu

Department of Mathematics
University of Missouri-Columbia
Columbia, MO 65211
E-mail address: tsekanov@math.missouri.edu

1991 Mathematics Subject Classification
Primary 47A10, 47B44; Secondary 46E20, 46F05

[^0]: ${ }^{1}$ The condition, that $(-i)$ is a regular point in the definition of the class Ω_{A} is not essential. It is sufficient to require the existence of some regular point for T.

[^1]: ${ }^{2}$ The method of rigged Hilbert spaces for the solving of inverse problems of the theory of characteristic operator-valued functions was introduced in [25] and developed further in [1].

