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REALIZATION THEOREMS FOR

OPERATOR-VALUED R-FUNCTIONS

S.V. Belyi and E.R. Tsekanovskii

Dedicated to the memory of Professor Israel Glazman

In this paper we consider realization problems for operator-valued R-functions
acting on a Hilbert space E (dimE < ∞) as linear-fractional transformations of
the transfer operator-valued functions (characteristic functions) of linear sta-
tionary conservative dynamic systems (Brodskĭi-Livs̆ic rigged operator colli-
gations). We give complete proofs of both the direct and inverse realization
theorems announced in [6], [7].

1. Introduction

Realization theory of different classes of operator-valued (matrix-valued) functions as
transfer operator-functions of linear systems plays an important role in modern operator
and systems theory. Almost all realizations in the modern theory of non-selfadjoint op-
erators and its applications deal with systems (operator colligations) in which the main
operators are bounded linear operators [8], [10-14], [17], [21]. The realization with an
unbounded operator as a main operator in a corresponding system has not been investi-
gated thoroughly because of a number of essential difficulties usually related to unbounded
non-selfadjoint operators.

We consider realization problems for operator-valued R-functions acting on a finite
dimensional Hilbert space E as linear-fractional transformations of the transfer operator-
functions of linear stationary conservative dynamic systems (l.s.c.d.s.) θ of the form

{
(A− zI)x = KJϕ−

ϕ+ = ϕ− − 2iK∗x
(Im A = KJK∗),
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or

θ =
(

A K J
H+ ⊂ H ⊂ H− E

)
.

In the system θ above A is a bounded linear operator, acting from H+ into H−, where
H+ ⊂ H ⊂ H− is a rigged Hilbert space, A ⊃ T ⊃ A, A∗ ⊃ T ∗ ⊃ A, A is a Hermitian
operator in H, T is a non-Hermitian operator in H, K is a linear bounded operator from
E into H−, J = J∗ = J−1, ϕ± ∈ E, ϕ− is an input vector, ϕ+ is an output vector, and
x ∈ H+ is a vector of the inner state of the system θ. The operator-valued function

Wθ(z) = I − 2iK∗(A− zI)−1KJ (ϕ+ = Wθ(z)ϕ−),

is the transfer operator-function of the system θ.
We establish criteria for a given operator-valued R-function V (z) to be realized in the

form
V (z) = i[Wθ(z) + I]−1[Wθ(z)− I]J.

It is shown that an operator-valued R-function

V (z) = Q + F · z +
∫ +∞

−∞

(
1

t− z
− t

1 + t2

)
dG(t),

acting on a Hilbert space E (dimE < ∞) with some invertibility condition can be realized
if and only if

F = 0 and Qe =

+∞∫

−∞

t

1 + t2
dG(t)e,

for all e ∈ E such that ∫ +∞

−∞
(dG(t)e, e)E < ∞.

Moreover, if two realizable operator-valued R-functions are different only by a constant
term then they can be realized by two systems θ1 and θ2 with corresponding non-selfadjoint
operators that have the same Hermitian part A.

The rigged operator colligation θ mentioned above is exactly an unbounded version of
the well known Brodskĭi-Livs̆ic bounded operator colligation α of the form [11]

α =
(

T K J
H E

)
(Im T = KJK∗) ,

with a bounded linear operator T in H (and without rigged Hilbert spaces).
To prove the direct and inverse realization theorems for operator-valued R-functions

we build a functional model which generally speaking is an unbounded version of the
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Brodskĭi-Livs̆ic model with diagonal real part. This model for bounded linear operators
was constructed in [11].

When this paper was submitted for publication, an article by D. Arov and M. Nudelman
[5] appeared considering realization problem for another class of operator-valued functions
(contractive) but not in terms of rigged operator colligations. At the end of this paper
there is an example showing how a given R-function can be realized by a rigged operator
colligation.

Acknowledgement. The authors express their gratitude to the referees and to
G. Androlakis, P. Casazza, M. Lammers, and V. Peller for their valuable suggestions that
helped to improve the presentation of this paper.

2. Preliminaries

In this section we recall some basic definitions and results that will be used in the proof
of the realization theorem.

The Rigged Hilbert Spaces. Let H denote a Hilbert space with inner product (x, y) and
let A be a closed linear Hermitian operator, i.e. (Ax, y) = (x,Ay) (∀x, y ∈ D(A)), acting
in the Hilbert space H with generally speaking, non-dense domain D(A). Let H0 = D(A)
and A∗ be the adjoint to the operator A (we consider A acting from H0 into H).

Now we are going to equip H with spaces H+ and H− called, respectively, spaces with
positive and negative norms [9]. We denote H+ = D(A∗) ((D(A∗) = H) with inner product

(1) (f, g)+ = (f, g) + (A∗f,A∗g) (f, g ∈ H+),

and then construct the rigged Hilbert space H+ ⊂ H ⊂ H−. Here H− is the space of all
linear functionals over H+ that are continuous with respect to ‖ · ‖+. The norms of these
spaces are connected by the relations ‖x‖ ≤ ‖x‖+ (x ∈ H+), and ‖x‖− ≤ ‖x‖ (x ∈ H). It
is well known that there exists an isometric operator R which maps H− onto H+ such that

(2)
(x, y)− = (x,Ry) = (Rx, y) = (Rx,Ry)+ (x, y ∈ H−),

(u, v)+ = (u,R−1v) = (R−1u, v) = (R−1u,R−1v)− (u, v ∈ H+).

The operator R will be called the Riesz-Berezanskii operator. In what follows we use
symbols (+), (·), and (−) to indicate the norms ‖ ·‖+, ‖ ·‖, and ‖ ·‖− by which geometrical
and topological concepts are defined in H+, H, and H−.

Analogues of von Neumann’s formulae. It is easy to see that for a Hermitian operator
A in the above settings D(A) ⊂ D(A∗)(= H+) and A∗y = PAy (∀y ∈ D(A)), where P is
an orthogonal projection of H onto H0. We put

(3) L := Hª H0 Mλ := (A− λI)D(A) Nλ := (Mλ̄)⊥
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The subspace Nλ is called a defect subspace of A for the point λ̄. The cardinal number
dimNλ remains constant when λ is in the upper half-plane. Similarly, the number dimNλ

remains constant when λ is in the lower half-plane. The numbers dimNλ and dimNλ̄

(Imλ < 0) are called the defect numbers or deficiency indices of operator A [1]. The
subspace Nλ which lies in H+ is the set of solutions of the equation A∗g = λPg.

Let now Pλ be the orthogonal projection onto Nλ, set

(4) Bλ = PλL, N′
λ = Nλ ªBλ

It is easy to see that N′
λ = Nλ∩H0 and N′

λ is the set of solutions of the equation A∗g = λg

(see [25]), when A∗ : H → H0 is the adjoint operator to A.
The subspace N′

λ is the defect subspace of the densely defined Hermitian operator PA

on H0 ([22]). The numbers dimN′
λ and dimN′̄

λ
(Imλ < 0) are called semi-defect numbers

or the semi-deficiency indices of the operator A [16]. The von Neumann formula

(5) H+ = D(A∗) = D(A) + Nλ + Nλ̄, (Imλ 6= 0),

holds, but this decomposition is not direct for a non-densely defined operator A. There
exists a generalization of von Neumann’s formula [3], [24] to the case of a non-densely
defined Hermitian operator (direct decomposition).

We call an operator A regular, if PA is a closed operator in H0. For a regular operator
A we have

(6) H+ = D(A) + N′
λ + N′̄

λ + N, (Imλ 6= 0)

where N := RL. This is a generalization of von Neumann’s formula. For λ = ±i we obtain
the (+)-orthogonal decomposition

(7) H+ = D(A)⊕N′
i ⊕N′

−i ⊕N.

Let Ã be a closed Hermitian extension of the operator A. Then D(Ã) ⊂ H+ and
PÃx = A∗x (∀x ∈ D(Ã)). According to [25] a closed Hermitian extension Ã is said
to be regular if D(Ã) is (+)-closed. According to the theory of extensions of closed Her-
mitian operators A with non-dense domain [16], an operator U (D(U) ⊆ Ni, R(U) ⊆ N−i)
is called an admissible operator if (U −I)fi ∈ D(A) (fi ∈ D(U)) only for fi = 0. Then (see
[4]) any symmetric extension Ã of the non-densely defined closed Hermitian operator A, is
defined by an isometric admissible operator U , D(U) ⊆ Ni, R(U) ⊆ N−i by the formula

(8) ÃfÃ = AfA + (−ifi − iUfi), fA ∈ D(A)
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where D(Ã) = D(A)u(U−I)D(U). The operator Ã is self-adjoint if and only if D(U) = Ni

and R(U) = N−i.
Let us denote now by P+

N the orthogonal projection operator in H+ onto N. We intro-
duce a new inner product (·, ·)1 defined by

(9) (f, g)1 = (f, g)+ + (P+
Nf, P+

Ng)+

for all f, g ∈ H+. The obvious inequality

‖f‖2+ ≤ ‖f‖21 ≤ 2‖f‖2+

shows that the norms ‖ · ‖+ and ‖ · ‖1 are topologically equivalent. It is easy to see that
the spaces D(A), N′

i, N′
−i, N are (1)-orthogonal. We write M1 for the Hilbert space

M = N′
i ⊕ N′

−i ⊕ N with inner product (f, g)1. We denote by H+1 the space H+ with
norm ‖ · ‖1, and by R1 the corresponding Riesz-Berezanskii operator related to the rigged
Hilbert space H+1 ⊂ H ⊂ H−1. The following theorem gives a characterization of the
regular extensions for a regular closed Hermitian operator A (see [4]).

Theorem 1. I. For each closed Hermitian extension Ã of a regular operator A there
exists a (1)-isometric operator V = V (Ã) on M1 with the properties: a) D(V ) is (+)-
closed and belongs to N⊕N′

i, R(V ) ⊂ N⊕N′
−i; b) V h = h only for h = 0, and D(Ã) =

D(A)⊕ (I + V )D(V ).
Conversely, for each (1)-isometric operator V with the properties a) and b) there exists

a closed Hermitian extension Ã in the sense indicated.
II. The extension Ã is regular if and only if the manifold R(I + V ) is (1)-closed.
III. The operator Ã is self-adjoint if and only if D(V ) = N⊕N′

i, R(V ) = N⊕N′
−i.

The following theorem can be found in [16].

Theorem 2. Let Ã be a regular self-adjoint extension of a regular Hermitian operator A,
that is determined by an admissible operator U and let

(10) N̂i = {fi ∈ Ni, (U − I)fi ∈ H0}.

Then

(11) H+ = D(Ã) u (U + I)N̂i.

Bi-extensions. Denote by [H1,H2] the set of all linear bounded operators acting from
the Hilbert space H1 into the Hilbert space H2.
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Definition. An operator A ∈ [H+, H−] is a bi-extension of A if both A ⊃ A and A∗ ⊃ A.

If A = A∗, then A is called a self-adjoint bi-extension of the operator A. We write
S(A) for the class of bi-extensions of A. This class is closed in the weak topology and is
invariant under taking adjoints. The following theorem from [4], [25] gives a description
of S(A).

Theorem 3. Every bi-extension A of a regular Hermitian operator A has the form:

(12) A = AP+
D(A) + [A∗ +R−1

1 (Q− i

2
P+

N′i
+

i

2
P+

N′−i
)]P+

M

(13) A∗ = AP+
D(A) + [A∗ +R−1

1 (Q∗ − i

2
P+

N′i
+

i

2
P+

N′−i
)]P+

M

where Q is an arbitrary operator in [M,M] and Q∗ is its adjoint with respect to the (1)-
metric.

Corollary 1. Every self-adjoint bi-extension A of the regular Hermitian operator A is of
the form:

(14) A = AP+
D(A) + [A∗ +R−1

1 (S − i

2
P+

N′i
+

i

2
P+

N′−i
)]P+

M,

where S is an arbitrary (1)-self-adjoint operator in [M, M].

Let A be a bi-extension of a Hermitian operator A. The operator Âf = Af , D(Â) =
{f ∈ H,Af ∈ H} is called the quasi-kernel of A. If A = A∗ and Â is a quasi-kernel of A
such that A 6= Â, Â∗ = Â then A is said to be a strong self-adjoint bi-extension of A.

Classes ΩA and ΛA. (∗)-extensions. Let A be a closed Hermitian operator.

Definition. We say that a closed densely defined linear operator T acting on the Hilbert
space H belongs to the class ΩA if:

(1) T ⊃ A and T ∗ ⊃ A;
(2) (−i) is a regular point of T .1

It was mentioned in [4] that sets D(T ) and D(T ∗) are (+)-closed, the operators T

and T ∗ are (+, ·)-bounded. The following theorem [25] is an analogue of von Neumann’s
formulae for the class ΩA.

1The condition, that (−i) is a regular point in the definition of the class ΩA is not essential. It is
sufficient to require the existence of some regular point for T .

60



Theorem 4. I. To each operator of the class ΩA there corresponds an operator M on the
space M1 with the following properties:

(1) D(M) = N′
i ⊕N, and R(M) = N′

−i ⊕N;
(2) Mx + x = 0 only for x = 0, and M∗x + x = 0 only for x = 0. Moreover, the

following hold:

(15) D(T ) = D(A)⊕ (M + I)(N′
i ⊕N),

(16) D(T ∗) = D(A)⊕ (M∗ + I)(N′
−i ⊕N).

II. Conversely, for each pair of (1)-adjoint operators M and M∗ in [M1, M1] satisfying
(1) and (2) above, formulas (15) and (16) give a corresponding operator T in the class
ΩA. Moreover, if f = g + (M + I)ϕ, g ∈ D(A), and ϕ ∈ N′

i ⊕N then

(17) Tf = Ag + A∗(I + M)ϕ + iR−1
1 P+

N (I −M)ϕ (f ∈ D(T )).

Similarly, if f = g + (M∗ + I)ψ, g ∈ D(A), and ψ ∈ N′
−i ⊕N, then

(18) T ∗f = Ag + A∗(I + M∗)ψ + iR−1
1 P+

N (M∗ − I)ψ (f ∈ D(T )),

Definition. An operator A in [H+, H−] is called a (∗)-extension of an operator T from
the class ΩA if both A ⊃ T and A∗ ⊃ T ∗.

This (∗)-extension is called correct, if an operator AR = 1
2 (A + A∗) is a strong self-

adjoint bi-extension of an operator A. It is easy to show that if A is a (∗)-extension of T ,
then T and T ∗ are quasi-kernels of A and A∗, respectively.

Definition. We say that the operator T of the class ΩA belongs to the class ΛA if

(1) T admits a correct (∗)-extension;
(2) A is the maximal common Hermitian part of T and T ∗.

Theorem 5. Let an operator T belong to ΩA and let M be an operator in [M,M] that
is related to T by Theorem 4. Then T belongs to ΛA if and only if there exists either
(1)-isometric operator or a (·)-isometric operator U in [N′

i, N
′
−i] such that

(19)
{

(U + I)N′
i + (M + I)(N′

i ⊕N) = M,

(U + I)N′
i + (M + I)(N′

i ⊕N) = M.
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Corollary 2. If a closed Hermitian operator A has finite and equal defect indices, then
the class ΩA coincides with the ΛA.

Extended Resolvents and Extended Spectral Functions of a Hermitian Oper-
ator. Let A be a closed Hermitian operator on H and h be a Hilbert space such that H

is a subspace of h. Let Ã be a self-adjoint extension of A on h, and Ẽ(t) be the spectral
function of Ã. An operator function Rλ = PH(Ã−λI)−1|H is called a generalized resolvent
of A, and E(t) = PHẼ(t)|H is the corresponding generalized spectral function. Here

(20) Rλ =

∞∫

−∞

dE(t)
t− λ

(Imλ 6= 0).

If h = H then Rλ and E(t) are called canonical resolvent and canonical spectral function,
respectively. According to [19] we denote by R̂λ the (−, ·)-continuous operator from H−
into H which is adjoint to Rλ̄:

(21) (R̂λf, g) = (f,Rλ̄g) (f ∈ h−, g ∈ H).

It follows that R̂λf = Rλf for f ∈ h, so that R̂λ is an extension of Rλ from H to H− with
respect to (−, ·)-continuity. The function R̂λ of the parameter λ, (Imλ 6= 0) is called the
extended generalized (canonical) resolvent of the operator A. We write ℵ for the family of
all finite intervals on the real axis. It is known [19] that if ∆ ∈ ℵ then E(∆)H ⊂ H+ and
the operator E(∆) is (·,+)-continuous. We denote by Ê(∆) the (−, ·)-continuous operator
from H− to H that is adjoint to E(∆) ∈ [H,H+]. Similarly,

(22) (Ê(∆)f, g) = (f, E(∆)g) (f ∈ H−, g ∈ H),

One can easily see that Ê(∆)f = E(∆)f , ∀f ∈ H, so that Ê(∆) is the extension of E(∆)
by continuity. We say that Ê(∆), as a function of ∆ ∈ ℵ, is the extended generalized
(canonical) spectral function of A corresponding to the self-adjoint extension Ã (or to
the original spectral function E(∆)). It is known [19] that Ê(∆) ∈ [H−,H+], ∀∆ ∈
ℵ, and (Ê(∆)f, f) ≥ 0 for all f ∈ H−. It is also known [19] that the complex scalar
measure (E(∆)f, g) is a complex function of bounded variation on the real axis. However,
(Ê(∆)f, g) may be unbounded for f, g ∈ H−.

Now let R̂λ be an extended generalized (canonical) resolvent of a closed Hermitian
operator A and let Ê(∆) be the corresponding extended generalized (canonical) spectral
function. It was shown in [19] that for any f, g ∈ H−,

(23)

+∞∫

−∞

|d(Ê(∆)f, g)|
1 + t2

< ∞,
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and the following integral representation holds

(24) R̂λ − R̂i + R̂−i

2
=

+∞∫

−∞

(
1

t− λ
− t

1 + t2

)
dÊ(t).

Lemma 6. Let A = A∗+R−1(S− i
2P+

Ni
+ i

2P+
N−i

)P+
M be a strong self-adjoint bi-extension

of a regular Hermitian operator A with the quasi-kernel Â and let Ê(∆) be the extended
canonical spectral function of Â. Then for every f ∈ H⊕ L, f 6= 0, and for every g ∈ H−
there is an integral representation

(25) (R̄λf, g) =

+∞∫

−∞

(
1

t− λ
− t

1 + t2

)
d(Ê(t)f, g) +

1
2
((R̂i + R̂−i)f, g).

Here F = H+ ªD(A), L = R−1(S − i
2P+

Ni
+ i

2P+
N−i

)F , R̄λ = (A− λI)−1.

Theorem 7. Let A = A∗+R−1(S− i
2P+

Ni
+ i

2P+
N−i

)P+
M be a strong self-adjoint bi-extension

of a regular Hermitian operator A with the quasi-kernel Â and let Ê(∆) be the extended
canonical spectral function of Â. Also, let F = H+ ª D(A) and L = R−1(S − i

2P+
Ni

+
i
2P+

N−i
)F . Then for every f ∈ L u L with f 6= 0 and f ∈ R(A− λI), we have

(26)

+∞∫

−∞
d(Ê(t)f, f) = ∞, if f /∈ L,

and

(26′)

+∞∫

−∞
d(Ê(t)f, f) < ∞, if f ∈ L.

Moreover, there exist real constants b and c such that

(27) c‖f‖2− ≤
+∞∫

−∞

d(Ê(t)f, f)
1 + t2

≤ b‖f‖2−,

for all f ∈ L u L.

Corollary 3. In the settings of Theorem 7 for all f, g ∈ L u L

(28)

∣∣∣∣∣

(
R̂i + R̂−i

2
f, g

)∣∣∣∣∣ ≤ a

√∫ +∞

−∞

d(Ê(t)f, f)
1 + t2

·
√∫ +∞

−∞

d(Ê(t)g, g)
1 + t2

,

where a > 0 is a constant (see [2]).
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3. Linear Stationary Conservative Dynamic Systems

In this section we consider linear stationary conservative dynamic systems (l. s. c. d.
s.) θ of the form

(29)

{
(A− zI) = KJϕ−

ϕ+ = ϕ− − 2iK∗x
(Im A = KJK∗) .

In a system θ of the form (29) A, K and J are bounded linear operators in Hilbert spaces,
ϕ− is an input vector,ϕ+ is an output vector, and x is an inner state vector of the system
θ. For our purposes we need the following more precise definition:

Definition. The array

(30) θ =
(

A K J
H+ ⊂ H ⊂ H− E

)

is called a linear stationary conservative dynamic system or Brodskĭi-Livs̆ic rigged operator
colligation if

(1) A is a correct (∗)-extension of an operator T of the class ΛA.
(2) J = J∗ = J−1 ∈ [E, E], dimE < ∞
(3) A− A∗ = 2iKJK∗, where K ∈ [E, H−] (K∗ ∈ [H+, E])

In this case, the operator K is called a channel operator and J is called a direction
operator. A system θ of the form (30) will be called a scattering system (dissipative
operator colligation) if J = I. We will associate with the system θ the operator-valued
function

(31) Wθ(z) = I − 2iK∗(A− zI)−1KJ

which is called the transfer operator-valued function of the system θ or the characteristic
operator-valued function of Brodskĭi-Livs̆ic rigged operator colligation. According to The-
orem 7, R(K) ⊂ R(A − λI) and therefore Wθ(z) is well-defined. It may be shown [10],
[25] that the transfer operator-function of the system θ of the form (30) has the following
properties:

(32)

W ∗
θ (z)JWθ(z)− J ≥ 0 (Im z > 0, z ∈ ρ(T )),

W ∗
θ (z)JWθ(z)− J = 0 (Im z = 0, z ∈ ρ(T )),

W ∗
θ (z)JWθ(z)− J ≤ 0 (Im z < 0, z ∈ ρ(T )),

where ρ(T ) is the set of regular points of an operator T . Similar relations take place if we
change Wθ(z) to W ∗

θ (z) in (32). Thus, the transfer operator-valued function of the system
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θ of the form (30) is J-contractive in the lower half-plane on the set of regular points of
an operator T and J-unitary on real regular points of an operator T .

Let θ be a l.s.c.d.s. of the form (30). We consider the operator-valued function

(33) Vθ(z) = K∗(AR − zI)−1K.

The transfer operator-function Wθ(z) of the system θ and an operator-function Vθ(z) of
the form (33) are connected with the relation

(34) Vθ(z) = i[Wθ(z) + I]−1[Wθ(z)− I]J.

As it is known [11] an operator-function V (z) ∈ [E,E] is called an operator-valued R-
function if it is holomorphic in the upper half-plane and Im V (z) ≥ 0 whenever Im z > 0.

It is known [11,17] that an operator-valued R-function acting on a Hilbert space E

(dimE < ∞) has an integral representation

(35) V (z) = Q + F · z +
∫ +∞

−∞

(
1

t− z
− t

1 + t2

)
dG(t),

where Q = Q∗, F ≥ 0 in the Hilbert space E, and G(t) is a non-decreasing operator-
function on (−∞, +∞) for which

∫ +∞

−∞

dG(t)
1 + t2

∈ [E, E].

Definition. We call an operator-valued R-function V (z) acting on a Hilbert space E,
(dimE < ∞) realizable if in some neighborhood of the point (−i), the function V (z) can
be represented in the form

(36) V (z) = i[Wθ(z) + I]−1[Wθ(z)− I]J,

where Wθ(z) is the transfer operator-function of some l.s.c.d.s. θ with the direction operator
J (J = J∗ = J−1 ∈ [E, E]).

Definition. An operator-valued R-function V (z) ∈ [E,E], (dimE < ∞) is said to be a
member of the class N(R) if in the representation (35) we have

i) F = 0,

ii) Qe =
∫ +∞

−∞

t

1 + t2
dG(t)e,

for all e ∈ E with ∫ +∞

−∞
(dG(t)e, e)E < ∞.

We now establish the next result.
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Theorem 8. Let θ be a l.s.c.d.s. of the form (30) with dimE < ∞. Then the operator-
function Vθ(z) of the form (33), (34) belongs to the class N(R).

Proof. Let G−i be a neighborhood of (−i) and λ, µ ∈ G−i. Then,

(37)
Vθ(λ)− Vθ(µ) = K∗(AR − λI)−1K −K∗(AR − µI)−1K

= (µ− λ)K∗(AR − λI)−1(AR − µI)−1K,

and

(38)
Vθ(λ)− Vθ(µ)

µ− λ
= K∗(AR − λI)−1(AR − µI)−1K,

for all λ, µ ∈ G−i. Therefore, letting λ → µ we can say that Vθ(z) is holomorphic in G−i.
Without loss of generality (see [25]) we can conclude that Vθ(z) is holomorphic in any one
of the half-planes.

It is obvious that V ∗
θ (z) = Vθ(z) = Vθ(z̄). Furthermore,

(39) ImVθ(z) =
1
2i

K∗(AR − z̄I)−1(AR − zI)−1K.

Since (−i) is a regular point of the operator T in the system (30) then (see [10])
I + iV (λ)J is invertible in G−i.

Let now Dz = (AR−zI)−1K, then it is easy to see that the adjoint operator D∗
z is given

by D∗
z = K∗(AR − z̄I)−1. Therefore, we have ImVθ(z) = ImzD∗

zDz which implies that
ImVθ(z) ≥ 0 when Imz > 0. Hence we can conclude that Vθ(z) is an operator R-function
and admits representation (35).

Let now B = K∗(AR + iI)−1(AR − iI)−1K. It follows from (39) that B = 1
2i (Vθ(i) −

V ∗
θ (i)). Using Theorem 7 and representation (35) one can show that

(40) Bf =

∞∫

−∞

dG(t)
1 + t2

f, f ∈ E

and B ∈ [E, E].
Let Ê(∆) be the canonical extended spectral function of the quasi-kernel Â of the

operator AR = 1
2 (A+ A∗). Then relying on Lemma 6 for all f, g ∈ E we have

(41) (Vθ(λ)f, g)E =

+∞∫

−∞

(
1

t− λ
− t

1 + t2

)
d(Ĝ(t)f, g)E + (Q̂f, g)E ,
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where Ĝ(∆) = K∗Ê(∆)K, ∆ ∈ ℵ and

(42) Q̂ =
1
2
K∗[(AR − iI)−1 + (AR + iI)−1]K =

1
2
[Vθ(−i) + V ∗

θ (−i)].

From Theorem 7 (see also [19]), we have for all f ∈ E with Kf ∈ L,

(43)

∞∫

−∞
d(Ĝ(t)f, f)E < ∞,

and

(44) c‖Kf‖2− ≤
+∞∫

−∞

d(Ĝ(t)f, f)E

1 + t2
≤ b‖Kf‖2−.

Moreover, (28) implies that

(45)
∣∣∣
(
Q̂f, g

)
E

∣∣∣ ≤ C

√∫ +∞

−∞

d(Ĝ(t)f, f)E

1 + t2
·
√∫ +∞

−∞

d(Ĝ(t)g, g)E

1 + t2
.

By (41) we have for any f, g ∈ E

(46) (Vθ(λ)f, g)E = (Q̂f, g)E +

+∞∫

−∞

(
1

t− λ
− t

1 + t2

)
d(Ĝ(t)f, g)E .

On the other hand (35) implies

(47) (Vθ(λ)f, g)E = (Qf, g)E + λ(Ff, g)E +

+∞∫

−∞

(
1

t− λ
− t

1 + t2

)
d(G(t)f, g)E .

Comparing (46) and (47) we get (Qf, g)E = (Q̂f, g)E , (Ff, g)E = 0, and (G(∆)f, g) =
(Ĝ(∆)f, g) (∆ ∈ ℵ), for all f, g ∈ E. Taking into account the continuity and positivity of
F , G(∆), and Ĝ(∆), we find that F = 0 and G(∆) = Ĝ(∆) (∆ ∈ ℵ).

Thus,

(48) V (λ) = Q +

+∞∫

−∞

(
1

t− λ
− t

1 + t2

)
dG(t),

holds.
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Let E∞ = K−1L, E∞ ⊂ E. Since Ê(∆) coincides with E(∆) on L, then for any e ∈ E∞,
we have

(49)

+∞∫

−∞
d(Ĝ(t)e, e)E < ∞.

If e /∈ E∞, then Ke /∈ L (see Theorem 7) and

(50)

+∞∫

−∞
d(Ĝ(t)e, e)E = ∞.

Further, since

(51) Q =
1
2

[Vθ(i) + Vθ(−i)] =
1
2

[
K∗((AR + iI)−1 + (AR − iI)−1)K

]
,

we have R(Q) ⊆ R(K∗) ⊆ E. Now formula (45) yields

(52) |(Qf, g)E | ≤ C‖f‖E · ‖g‖E , f, g ∈ E.

On the other hand, if e ∈ E∞ then

Qe =
1
2

[
K∗(ÂR + iI)−1 + (ÂR − iI)−1)Ke

]

= K∗
+∞∫

−∞

t

1 + t2
dE(t)Ke =

+∞∫

−∞

t

t2 + 1
dĜ(t)e.

This completes the proof.

Next, we establish the converse.2

Theorem 9. Let an operator-valued function V (z) act on a finite-dimensional Hilbert
space E and belong to the class N(R). Then V (z) admits a realization by the system θ of
the form (30) with a preassigned direction operator J for which I + iV (−i)J is invertible.

Proof. We will use several steps to prove this theorem.
Step 1. Let C00(E, (−∞,+∞)) be the set of continuous compactly supported vector-
valued functions f(t) (−∞ < t < +∞) with values in a finite dimensional Hilbert space
E. We introduce an inner product (·, ·) defined by

(53) (f, g) =

+∞∫

−∞
(G(dt)f(t), g(t))E

2The method of rigged Hilbert spaces for solving inverse problems in the theory of characteristic
operator-valued functions was introduced in [23] and was developed further in [2].
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for all f, g ∈ C00(E, (−∞, +∞)). In order to construct a Hilbert space, we identify with
zero all functions f(t) such that (f, f) = 0. Then we make the completion and obtain the
new Hilbert space L2

G(E). Let us note that the set C00(E, (−∞,+∞)) is dense in L2
G(E).

Moreover, if f(t) is continuous and

(54)
∫ +∞

−∞
(G(dt)f(t), f(t))E < ∞,

then f(t) belongs to L2
G(E).

Let D0 be the set of the continuous vector-valued (with values in E) functions f(t) such
that in addition to (54), we have

(55)
∫ +∞

−∞
t2(G(dt)f(t), f(t))E < ∞.

Since C00 ⊂ D0, it follows that D0 is dense in L2
G(E). We introduce an operator Â on D0

in the following way:

(56) Âf(t) = tf(t).

Below we denote again by Â the closure of the Hermitian operator Â (56). It is easy to
see that this operator is Hermitian. Now Â is a self-adjoint operator in L2

G(E) (see [9]).
Let H̃+ = D(Â) and define the inner product

(57) (f, g)H̃+
= (f, g) + (Âf, Âg)

for all f, g ∈ H̃+. It is clear that H̃+ is a Hilbert space with norm ‖ · ‖H̃+
generated by the

inner product (57). We equip the space L2
G(E) with spaces H̃+ and H̃−:

(58) H̃+ ⊂ L2
G(E) ⊂ H̃−.

Let us denote by R̃ the corresponding Riesz-Berezanskii operator, R̃ ∈ [H̃−, H̃+].
Consider the following subspaces of the space E:

(59)
E∞ = {e ∈ E :

∫ +∞

−∞
d(G(t)e, e)E < ∞}

F∞ = E⊥
∞.

If e ∈ E∞, then (54) implies that the function e(t) = e is an element of the space L2
G(E).

On the other hand, if e ∈ E and e /∈ E∞ then e(t) does not belong to L2
G(E). It can be
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shown that any function e(t) = e ∈ E can be identified with an element of H̃−. Indeed,
since for all e ∈ E

(60)
∫ +∞

−∞

d(G(t)e, e)E

1 + t2
< ∞,

the function

(61) ẽ(t) =
e√

1 + t2

belongs to the space L2
G(E). Letting f(t) ∈ D0, we have

(62)
∫ +∞

−∞
(1 + t2)(G(dt)f(t), f(t))E < ∞.

Therefore, the function f̃(t) =
√

1 + t2f(t) belongs to the space L2
G(E) and hence

(f̃(t), ẽ(t)) =
∫ +∞

−∞
(G(dt)f̃(t), ẽ(t))E .

Furthermore,

(63)

|(f̃(t), ẽ(t))| ≤ ‖f̃(t)‖ · ‖ẽ(t)‖

=

√∫ +∞

−∞
(1 + t2)(G(dt)f(t), f(t))E ·

√∫ +∞

−∞

d(G(t)ẽ(t), ẽ(t))
1 + t2

e

= ‖f‖H̃+
· ‖e‖E .

Also, ∫ +∞

−∞
(G(dt)f(t), e(t))E =

∫ +∞

−∞

(√
1 + t2G(dt)f(t),

e√
1 + t2

)

E

=
∫ +∞

−∞
(G(dt)f̃(t), ẽ(t))E

= (f̃(t), ẽ(t)).

Therefore,

(64) e(f) =
∫ +∞

−∞
(G(dt)f(t), e(t))E

is a continuous linear functional over H̃+, for f ∈ D0. Since D0 is dense in H̃+, e(t) = e

belongs to H̃−.
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We calculate the Riesz-Berezanskii mapping on the vectors e(t) = e, e ∈ E. By the
definition of R̃, for all f ∈ H̃+ we have (f, e) = (f, R̃e)H̃+

. Hence, for all f ∈ D0 (see also
[2])

(f, e) =
∫ +∞

−∞
(G(dt)f(t), e(t))E =

∫ +∞

−∞
(1 + t2)

(
G(dt)f(t),

e(t)
1 + t2

)

E

=
(

f,
e(t)

1 + t2

)

H̃+

= (f, R̃e)H̃+
.

Thus

(65) R̃e =
e(t)

1 + t2
, e ∈ E.

Let us note some properties of the operator Â. It is easy to see that for all g ∈ H̃+, we
have that ‖Âg‖ ≤ ‖g‖H̃+

. Taking this into account we obtain

(66) ‖Âf‖H̃− = sup
g∈H̃+

|(Âf, g)|
‖g‖H̃+

= sup
g∈H̃+

|(f, Âg)|
‖g‖H̃+

≤ sup
g∈H̃+

‖f‖ · ‖Âg‖
‖g‖H̃+

≤ ‖f‖.

Hence, the operator Â is (·,−)-continuous. Let Â be the extension of the operator Â to H

with respect to (·,−)-continuity. Now,

(67) (Â− λI)−1g − (Â− µI)−1g = (λ− µ)(Â− λI)−1(Â− µI)−1g

holds for all g ∈ H̃−. Note in particular that

(68) (Â− iI)−1g − (Â + iI)−1g = 2i(Â− iI)−1(Â + iI)−1g

and

(69) ‖(Â− iI)−1g‖2 = ‖(Â + iI)−1g‖2

for all g in H̃−. It follows from (60) that the element

(70) f(t) =
f

t− λ
, f ∈ E

belongs to the space L2
G(E). It is easy to show that, for all e ∈ E,

(71) (Â− λI)−1e =
e

t− λ
, (Imλ 6= 0).
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Step 2. Now let H̃+ be the Hilbert space constructed in Step 1 and let

(72) D(A) = H̃+ ª R̃E,

where by ª we mean orthogonality in H̃+. We define an operator A on D(A) by the
following expression:

(73) A = Â

∣∣∣∣
D(A)

.

Obviously, A is a closed Hermitian operator.
Let us note that if E∞ = 0 then D(A) is dense in L2

G(E). Define H0 = D(A) and let P

be the orthogonal projection of H = L2
G(E) onto H. We shall show that PA and PÂ are

closed operators in H. Let

(74) A1 = Â

∣∣∣∣
D(A1)

, D(A1) = H̃+ ª R̃E∞.

The following obvious inclusions hold: A ⊂ A1 ⊂ Â. It is easy to see that D(A1) =
D(A)⊕ R̃F∞, D(A1) = H0 and A1 is a closed Hermitian operator. Indeed, if we identify
the space E with the space of functions e(t) = e, e ∈ E we would obtain L2

G(E)ªH0 = E∞.
Since ∫ +∞

−∞

d(G(t)e, h)E

1 + t2
= 0

and
R̃ẽ =

ẽ

1 + t2
, ẽ ∈ F∞

for all e ∈ E∞, h ∈ F∞, we find that E∞ is (·)-orthogonal to RF∞ and hence D(A1) = H0.
We denote by A∗1 the adjoint of the operator A1. Now we are going to find the defect

subspaces Ni and N−i of the operator A. Since the subspace E ∈ H̃− is (·)-orthogonal to
D(A), we have that (Â± iI)−1E = N±i. Moreover, by (71) we have

(75) (Â± iI)−1e =
e

t± i
, e ∈ E.

Therefore

(76) N±i =
{

f(t) ∈ L2
G(E), f(t) =

e

t± i
, e ∈ E

}
.

Similarly, the defect subspaces of the operator A1 are

(77) N0
±i =

{
f(t) ∈ L2

G(E), f(t) =
e

t± i
, e ∈ E∞

}
.
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Obviously, N0
λ ⊂ D0 because

+∞∫

−∞

t

|t− λ|2 (G(dt)e, e)E ≤ K(λ)

+∞∫

−∞
(G(dt)e, e)E < ∞, e ∈ E∞.

Taking into account that

(78) D(A∗1) = D(A) u N0
i u N0

−i,

we can conclude that D(A∗1) ⊆ D(Â). At the same time, the inclusion A1 ⊂ Â implies that
D(A∗1) ⊃ D(Â). Combining these two we obtain D(A∗1) = D(Â) and PÂ = A∗1. Since A∗1 is
a closed operator, PÂ is also closed. Consequently, Â is the regular self-adjoint extension
of the operator A which implies A is a regular Hermitian operator.

Since Â is the self-adjoint extension of operator A we find by (10) that

(79) D(Â) = D(A) u (I − U)Ni

for some admissible isometric operator U acting from Ni into N−i. It is easy to check that
U(Â− iI)−1e = (Â + iI)−1e, for all e in E. Consequently, the operator U has the form:

(80) U

(
e

t− i

)
=

e

t + i
, e ∈ E.

Straightforward calculations show that

Â(I − U)
(

e

t− i

)
= t

e

t− i
− t

e

t + i
=

2ite

t2 + 1
.

Let A∗ be the adjoint of the operator A. In the space D(A∗) = H+ we introduce an inner
product

(81) (f, g)+ = (f, g) + (A∗f, A∗g),

and construct the rigged space H+ ⊂ H ⊂ H− with corresponding Riesz-Berezanskii oper-
ator R. Since PÂ is a closed Hermitian operator, H̃+ is a subspace of H+.

By Theorem 2, H+ = D(Â) u (U − I)N̂i, where

N̂i = {fi ∈ Ni, (U − I)fi ∈ H0}.

Taking into account that

(U − I)
(

e

t− i

)
=
−2ie

t2 + 1
, e ∈ E,
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we can conclude that

N̂i =
{

ẽ

t− i
, e ∈ F∞ = E ª E∞

}
.

Therefore,

(82) D(A∗) = D(Â) u
{

tẽ

t2 + 1

}
, e ∈ F∞.

Step 3. In this Step we will construct a special self-adjoint bi-extension whose quasi-
kernel coincides with the operator Â. Then applying (7), we will have

H+ = D(A)⊕N′
i ⊕N′

−i ⊕N,

where N′
±i are semidefect spaces of the operator A, N = RE∞, and

D(A)⊕ E∞ = H = L2
G(E).

We begin by setting

(83) (f, g)1 = (f, g)+ + (P+
Nf, P+

Ng)+, for all f, g ∈ H+.

Here P+
N is an orthoprojection of H+ onto N. Obviously, the norm ‖ · ‖1 is equivalent to

‖ · ‖+. We denote by H+1 the space H+ with the norm ‖ · ‖1, so that H+1 ⊂ H ⊂ H−1 is
the corresponding rigged space with Riesz-Berezanskii operator R1.

By Theorem 1 there exists a (1)-isometric operator V such that

(84) D(Â) = D(A)⊕ (V + I)(N′
i ⊕N),

where D(V ) = N′
i ⊕N, R(V ) = N′

−i ⊕N and (−1) is a regular point for the operator V .
Moreover,

(85)





ϕ = i(I + P+
N′i

)(A∗ + iI)−1fi,

V ϕ = i(I + P+
N′−i

)(A∗ − iI)−1Ufi,

where ϕ ∈ D(V ), fi ∈ Ni.

Here U is the isometric operator described in Step 2. Consequently we obtain

(86)





fi = i
2 (A∗ + iI)(I + P+

N )ϕ,

Ufi = − i
2 (A∗ − iI)(I + P+

N )V ϕ,

where ϕ ∈ D(V ), fi ∈ Ni.
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It follows that

fi − Ufi = ϕ + V ϕ + iA∗P+
N (V − I)ϕ

Â(fi − Ufi) = i(I + U)fi = A∗(ϕ + V ϕ) + iP+
N (I − V )ϕ

fi + Ufi = ϕ− V ϕ− iA∗P+
N (I − V )ϕ

Applying formula (11) we get

H+ = D(Â) u (U + I)Ñi, and Ñi = {fi ∈ Ñi (U − I)fi ∈ H}.

Since fi − Ufi = ϕ + V ϕ + iA∗P+
N (V − I)ϕ, we find that fi − Ufi ∈ H if and only if

P+
N (V + I)ϕ = 0. (This follows from the fact that A∗P+

N (V − I)ϕ ∈ D(A) ⊂ H and
from the formula H = H0 u N (see [4])). Let us note that if P+

N (V + I)ϕ = 0 then
fi + Ufi = ϕ− V ϕ. Thus,

(87) Ñi = {f = (A∗ + iI)(I + P+
N )ϕ, P+

N (V + I)ϕ = 0}.

Let N = KerP+
N (I + V ). Then we have

(88) H+ = D(Â) u (I − V )N.

We denote by P0 the projection operator of H+ onto D(Â) along (I − V )N , P1 = I − P0.
Since D(Â) = H̃+, we have P0 ∈ [H+, H̃+]. We will denote by P ∗0 ∈ [H̃−,H−] the adjoint
operator to P0, i.e. (P0f, g) = (f, P ∗0 g), for all f ∈ H+, g ∈ H−. If f̃i ∈ Ñi, then
f̃i + Uf̃i = (I − V )ϕ, for ϕ ∈ N , and

A∗(I − V )ϕ = iP+
N′i

ϕ + iP+
N′−i

V ϕ + AP+
N (I − V )ϕ = i(V + I)ϕ + A∗P+

N (I − V )ϕ

= i[(I + V )ϕ− iA∗P+
N (I − V )ϕ].

This implies
A∗(I + U)f̃i = i(f̃i − Uf̃i).

Hence

(89) A∗
(

tẽ

t2 + 1

)
= − ẽ

t2 + 1
, ẽ ∈ F∞.

Let Q ∈ [E,E] be the operator in the definition of the class N(R). We introduce a new
operator R0 acting in the following way:

(90) R0f = iQR̃−1A∗P1f, f ∈ H+.
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In order to show that R0 ∈ [H+, E], we consider the following calculation for f ∈ H+:

‖R0f‖E = sup
g∈E

|(R0f, g)E |
‖g‖E

= sup
g∈E

|(QR̃−1A∗P1f, g)E |
‖g‖E

= sup
g∈E

|(R̃−1A∗P1f,Qg)E |
‖g‖E

≤ sup
g∈E

‖R̃−1A∗P1f‖E · ‖Qg‖E

‖g‖E

≤ c‖A∗P1f‖H̃+
≤ b‖A∗P1f‖H+ , b, c - constants.

Here we used that P1f ⊂ D(Â), for all f ∈ H̃+, formulas (65) and (89), and the equivalence
of the norms ‖ · ‖H̃+

and ‖ · ‖+.
For f ∈ H+, we have P1f = (I − V )ϕ, ϕ ∈ N and

A∗P1f = i(V + I)ϕ + iA∗P+
N (V − I)ϕ.

We now have

‖A∗P+
N (V − I)ϕ‖2+ = ‖A∗P+

N (V − I)ϕ‖2 + ‖A∗A∗P+
N (V − I)ϕ‖2

= ‖A∗P+
N (V − I)ϕ‖2 + ‖PP+

N (V − I)ϕ‖2
≤ ‖A∗P+

N (V − I)ϕ‖2 + ‖P+
N (V − I)ϕ‖2

= ‖P+
N (V − I)ϕ‖2+,

and
‖i(V + I)ϕ + iA∗P+

N (V − I)ϕ‖2+ = ‖A∗P+
N (V − I)ϕ‖2+ + ‖ϕ + V ϕ‖2+

≤ ‖P+
N (V − I)ϕ‖2+ + ‖ϕ + V ϕ‖2+

= ‖ϕ− V ϕ‖2+.

This implies that there exists a constant k such that

(91) ‖A∗P1f‖ ≤ ‖P1f‖+ ≤ k‖f‖+, ∀f ∈ H+.

Therefore, for some constant d > 0 we have ‖R0f‖≤d‖f‖+, ∀f ∈ H+. Thus, R0 ∈ [H+, E].
Let R∗0 be the adjoint operator to R0, i.e. R∗0 ∈ [E, H−] and for all f ∈ H+, e ∈ E,

(R0f, e)E = (f, R∗0e). Since R0(D(Â)) = 0, R(R∗0) is (·)-orthogonal to D(Â). Letting
M = N′

−i ⊕N′
i ⊕N, we obtain from (88)

(92) M = (V + I)(N′
i ⊕N) u (I − V )N.

In the space M we define an operator S in the following way

(93)
S(ϕ + V ϕ) =

i

2
(I − V )ϕ, ϕ ∈ N′

i ⊕N,

S(ϕN − V ϕN ) =
[
−R1(R∗0 + P ∗0 )R̃−1A∗ +

i

2
(P+

N′i
− P+

N′−i
)
]

(ϕN − V ϕN ),
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where ϕN ∈ N . In order to show that S is a (1)-self-adjoint operator on M, we first check
that

(94) (S(ϕ + V ϕ), ϕ + V ϕ)1 = (ϕ + V ϕ, S(ϕ + V ϕ))1, ϕ ∈ N′
i ⊕N.

It is easy to see that

(P+
N′i
− P+

N′−i
)(ϕN − V ϕN ) = ϕN + V ϕN , ϕN ∈ N.

This follows from the definition of the space N and the fact that ϕN belongs to N′
i.

Furthermore, since ϕN ∈ N′
i, and V ϕN ∈ N′

−i we have that P+
N′−i

ϕN = ϕN , P+
N′−i

V ϕN =

ϕN , and P+
N′i

V ϕN = P+
N′−i

ϕN = 0. Consequently,

(95)
((ϕN + V ϕN ), ϕN − V ϕN )1 = ‖ϕN‖21 − ‖V ϕN‖21

= ‖P+
N′i

ϕN‖21 − ‖P+
N′−i

V ϕN‖21 = 0.

Since P0(I − V )N = 0, we have

(96) (R1P
∗
0 R̃−1A∗(ϕN−V ϕN ), ϕN−V ϕN ) = (R̃−1A∗(ϕN−V ϕN ), P0(ϕN−V ϕN )) = 0.

This allows us to consider only the R∗0-containing part of (93), i.e.

(S(ϕN − V ϕN ), ϕN − V ϕN )1 = (−R1R
∗
0R̃−1A∗(ϕN − V ϕN ), (ϕN − V ϕN )1

= (R̃−1A∗(ϕN − V ϕN ),−R0(ϕN − V ϕN ))E

= (R̃−1A∗(ϕN − V ϕN ), iQR̃−1A∗P1(ϕN − V ϕN ))E

= (−iQR̃−1A∗(ϕN − V ϕN ), R̃−1A∗(ϕN − V ϕN ))E

= ((ϕN − V ϕN ), R∗0R−1A∗(ϕN − V ϕN ))E

= ((ϕN − V ϕN ),R1R
∗
0R−1A∗(ϕN − V ϕN ))1

= ((ϕN − V ϕN ), S(ϕN − V ϕN ))1.

Now we will show that

(97) (S(ϕ + V ϕ), ϕN − V ϕN )1 = (ϕ + V ϕ, S(ϕ + V ϕ))1, ϕN ∈ N, ϕ ∈ N′
i ⊕N.

Let us note that P+
N (ϕN + V ϕN ) = 0 implies P+

NϕN = −P+
NV ϕN . Also, (ϕ,ϕN )1 =

(V ϕ, V ϕN )1, since V is a (1)-isometric mapping. We will now show that the orthogonality
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relations yield (ϕ, V ϕN )1 = (ϕ,P+
NV ϕN )1 = 0. First we need a calculation

(S(ϕ + V ϕ), ϕN − V ϕN )1 =
i

2
((I − V )ϕ,ϕN − V ϕN )1

= i(ϕ,ϕN )1 − i

2
(ϕ, V ϕN )1 − i

2
(V ϕ, ϕN )1

= i(ϕ,ϕN )1 − i

2
(ϕ, V ϕN )1 − i

2
(ϕ, P+

NV ϕN )1

= i(ϕ,ϕN )1 − i

2
(ϕ, V ϕN )1 +

i

2
(ϕ, P+

NV ϕN )1

= i(ϕ,ϕN )1 +
i

2
(P+

N (I − V )ϕ, ϕN )1.

Also, note that
(

ϕ + V ϕ,
i

2
(P+

N′i
− P+

N′−i
)(ϕN − V ϕN )

)

1

= − i

2
(ϕ + V ϕ, ϕN + V ϕN )1 ,

and

(ϕ + V ϕ, S(ϕN − V ϕN )1 = (ϕ + V ϕ,−R1(R∗0 + P ∗0 )R̃−1A∗(ϕN − V ϕN ))1

− i

2
(ϕ + V ϕ, ϕN + V ϕN )1.

Next, recall that R(R∗0) is (·)-orthogonal to D(Â) and

ϕ + V ϕ ∈ D(Â) = D(A)⊕ (V + I)(N′
i ⊕N).

It follows that

(ϕ + V ϕ,R1R
∗
0R̃−1A∗(ϕN − V ϕN ))1 = (ϕ + V ϕ, R∗0R̃−1A∗(ϕN − V ϕN )) = 0,

(ϕ + V ϕ,−R1P
∗
0 R̃−1A∗(ϕN − V ϕN ))1 = −(ϕ + V ϕ, A∗(ϕN − V ϕN ))H+

= −(ϕ + V ϕ, A∗(ϕN − V ϕN ))

− (Â(ϕ + V ϕ), Ã0A
∗(ϕN − V ϕN )).

Applying Theorem 1 we obtain:

Â(ϕ + V ϕ) = A∗(ϕ + V ϕ) +
i

2
R−1P+

N (I − V )ϕ,

A∗(ϕN − V ϕN ) = i(I + V )ϕN + A∗P+
N (I − V )ϕN ,

ÂA∗(ϕN − V ϕN ) = AA∗P+
N (I − V )ϕN + iA∗(V + I)ϕN − i

2
R−1

1 P+
N (I − V )ϕN

= iA∗(V + I)ϕN − P+
N (I − V )ϕN .
78



Here we used the following relations:

A∗(I − V ) ∈ D(A),

Â(fi − Ufi) = A∗(ϕ + V ϕ) + iP+
N (I − V )ϕ,

fi − Ufi = ϕ + V ϕ + iA∗P+
N (V − I)ϕ,

Â(ϕ + V ϕ) = A∗(ϕ + V ϕ) +
i

2
R−1P+

N (I − V )ϕ,

and
AA∗P+

N (I − V ϕN − 1
2
R−1(I − V )ϕ = −P+

N (I − V )ϕN .

The above identities yield that

(ϕ + V ϕ, A∗(ϕN − V ϕN ))H̃+
= (ϕ + V ϕ, i(ϕN + V ϕN ))1 − i(P+

N (I − V )ϕ,ϕN )1.

Thus,

(ϕ + V ϕ,−R1P
+
0 R̃−1A∗(ϕN − V ϕN ))0 = i(ϕ + V ϕ, ϕN + V ϕN )

+ i(P+
N (I − V )ϕ, ϕN ),

(ϕ + V ϕ,
i

2
(ϕN + V ϕN ))1 = − i

2
(ϕ + V ϕ, ϕN + V ϕN )1,

and

(ϕ + V ϕ, S(ϕN − V ϕN ))1 = i(ϕ + V ϕ, ϕN + V ϕN )

+ i(P+
N (I − V )ϕ,ϕN )1 − i

2
(ϕ + ϕ,ϕN + V ϕN )1

= i(ϕ, ϕN )1 +
i

2
(V ϕ, ϕN )1

+
i

2
(ϕ, V ϕN )1 + i(P+

N (I − V )ϕ, ϕN )1

= i(ϕ, ϕN )1 +
i

2
(P+

N (I − V )ϕ,ϕN )1

= (S(ϕ + V ϕ), ϕN − V ϕN ).

This shows that S is a (1)-self-adjoint operator in M.
By Corollary 2, a self-adjoint bi-extension of the operator A is defined by the formula

(98) B = AP+
D(A) +

[
A∗ +R−1

(
S − i

2
P+

N′i
+

i

2
P+

N′−i

)]
P+

M ,

where S is defined by (97). Obviously, if f = fA + (V + I)ϕ, ϕ ∈ N′
i ⊕N, and fA ∈ D(A)

then Bf = Âf . This means that the quasi-kernel of the operator B coincides with Â.
79



Step 4. In this Step we will construct a (∗)-extension of some operator of the class ΛA.
First, we introduce the bounded linear operator K acting from the space E into the space
H− as follows:

(99) Ke = (P ∗0 + R∗0)PF∞ + ÎPE∞e, e ∈ E,

where PF∞ and PE∞ are orthogonal projections of the space E onto F∞ and E∞ respec-
tively, and Î is an embedding of E∞ in H−.

Let K∗ ∈ [H+, E] be an adjoint of the operator K, i.e.

(Kf, g) = (f, K∗g), f ∈ E, g ∈ H+.

Let

(100) C = K∗JK,

where J ∈ [E,E] satisfies J = J∗ = J−1. Since R(K) is orthogonal to D(A), C(D(A)) = 0.
Moreover, (Cf, g) = (f,Cg) for all f ∈ H+, g ∈ H+.

We define an operator A by

(101) A = B+ iC.

We now show that A is a (∗)-extension of some operator T of the class ΛA.
Let λ be a regular point of the operator Â and let R̂λ = (B− λI)−1. Also, note that

(R̂λf, g) = (f, (Â− λ̄I)−1g), ∀f ∈ H−, g ∈ H.

As it was shown in Step 1 (see (71))

(Â− λI)−1 =
e

t− λ
, ∀e ∈ E,

where E is considered as a subspace of H̃−. Clearly,

(R̂λP ∗0 e, g) = (P ∗0 e, (Â− λ̄I)−1g)

= (e, (Â− λ̄I)−1g) = ((Â− λI)−1e, g), ∀e ∈ E, g ∈ H = L2
G(E).

It follows that

(102) R̂λP ∗0 e =
e

t− λ
, ∀e ∈ E.
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Since R0(D(Â)) = 0, R0(Â− λ̄I)−1g = 0, for all g ∈ H, and we have

(R̂λR∗0e, g) = (R∗0e, (Â− λ̄I)−1g) = (e,R0(Â− λ̄I)−1g) = 0,

R̂λKe1 = R̂λP ∗0 e1 =
e1

t− λ
, e1 ∈ F∞,

R̂λKe2 = R̂λe2
e2

t− λ
∈ H̃+, e2 ∈ E∞,

This implies that the operator K is invertible. Indeed, if Ke = 0, then (P ∗0 +R∗0)e1 = −Îe2

and R̂λKe = 0. Hence, R̂λ(P ∗0 + R∗0)ẽ = −R̂λe2. That is,

e1

t− λ
=

e2

t− λ
, e = ê + e1,

which implies that e = 0.
We should also note that R̂λK ∈ [E, H+], since R̂λ maps R(K) into H+ continuously.
Let us consider now the operator-valued function V defined by

(103) V (λ) = K∗R̂λK, Imλ 6= 0.

Obviously, (V (λ)e, h)E = (R̂λKe, Kh) for e ∈ E, h ∈ E, e = e1 + e2, h = h1 + h2.
Therefore,

(R̂λKe,Kh) = (R̂λ(P ∗0 + R∗0)e1 + R̂λe2, (P ∗0 + R∗0)h1 + Îh2)

= (R̂λP ∗0 e1 + R̂λe2, (P ∗0 + R0)h1 + Îh2)

= (R̂λP ∗0 e1, P
∗
0 h1) + (R̂λP ∗0 e1, R

∗
0h1) + (R̂λP ∗0 e1, h2) + (R̂λe2, P

∗
0 h1)

+ (R̂λe2, R
∗
0h2) + (R̂λe2, h2)

= (P0R̂λP ∗0 e1, h1) + (P0R̂λP ∗0 e1, h2) + (R̂λP ∗0 e1, h2) + (R̂λe2, h2)

+ (R0R̂λe2, h2)E + (R̂λe2, h2).

We also have
R̂λP ∗0 e1 =

e1

t− λ
/∈ H̃−.

Consider an element

e1

t− λ
− te1

t2 + 1
= − λte1

(t− λ)(t2 + 1)
, e1 ∈ F∞.

Clearly
+∞∫

−∞

|λ|2t4
|t− λ|2(t2 + 1)

· d(G(t)e1, e1)E

1 + t2
< ∞,
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and hence
e1

t− λ
− te1

t2 + 1
∈ D(Â).

Moreover,
te1

t2 + 1
∈ (I − V )N, e1 ∈ F∞.

This implies

P0

{
e1

t− λ

}
=

e1

t− λ
− te1

t2 + 1
,

P1

{
e1

t− λ

}
=

te1

t2 + 1
.

Consequently,

(P0R̂λP ∗0 e1, h2) =

+∞∫

−∞

(
1

t− λ
− t

t2 + 1

)
d(G(t)e1, h2)E .

We also have that

(R0R̂λP ∗0 , h1)E = −(QR̃−1A∗P1R̂λP ∗0 e1, h1)E = −(R̃−1A∗P1R̂λP0e1, Qh1)E .

From (65) and (89) we obtain

R̃−1A∗P1R̂λP ∗0 e1 = R̃∗
(

e1

t2 + 1

)
= −e1,

from which it follows that

(R0R̂λP ∗0 , h2)E = (e1, Qh2)E = (Qe1, h2)E .

Furthermore we obtain

(R̂λP ∗0 e1, h2) =

+∞∫

−∞

(
1

t− λ

)
d(G(t)e2, h2)E

=

+∞∫

−∞

(
1

t− λ

)
d(G(t)e2, h2)E − (Qe1, h2)E + (Qe1, h2)E

=

+∞∫

−∞

t

t2 + 1
d(G(t)e1, h2)E + (Qe1, h2)E

=

+∞∫

−∞

(
1

t− λ
− t

t2 + 1

)
d(G(t)e1, h2)E + (Qe1, h2)E .
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Since R0R̂λe2 = 0, we have

(R̂λe2, h1) =

+∞∫

−∞

(
1

t− λ

)
d(G(t)e2, h1)E − (Qe2, h1)E + (Qe2, h1)E

=

+∞∫

−∞

(
1

t− λ
− t

t2 + 1

)
d(G(t)e2, h1)E + (Qe2, h1)E

Thus,

(104) (R̂λe2, h2) =

+∞∫

−∞

(
1

t− λ
− t

t2 + 1

)
d(G(t)e2, h2)E + (Qe2, h2)E

These calculations imply

(R̂λe, h) =

+∞∫

−∞

(
1

t− λ
− t

t2 + 1

)
d(G(t)e, h)E + (Qe, h)E ,

hence,

(105) (V (λ)e, h) =

+∞∫

−∞

(
1

t− λ
− t

t2 + 1

)
d(G(t)e, h)E + (Qe, h)E

Next, we show that (B + iI)R̂±iKe = Ke, for all e ∈ E, where B is the strong self-
adjoint bi-extension defined by (98). By Theorem 7, the equation (B − λI)x = f has a
unique solution x for any

f ∈ R

[
R−1

1

(
S − i

2
P+

N′i
+

i

2
P+

N′−i

)]
+ E∞.

We will now show that in fact

R(K) = R

[
R−1

1

(
S − i

2
P+

N′i
+

i

2
P+

N′−i

)]
+ E∞.

If ϕN ∈ N , then

(
S − i

2
P+

N′i
+

i

2
P+

N′−i

)
(ϕN − V ϕN ) = R1(R∗0 + P ∗) )R̃−1A∗(ϕN − V ϕN ).
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Using (89) we can conclude that R̃−1(I − V )N = F∞, and hence

R

[
R−1

1

(
S − i

2
P+

N′i
+

i

2
P+

N′−i

)]
(I − V )N = (P ∗0 + R∗0)F∞.

Letting P+ = P+
N′i

+ P+
N′−i

, we have

P+

(
S − i

2
P+

N′i
+

i

2
P+

N′−i

)
(I + V )ϕ = 0, ϕ ∈ M.

Therefore,

E∞ + R

[
R̃−1

(
S − i

2
P+

N′i
+

i

2
P+

N′−i

)]
= R(K).

Since R̂λ = (B− λI)−1, the above calculations imply

(106) (B− λI)−1Ke = R̂λKe,

for all e ∈ E. For Imλ 6= 0 we have that R̂λKE = Nλ is the defect space of the operator
A. Therefore (B+ iI)R̂±iKe = Ke and R̂±iKE = N±i.

Taking into account (105) we get

(107)

V (−i) =

+∞∫

−∞

(
1

t + i
− t

t2 + 1

)
dG(t) + Q

= −i

+∞∫

−∞

dG(t)
1 + t2

+ Q

= −iB + Q.

Therefore,

(108) iV (−i)J + I = BJ + iQJ + I.

The operator iV (−i)J + I is invertible and so is the right hand side of (108). Since
I +BJ + iQJ = J(I +JB + iJQ)J , where J is a unitary self-adjoint operator in the space
E, 0 is a regular point for the operator I +BJ + iJQ. At the same time 0 is a regular point
for the operators I +JB− iJQ = (BJ + iQJ + I)∗ and I +BJ − iQJ = (I +JB + iJQ)∗.
Let

(109)
Z = (I + BJ − iQJ)−1, Z ∈ [E, E],

Z∗ = (I + JB + iJQ)−1, Z∗ ∈ [E,E],
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and let Γ = (I + JB + iJQ)−1. Clearly KerΓ = 0. We will show that for any f ∈ E, the
equation

(110) (A+ iI)g = Kf,

has a unique solution g = R̂−iKΓf , where R̂−i = (B+ iI)−1 and A = B+ iC. Moreover,

AR̂−iKΓf = B R̂−iKΓf + iKJK∗R̂−iKΓf, f ∈ E.

As shown above (see also [2])

K∗R̂−iΓf = V (−i)Γf = (Q− iB)Γf,

iKJK∗R̂−iKΓf = K(JB + iJQ)Γf

= K(I + JB + iJQ)(I + JB + iJQ)−1f −KΓf

= Kf −KΓf, f ∈ E.

Also,
(A+ iI)R̂−iKΓf = (B+ iI)R̂−iKΓf + iKJK∗R̂−iKΓf

= Kf, f ∈ E.

If there exists a g ∈ H+ such that Ag = −ig, then g ∈ N−i. Since R(Γ) = E, we find
that R̂−iKΓE = N−i. Therefore g = R̂−iKΓe, e ∈ E, and (A+ iI)R̂−iKΓe = 0, Ke = 0,
e = 0, and g = 0. It follows that the equation (A+ iI)g = Kf has a unique solution given
by g = R̂−iKΓf and (A+ iI)−1KE = N−i.

Similarly, 0 is the regular point for the operator I + JB − iJQ in E. Let

(111) Γ1 = (I + JB − iJQ)−1.

In the same way as above, we can show that the equation (A∗ − iI)gKf , f ∈ E, has a
unique solution of the form g = R̂iKΓ1f and (A∗ − iI)−1KE = Ni.

If fi ∈ Ni, then fi = fA + fM, where fA ∈ D(A), fM ∈ M = N′
i ⊕N′

−i ⊕N. Therefore,

A∗fi = PAfA + A∗fM = iPfi,

A∗fM = iPfi − PAfA,

and
(A+ iI)fi = (A + iI)fA + iPfi − PAfA + ifM

+R−1
1

(
S − i

2
P+

N′i
+

i

2
P+

N′−i

)
fM + iKJK∗fi,

= (I − P )(A + iI)fA + i(P − I)fi ∈ E∞ ⊂ R(K).
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This implies that
(A+ iI)fi − 2ifi = (A+ iI)fi.

That is 2ifi = (A+ iI)(fi − f−i), (f−i ∈ N−i). Hence (A+ iI)H+ ⊂ Ni. Since

(A+ iI)D(A) = (A + iI)D(A),

and (A+iI)D(A)⊕Ni = H, we have (A+iI)H+ ⊂ H. Similarly, (A∗−iI)H+ ⊂ H. Therefore
we can conclude that the operators (A+ iI)−1 and (A∗ − iI)−1 are (−, ·)-continuous (see
[25]). Let

(112)
D(T ) = (A+ iI)−1H,

D(T1) = (A∗ − iI)−1H.

It is easy to see that D(T ) and D(T1) are dense in H and that the operators (A+ iI)−1
∣∣∣
H

and (A∗ − iI)−1
∣∣∣
H

are (·, ·)-continuous.

Let us define

(113)
T = A

∣∣∣
D(T )

,

T1 = A∗
∣∣∣
D(T1)

.

The points (i) and (−i) are regular points for the operators T and T1 respectively. This
implies that T1 = T ∗.

Since T and T ∗ are quasi-kernels of operators A and A∗ respectively, and ReA = B is a
strong self-adjoint bi-extension of the operator A we find that T ∈ ΛA (the fact that PT

and PT ∗ are closed follows from the (+, ·)-continuity of T and T ∗).

Step 5. Let us construct a linear stationary conservative dynamical system θ. Let
K ∈ [E, H−] be the operator defined in the Step 4. It is easy to see that

1
2i

(A− A∗) = KJK∗.

Therefore,

θ =
(

A K J
H+ ⊂ H ⊂ H− E

)

is a l.s.c.d.s. In particular, θ is a scattering system if J = I. Since Vθ(z) is a linear-
fractional transformation of Wθ(z) then Vθ(z) = V (z) whenever z is in some neighborhood
G−i of the point (−i). This completes the proof of the theorem.

Remark. It can be seen that when J = I the invertibility condition for I + iV (λ)J is
satisfied automatically.
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Theorem 10. Let an operator-valued function V (z) belong to the class N(R). Then V (z)
can be realized by the scattering (J = I) system (dissipative operator colligation) θ of the
form (30).

The following theorem deals with the realization of two realizable operator-valued R-
functions differing from each other only by the constant terms in the representation (48).

Theorem 11. Let the operator-valued functions

(114) V1(λ) = Q1 +

+∞∫

−∞

(
1

t− λ
− t

1 + t2

)
dG(t)

and

(115) V2(λ) = Q2 +

+∞∫

−∞

(
1

t− λ
− t

1 + t2

)
dG(t)

belong to the class N(R). Then they can be realized by systems

(116) θ1 =
(

A1 K1 J
H+ ⊂ H ⊂ H− E

)
(A1 ⊃ T1)

and

(117) θ2 =
(

A2 K2 J
H+ ⊂ H ⊂ H− E

)
(A2 ⊃ T2)

respectively, so that the operators T1 and T2 acting on the Hilbert space H are both exten-
sions of the Hermitian operator A defined in this Hilbert space.

Proof. Applying Theorem 9 to the function V1(λ), we obtain a l.s.c.d.s. θ1 of the type
(116). The corresponding Hermitian operator A1 constructed in the Steps 1 and 2 of the
proof of Theorem 9 satisfies the formulas (72) and (73). The construction of A1 doesn’t
involve the operator Q1 from (114). It is easy to see that the corresponding rigged Hilbert
space H

(1)
+ ⊂ H(1) ⊂ H

(1)
− was built without the use of the operator Q1 too.

Similarly, if we apply Theorem 9 to the function V2(λ) we get the corresponding Her-
mitian operator A2 = A1 and the same rigged Hilbert space. This occurs because the
operator-functions V1(λ) and V2(λ) differ from each other only by the constant terms Q1

and Q2. Setting A = A1 = A2, we can conclude that T1 and T2 are both extensions of the
Hermitian operator A.

A closed Hermitian operator A is called a prime operator [25] if there exists no reducing
invariant subspace on which it induces a self-adjoint operator.
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Definition. A l.s.c.d.s. θ of the form (30) is said to be a prime system if its Hermitian
operator A is a prime operator.

Theorem 12. Let the operator-valued function V (z) belong to the class N(R). Then it
can be realized by the prime system θ of the form (30) with a preassigned direction operator
J for which I + iV (−i)J is invertible.

Proof. Theorem 9 provides us with a possibility of realization for a given operator-valued
function V (z) from the class N(R). Let us assume that its Hermitian operator A has a
reducing invariant subspace H1 ⊂ H on which it generates the self-adjoint operator A1.
Then we can write the following (·)-orthogonal decomposition

(118) H = H0 + H1, A = A0 ⊕A1,

where A0 is an operator induced by A on H0.
Now let us consider an operator T ⊃ A as in the definition of the system θ. We have

(119) T = T0 ⊕A1,

where T0 ⊃ A0. Indeed, since A1 is a self-adjoint operator it can not be extended any
further. Clearly, D(A1) = H1. Similarly,

(120) T ∗ = T ∗0 ⊕A1,

where T ∗0 ⊃ A0. Furthermore,

H+ = H0
+ ⊕ H1

+ = D(A∗0)⊕D(A1).

We now show that the same holds in the (+)-orthogonality sense. Indeed, if f0 ∈ H0
+,

f1 ∈ H1
+ = D(A1) then

(f0, f1)+ = (f0, f1) + (A∗f0, A
∗f1)

= (f0, f1) + (A∗0f0, A1f1)

= 0 + 0 = 0.

Consequently, we have

H+ ⊂ H ⊂ H− = H0
+ ⊕ H1

+ ⊂ H0 ⊕ H1 ⊂ H0
− ⊕ H1

−

= H0
+ ⊕D(A1) ⊂ H0 ⊕D(A1) ⊂ H0

− ⊕ H1
−.

Similarly, we obtain A = A0 ⊕A1 and A∗ = A0 ⊕A1. Therefore,

A− A∗
2i

=
(A0 ⊕A1)− (A∗0 ⊕A1)

2i

=
A0 − A∗0

2i
⊕ A1 −A1

2i

=
A0 − A∗0

2i
⊕O,

88



where O is the zero operator. This implies that

KJK∗ = K0JK∗
0 ⊕O.

Let P 0
+ be an orthoprojection operator of H+ onto H0

+ and set K = K0. Now K∗ = K∗
0P 0

+,
since for all f ∈ E, g ∈ H+ we have:

(Kf, g) = (K0f, g) = (K0f, g0 + g1) = (K0f, g0) + (K0f, g1)

= (K0f, g0) = (f, K∗
0g0) = (f,K∗

0P 0
+g).

Next, consider e ∈ E and x = x0 + x1 in H+ such that

(A− λI)P 0
+x = Ke.

Then
(A0 ⊕A1 − λI)P 0

+x = K0e,

A0x
0 − λx0 = K0e,

(A− λI)x0 = K0e,

x0 = (A0 − λI)−1K0e.

On the other hand, x0 = (A− λI)−1Ke. Therefore

(A− λI)−1Ke = (A0 − λI)−1K0e,

and
K∗(A− λI)−1Ke = K∗

0 (A0 − λI)−1K0e.

This means that the transfer operator-functions of our system θ and of the system

θ0 =
(

A0 K0 J
H+ ⊂ H ⊂ H− E

)

coincide. This proves the statement of the theorem.

4. Example

Let
Tx =

1
i

dx

dt
,

with
D(T ) =

{
x(t) : x′(t) ∈ L2

[0,l], x(0) = 0
}

,
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be a differential operator in H = L2
[0,l] (l > 0). Obviously,

T ∗x =
1
i

dx

dt
,

with
D(T ∗) =

{
x(t) : x′(t) ∈ L2

[0,l], x(l) = 0
}

,

is the adjoint operator of T . Consider the Hermitian operator A (see also [1]) defined by

Ax =
1
i

dx

dt
,

D(A) =
{

x(t) : x′(t) ∈ L2
[0,l], x(0) = x(l) = 0

}
,

where its adjoint A∗ is given by

A∗x =
1
i

dx

dt
,

D(A∗) =
{

x(t) : x′(t) ∈ L2
[0,l]

}
.

Then H+ = D(A∗) = W 1
2 is a Sobolev space with scalar product

(x, y)+ =
∫ l

0

x(t)y(t) dt +
∫ l

0

x′(t)y′(t) dt.

We construct the rigged Hilbert space [9]

W 1
2 ⊂ L2

[0,l] ⊂ (W 1
2 )−,

and consider the operators

Ax =
1
i

dx

dt
+ ix(0) [δ(x− l)− δ(x)] ,

A∗x =
1
i

dx

dt
+ ix(l) [δ(x− l)− δ(x)] ,

where x(t) ∈ W 1
2 , δ(x), δ(x− l) are delta-functions in (W 1

2 )−. It is easy to see that

A ⊃ T ⊃ A, A∗ ⊃ T ∗ ⊃ A,

and

θ =




1
i

dx
dt + ix(0)[δ(x− l)− δ(x)] K −1

W 2
1 ⊂ L2

[0,l] ⊂ (W 1
2 )− C1


 (J = −1)
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is a Brodskĭi-Livs̆ic rigged operator colligation where

Kc = c · 1√
2
[δ(x− l)− δ(x)], (c ∈ C1)

K∗x =
(

x,
1√
2
[δ(x− l)− δ(x)]

)
=

1√
2
[x(l)− x(0)],

for x(t) ∈ W 1
2 . Also

A− A∗
2i

= −
(
·, 1√

2
[δ(x− l)− δ(x)]

)
1√
2
[δ(x− l)− δ(x)].

The characteristic function of this colligation is

Wθ(λ) = I − 2iK∗(A− λI)−1KJ = eiλl.

Consider the following R-function (hyperbolic tangent)

V (λ) = −i tanh
(

i

2
λl

)
.

Obviously this fucntion can be realized as follows

V (λ) = −i tanh
(

i

2
λl

)
= −i

e
i
2 λl − e−

i
2 λl

e
i
2 λl + e−

i
2 λl

= −i
eiλl − 1
eiλl + 1

= i [Wθ(λ) + I]−1 [Wθ(λ)− I] J. (J = −1)
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