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a special semi-boundedness property. We derive formulas that restore the
system uniquely and allow to find the exact value of a non-real boundary
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1. Introduction

The role of realizations of different classes of holomorphic operator-valued func-
tions is universally recognized in the spectral analysis of non-self-adjoint operators,
interpolation problems, and system theory, with the attention to them growing over
the years. The literature on realization theory is too extensive to be discussed thor-
oughly in this paper. We refer a reader, however, to [2], [3], [7], [8], [9], [10], [11],
[12], [20], [27], [26], and the literature therein. This paper is the second in a series
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where we study realizations of a subclass of Herglotz-Nevanlinna functions with
the systems based upon a Schrödinger operator. In [14] we have considered a class
of scalar Stieltjes-like functions. Here we focus our attention on another impor-
tant subclass of Herglotz-Nevanlinna functions, the so-called inverse Stieltjes-like
functions.

We recall that an operator-valued function V (z) acting on a finite-dimensional
Hilbert space E belongs to the class of operator-valued Herglotz-Nevanlinna func-
tions if it is holomorphic on C \ R, if it is symmetric with respect to the real axis,
i.e., V (z)∗ = V (z̄), z ∈ C \ R, and if it satisfies the positivity condition

Im V (z) ≥ 0, z ∈ C+.

It is well known (see, e.g., [18], [19]) that operator-valued Herglotz-Nevanlinna
functions admit the following integral representation:

V (z) = Q + Lz +
∫

R

(
1

t − z
− t

1 + t2

)
dG(t), z ∈ C \ R, (1.1)

where Q = Q∗, L ≥ 0, and G(t) is a nondecreasing operator-valued function on R

with values in the class of nonnegative operators in E such that∫
R

(dG(t)x, x)E

1 + t2
< ∞, x ∈ E. (1.2)

The realization of a selected class of Herglotz-Nevanlinna functions is provided by
a linear conservative system Θ of the form{

(A − zI)x = KJϕ−
ϕ+ = ϕ− − 2iK∗x (1.3)

or

Θ =
(

A K J
H+ ⊂ H ⊂ H− E

)
. (1.4)

In this system A, the main operator of the system, is a so-called (∗)-extension,
which is a bounded linear operator from H+ into H− extending a symmetric
operator A in H, where H+ ⊂ H ⊂ H− is a rigged Hilbert space. Moreover, K is
a bounded linear operator from the finite-dimensional Hilbert space E into H−,
while J = J∗ = J−1 is acting on E, are such that Im A = KJK∗. Also, ϕ− ∈ E
is an input vector, ϕ+ ∈ E is an output vector, and x ∈ H+ is a vector of the
state space of the system Θ. The system described by (1.3)–(1.4) is called a rigged
canonical system of the Livšic type [24] or (in operator theory) the Brodskĭı-Livšic
rigged operator colligation, cf., e.g., [11], [12], [15]. The operator-valued function

WΘ(z) = I − 2iK∗(A − zI)−1KJ (1.5)

is a transfer function (or characteristic function) of the system Θ. It was shown
in [11] that an operator-valued function V (z) acting on a Hilbert space E of the
form (1.1) can be represented and realized in the form

V (z) = i[WΘ(z) + I]−1[WΘ(z) − I] = K∗(AR − zI)−1K, (1.6)
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where WΘ(z) is a transfer function of some canonical scattering (J = I) system
Θ, and where the “real part” AR = 1

2 (A + A∗) of A satisfies AR ⊃ Â = Â∗ ⊃ A if
and only if the function V (z) in (1.1) satisfies the following two conditions:{

L = 0,
Qx =

∫
R

t
1+t2 dG(t)x when

∫
R

(dG(t)x, x)E < ∞.
(1.7)

In the current paper we specialize in an important subclass of Herglotz-
Nevanlinna functions, the class of inverse Stieltjes-like functions that also includes
inverse Stieltjes functions (see [13]). In Section 4 we specify a subclass of realizable
inverse Stieltjes operator-functions and show that any member of this subclass can
be realized by a system of the form (1.4) whose main operator A satisfies inequality

(ARf, f) ≤ (A∗f, f) + (f, A∗f), f ∈ H+.

In Section 5 we introduce a class of scalar inverse Stieltjes-like functions.
Then we rely on the general realization results developed in Section 4 (see also
[13] and [14]) to restore a system Θ of the form (1.4) containing the Schrödinger
operator in L2[a, +∞) with non-self-adjoint boundary conditions{

Thy = −y′′ + q(x)y
y′(a) = hy(a) ,

(
q(x) = q(x), Im h �= 0

)
.

We show that if a non-decreasing function σ(t) is the spectral distribution function
of a positive self-adjoint boundary value problem{

Aθy = −y′′ + q(x)y
y′(a) = θy(a)

and satisfies conditions
∞∫

0

dσ(t) = ∞,

∞∫

0

dσ(t)
t + t2

< ∞,

then for every real α an inverse Stieltjes-like function

V (z) = α +

∞∫

0

(
1

t − z
− 1

t

)
dσ(t)

can be realized in the unique way as V (z) = VΘ(z) = i[WΘ(z) + I]−1[WΘ(z)− I],
where WΘ(z) is the transfer function of a rigged canonical system Θ containing
some Schrödinger operator Th. In particular, it is shown that for every α ≤ 0 an
inverse Stieltjes function V (z) with integral representation above can be realized
by a system Θ whose main operator A is a (∗)-extension of a Schrödinger operator
Th and satisfies (2.7).

In addition to the general realization results, Section 5 provides the reader
with formulas that allow to find the exact value of a non-real parameter h in the
definition of Th of the realizing system Θ. A somewhat similar study is presented
in Section 6 to describe the real parameter µ that appears in the construction of
the elements of the realizing system. An elaborate investigation of these formulas
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shows the dynamics of the restored parameters h and µ in terms of a changing
free term α in the integral representation of V (z) above. It will be shown and
graphically presented that the parametric equations for the restored parameter h
represent different circles whose centers and radii are completely determined by the
function V (z). Similarly, the behavior of the restored parameter µ are described
by straight lines.

2. Some preliminaries

For a pair of Hilbert spaces H1, H2 we denote by [H1,H2] the set of all bounded
linear operators from H1 to H2. Let A be a closed, densely defined, symmetric
operator in a Hilbert space H with inner product (f, g), f, g ∈ H. Consider the
rigged Hilbert space

H+ ⊂ H ⊂ H−,

where H+ = D(A∗) and

(f, g)+ = (f, g) + (A∗f, A∗g), f, g ∈ D(A∗).

Note that identifying the space conjugate to H± with H∓, we get that if A ∈
[H+,H−] then A∗ ∈ [H+,H−].

Definition 2.1. An operator A ∈ [H+,H−] is called a self-adjoint bi-extension of a
symmetric operator A if A = A∗, A ⊃ A, and the operator

Âf = Af, f ∈ D(Â) = {f ∈ H+ : Af ∈ H}
is self-adjoint in H.

The operator Â in the above definition is called a quasi-kernel of a self-adjoint
bi-extension A (see [30]) .

Definition 2.2. An operator A ∈ [H+,H−] is called a (∗)-extension (or correct
bi-extension) of an operator T (with non-empty set ρ(T ) of regular points) if

A ⊃ T ⊃ A, A∗ ⊃ T ∗ ⊃ A

and the operator AR = 1
2 (A + A∗) is a self-adjoint bi-extension of an operator A.

The existence, description, and analog of von Neumann’s formulas for self-
adjoint bi-extensions and (∗)-extensions were discussed in [30] (see also [4], [5],
[11]). For instance, if Φ is an isometric operator from the defect subspace Ni of
the symmetric operator A onto the defect subspace N−i, then the formulas below
establish a one-to one correspondence between (∗)-extensions of an operator T
and Φ

Af = A∗f + iR(Φ − I)x, A
∗f = A∗f + iR(Φ− I)y, (2.1)

where x, y ∈ Ni are uniquely determined from the conditions

f − (Φ + I)x ∈ D(T ), f − (Φ + I)y ∈ D(T ∗)
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and R is the Riesz-Berezanskii operator of the triplet H+ ⊂ H ⊂ H− that maps
H+ isometrically onto H− (see [30]). If the symmetric operator A has deficiency
indices (n, n), then formulas (2.1) can be rewritten in the following form

Af = A∗f +
n∑

k=1

∆k(f)Vk, A
∗f = A∗f +

n∑
k=1

δk(f)Vk, (2.2)

where {Vj}n
1 ∈ H− is a basis in the subspace R(Φ − I)Ni, and {∆k}n

1 , {δk}n
1 , are

bounded linear functionals on H+ with the properties

∆k(f) = 0, ∀f ∈ D(T ), δk(f) = 0, ∀f ∈ D(T ∗). (2.3)

Let H = L2[a, +∞) and l(y) = −y′′+q(x)y where q is a real locally summable
function. Suppose that the symmetric operator{

Ay = −y′′ + q(x)y
y(a) = y′(a) = 0 (2.4)

has deficiency indices (1,1). Let D∗ be the set of functions locally absolutely con-
tinuous together with their first derivatives such that l(y) ∈ L2[a, +∞). Consider
H+ = D(A∗) = D∗ with the scalar product

(y, z)+ =
∫ ∞

a

(
y(x)z(x) + l(y)l(z)

)
dx, y, z ∈ D∗.

Let
H+ ⊂ L2[a, +∞) ⊂ H−

be the corresponding triplet of Hilbert spaces. Consider operators{
Thy = l(y) = −y′′ + q(x)y
hy(a) − y′(a) = 0 ,

{
T ∗

hy = l(y) = −y′′ + q(x)y
hy(a) − y′(a) = 0

, (2.5)

{
Ây = l(y) = −y′′ + q(x)y
µy(a) − y′(a) = 0

, Im µ = 0.

It is well known [1] that Â = Â∗. The following theorem was proved in [6].

Theorem 2.3. The set of all (∗)-extensions of a non-self-adjoint Schrödinger op-
erator Th of the form (2.5) in L2[a, +∞) can be represented in the form

Ay = −y′′ + q(x)y − 1
µ − h

[y′(a) − hy(a)] [µδ(x − a) + δ′(x − a)],

A
∗y = −y′′ + q(x)y − 1

µ − h
[y′(a) − hy(a)] [µδ(x − a) + δ′(x − a)].

(2.6)

In addition, the formulas (2.6) establish a one-to-one correspondence between the
set of all (∗)-extensions of a Schrödinger operator Th of the form (2.5) and all real
numbers µ ∈ [−∞, +∞].

Definition 2.4. An operator T with the domain D(T ) and ρ(T ) �= ∅ acting on a
Hilbert space H is called accretive if

Re (Tf, f) ≥ 0, ∀f ∈ D(T ).
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Definition 2.5. An accretive operator T is called [22] α-sectorial if there exists a
value of α ∈ (0, π/2) such that

cotα |Im (Tf, f)| ≤ Re (Tf, f), f ∈ D(T ).

An accretive operator is called extremal accretive if it is not α-sectorial for
any α ∈ (0, π/2).

Definition 2.6. A (∗)-extensions A in Definition 2.2 is called accumulative if

(ARf, f) ≤ (A∗f, f) + (f, A∗f), f ∈ H+. (2.7)

Consider the symmetric operator A of the form (2.4) with defect indices (1,1),
generated by the differential operation l(y) = −y′′ + q(x)y. Let ϕk(x, λ) (k = 1, 2)
be the solutions of the following Cauchy problems:


l(ϕ1) = λϕ1

ϕ1(a, λ) = 0
ϕ′

1(a, λ) = 1
,




l(ϕ2) = λϕ2

ϕ2(a, λ) = −1
ϕ′

2(a, λ) = 0
.

It is well known [1] that there exists a function m∞(λ) (called the Weyl-
Titchmarsh function) for which

ϕ(x, λ) = ϕ2(x, λ) + m∞(λ)ϕ1(x, λ)

belongs to L2[a, +∞).
Suppose that the symmetric operator A of the form (2.4) with deficiency

indices (1,1) is nonnegative, i.e., (Af, f) ≥ 0 for all f ∈ D(A)). It was shown in
[28] that the Schrödinger operator Th of the form (2.5) is accretive if and only if

Re h ≥ −m∞(−0). (2.8)

For real h such that h ≥ −m∞(−0) we get a description of all nonnegative self-
adjoint extensions of an operator A. For h = −m∞(−0) the corresponding operator{

AK y = −y′′ + q(x)y
y′(a) + m∞(−0)y(a) = 0 (2.9)

is the Krĕın-von Neumann extension of A and for h = +∞ the corresponding
operator {

AF y = −y′′ + q(x)y
y(a) = 0 (2.10)

is the Friedrichs extension of A (see [28], [6]).

3. Rigged canonical systems with Schrödinger operator

Let A be (∗)-extension of an operator T , i.e.,

A ⊃ T ⊃ A, A
∗ ⊃ T ∗ ⊃ A

where A is a symmetric operator with deficiency indices (n, n) and D(A) = D(T )∩
D(T ∗). In what follows we will only consider the case when the symmetric operator
A has dense domain, i.e., D(A) = H.
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Definition 3.1. A system of equations{
(A − zI)x = KJϕ−
ϕ+ = ϕ− − 2iK∗x ,

or an array

Θ =
(

A K J
H+ ⊂ H ⊂ H− E

)
(3.1)

is called a rigged canonical system of the Livsic type if:
1) E is a finite-dimensional Hilbert space with scalar product (·, ·)E and the

operator J in this space satisfies the conditions J = J∗ = J−1,
2) K ∈ [E,H−], kerK = {0},
3) Im A = KJK∗, where K∗ ∈ [H+, E] is the adjoint of K.

In the definition above ϕ− ∈ E stands for an input vector, ϕ+ ∈ E is an
output vector, and x is a state space vector in H. An operator A is called a
main operator of the system Θ, J is a direction operator, and K is a channel
operator. A system Θ of the form (3.1) is called an accretive system [14] if its main
operator A is accretive and accumulative if its main operator A is accumulative,
i.e., satisfies (2.7).

An operator-valued function

WΘ(λ) = I − 2iK∗(A − λI)−1KJ (3.2)

defined on the set ρ(T ) of regular points of an operator T is called the transfer
function (characteristic function) of the system Θ, i.e., ϕ+ = WΘ(λ)ϕ−. It is
known [28], [30] that any (∗)-extension A of an operator T (A∗ ⊃ T ⊃ A), where
A is a symmetric operator with deficiency indices (n, n) (n < ∞), D(A) = D(T )∩
D(T ∗), can be included as a main operator of some rigged canonical system with
dim E < ∞ and invertible channel operator K.

It was also established [28], [30] that

VΘ(λ) = K∗(Re A − λI)−1K (3.3)

is a Herglotz-Nevanlinna operator-valued function acting on a Hilbert space E,
satisfying the following relation for λ ∈ ρ(T ), Im λ �= 0

VΘ(λ) = i[WΘ(λ) − I][WΘ(λ) + I]−1J. (3.4)

Alternatively,
WΘ(λ) = (I + iVΘ(λ)J)−1(I − iVΘ(λ)J)

= (I − iVΘ(λ)J)(I + iVΘ(λ)J)−1.
(3.5)

Let us recall (see [30], [6]) that a symmetric operator with dense domain D(A)
is called prime if there is no reducing, nontrivial invariant subspace on which A
induces a self-adjoint operator. It was established in [29] that a symmetric operator
A is prime if and only if

c.l.s.
λ�=λ

Nλ = H. (3.6)
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We call a rigged canonical system of the form (3.1) prime if

c.l.s.
λ�=λ̄, λ∈ρ(T )

Nλ = H.

One easily verifies that if system Θ is prime, then a symmetric operator A of the
system is prime as well.

The following theorem [6], [14] and corollary [14] establish the connection
between two rigged canonical systems with equal transfer functions.

Theorem 3.2. Let Θ1 =
(

A1 K1 J
H+1 ⊂ H1 ⊂ H−1 E

)
and

Θ2 =
(

A2 K2 J
H+2 ⊂ H2 ⊂ H−2 E

)
be two prime rigged canonical systems of the

Livsic type with

A1 ⊃ T1 ⊃ A1, A
∗
1 ⊃ T ∗

1 ⊃ A1,

A2 ⊃ T2 ⊃ A2, A
∗
2 ⊃ T ∗

2 ⊃ A2,
(3.7)

and such that A1 and A2 have finite and equal defect indices.
If

WΘ1(λ) = WΘ2(λ), (3.8)

then there exists an isometric operator U from H1 onto H2 such that U+ = U |H+1

is an isometry1 from H+1 onto H+2, U∗
− = U∗

+ is an isometry from H−1 onto
H−2, and

UT1 = T2U, A2 = U−A1U
−1
+ , U−K1 = K2. (3.9)

Corollary 3.3. Let Θ1 and Θ2 be the two prime systems from the statement of
Theorem 3.2. Then the mapping U described in the conclusion of the theorem is
unique.

Now we shall construct a rigged canonical system based on a non-self-adjoint
Schrödinger operator. One can easily check that the (∗)-extension

Ay = −y′′ + q(x)y − 1
µ − h

[y′(a) − hy(a)] [µδ(x − a) + δ′(x − a)], Im h > 0

of the non-self-adjoint Schrödinger operator Th of the form (2.5) satisfies the con-
dition

Im A =
A − A

∗

2i
= (., g)g, (3.10)

where

g =
(Im h)

1
2

|µ − h| [µδ(x − a) + δ′(x − a)] (3.11)

1It was shown in [6] that the operator U+ defined this way is an isometry from H+1 onto H+2.

It is also shown there that the isometric operator U∗ : H+2 → H+1 uniquely defines operator
U− = (U∗)∗ : H−1 → H−2.
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and δ(x − a), δ′(x − a) are the delta-function and its derivative at the point a.
Moreover,

(y, g) =
(Im h)

1
2

|µ − h| [µy(a) − y′(a)], (3.12)

where
y ∈ H+, g ∈ H−,H+ ⊂ L2(a, +∞) ⊂ H−

and the triplet of Hilbert spaces is as discussed in Theorem 2.3. Let E = C,
Kc = cg (c ∈ C). It is clear that

K∗y = (y, g), y ∈ H+ (3.13)

and Im A = KK∗. Therefore, the array

Θ =
(

A K 1
H+ ⊂ L2[a, +∞) ⊂ H− C

)
(3.14)

is a rigged canonical system with the main operator A of the form (2.6), the
direction operator J = 1 and the channel operator K of the form (3.13). Our next
logical step is finding the transfer function of (3.14). It was shown in [6] that

WΘ(λ) =
µ − h

µ − h

m∞(λ) + h

m∞(λ) + h
, (3.15)

and

VΘ(λ) =
(m∞(λ) + µ) Im h

(µ − Re h)m∞(λ) + µRe h − |h|2 . (3.16)

4. Realization of inverse Stieltjes functions

Let E be a finite-dimensional Hilbert space. The scalar versions of the definitions
below can be found in [21]. We recall (see [14], [21]) that an operator-valued
Herglotz-Nevanlinna function V (z) is Stieltjes if it is holomorphic in Ext[0, +∞)
and

Im [zV (z)]
Im z

≥ 0.

Definition 4.1. We will call an operator-valued Herglotz-Nevanlinna function
V (z) ∈ [E, E] by an inverse Stieltjes if V (z) admits the following integral rep-
resentation

V (z) = α + β · z +
∫ ∞

0

(
1

t − z
− 1

t

)
dG(t), (4.1)

where α ≤ 0, β ≥ 0, and G(t) is a non-decreasing on [0, +∞) operator-valued
function such that ∫ ∞

0

(dG(t)e, e)
t + t2

< ∞, ∀e ∈ E.
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Alternatively (see [21]) an operator-valued function V (z) is inverse Stieltjes
if it is holomorphic in Ext[0, +∞) and V (z) ≤ 0 in (−∞, 0). It is known [21] that
a function V (z) �= 0 is an inverse Stieltjes function iff the function −(V (z))−1 is
Stieltjes.

The following definition was given in [13] and provides the description of all
realizable inverse Stieltjes operator-valued functions.

Definition 4.2. An operator-valued inverse Stieltjes function V (z) ∈ [E, E] is said
to be a member of the class S−1(R) if in the representation (4.1) we have

i) β = 0,

ii) αe =
∫ ∞

0

1
t
dG(t)e = 0,

for all e ∈ E with ∫ ∞

0

(dG(t)e, e)E < ∞. (4.2)

In what follows we will, however, be mostly interested in the following sub-
class of S−1(R) that was also introduced in [13].

Definition 4.3. An operator-valued inverse Stieltjes function V (z) ∈ S−1(R) is a
member of the class S−1

0 (R) if∫ ∞

0

(dG(t)e, e)E = ∞, (4.3)

for all e ∈ E, e �= 0.

It is not hard to see that S−1
0 (R) is the analogue of the class N0(R) introduced

in [12] and of the class S0(R) discussed in [14].
The following statement [13] is the direct realization theorem for the functions

of the class S−1
0 (R).

Theorem 4.4. Let Θ be an accumulative system of the form (3.1). Then the opera-
tor-function VΘ(z) of the form (3.3), (3.4) belongs to the class S−1

0 (R).

The inverse realization theorem can be stated and proved (see [13]) for the
class S−1

0 (R) as follows.

Theorem 4.5. Let a operator-valued function V (z) belong to the class S−1
0 (R).

Then V (z) admits a realization by an accumulative prime system Θ of the form
(3.1) with J = I.

Proof. It was shown in [13] that any member of the class S−1
0 (R) is realizable by

an accumulative system Θ of the form (3.1) with J = I. Thus all we actually have
to show is that the model system Θ that was constructed in [13] is prime.

As it was also shown in [11], [12], and [13], the symmetric operator A of the
model system Θ is prime and positive, and hence (3.6) takes place. We are going
to show that in this case the system Θ is also prime, i.e.,

c.l.s.
λ�=λ̄, λ∈ρ(T )

Nλ = H. (4.4)
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Consider the operator Uλ0λ = (Ã − λ0I)(Ã − λI)−1, where Ã is an arbitrary self-
adjoint extension of A. By a simple check one confirms that Uλ0λNλ0 = Nλ. To
prove (4.4) we assume that there is a function f ∈ H such that

f ⊥ c.l.s.
λ�=λ̄, λ∈ρ(T )

Nλ.

Then (f, Uλ0λg) = 0 for all g ∈ Nλ0 and all λ ∈ ρ(T ). But since the system Θ is
accumulative, it follows that there are regular points of T in the upper and lower
half-planes. This leads to a conclusion that the function φ(λ) = (f, Uλ0λg) ≡ 0
for all λ �= λ̄. Combining this with (3.6) we conclude that f = 0 and thus (4.4)
holds. �

5. Restoring a non-self-adjoint Schrödinger operator Th

In this section we are going to use the realization technique and results developed
for inverse Stieltjes functions in section 4 to obtain the solution of inverse spectral
problem for Schrödinger operator of the form (2.5) in L2[a, +∞) with non-self-
adjoint boundary conditions{

Thy = −y′′ + q(x)y
y′(a) = hy(a) ,

(
q(x) = q(x), Im h �= 0

)
. (5.1)

Following the framework of [14] we let H = L2[a, +∞) and l(y) = −y′′+q(x)y
where q is a real locally summable function. We consider a symmetric operator
with defect indices (1, 1) {

B̃y = −y′′ + q(x)y
y′(a) = y(a) = 0

(5.2)

together with its positive self-adjoint extension of the form{
B̃θy = −y′′ + q(x)y
y′(a) = θy(a)

(5.3)

defined in H = L2[a, +∞). A non-decreasing function σ(λ) defined on [0, +∞)
is called the distribution function (see [25]) of an operator pair B̃θ, B̃, where B̃θ

of the form (5.3) is a self-adjoint extension of symmetric operator B̃ of the form
(5.2), and if the formulas

ϕ(λ) = Uf(x),

f(x) = U−1ϕ(λ),
(5.4)

establish one-to-one isometric correspondence U between

Lσ
2 [0,+∞) and L2[a,+∞).

Moreover, this correspondence is such that the operator B̃θ is unitarily equivalent
to the operator

Λσϕ(λ) = λϕ(λ), (ϕ(λ) ∈ Lσ
2 [0, +∞)) (5.5)
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in Lσ
2 [0, +∞) while symmetric operator B̃ in (5.2) is unitarily equivalent to the

symmetric operator

Λ0
σϕ(λ) = λϕ(λ), D(Λ0

σ) =
{

ϕ(λ) ∈ Lσ
2 [0, +∞) :

∫ +∞

0

ϕ(λ)dσ(λ) = 0
}

.

(5.6)

Definition 5.1. A scalar Herglotz-Nevanlinna function V (z) is called an inverse
Stieltjes-like function if it has an integral representation

V (z) = α +
∫ ∞

0

(
1

t − z
− 1

t

)
dτ(t),

∫ ∞

0

dτ(t)
t + t2

< ∞ (5.7)

similar to (4.1) but with an arbitrary (not necessarily non-positive) constant α.

We are going to introduce a new class of realizable scalar inverse Stieltjes-like
functions whose structure is similar to that of S−1

0 (R) of Section 4.

Definition 5.2. An inverse Stieltjes-like function V (z) is said to be a member of
the class SL−1

0 (R) if it admits an integral representation

V (z) = α +
∫ ∞

0

(
1

t − z
− 1

t

)
dτ(t), (5.8)

where non-decreasing function τ(t) satisfies the following conditions∫ ∞

0

dτ(t) = ∞,

∫ ∞

0

dτ(t)
t + t2

< ∞. (5.9)

Consider the following subclasses of SL−1
0 (R).

Definition 5.3. A function V (z) ∈ SL−1
0 (R) belongs to the class SL−1

0 (R, K) if∫ ∞

0

dτ(t)
t

= ∞. (5.10)

Definition 5.4. A function V (z) ∈ SL−1
0 (R) belongs to the class SL−1

01 (R, K) if∫ ∞

0

dτ(t)
t

< ∞. (5.11)

The following theorem describes the realization of the class SL−1
0 (R).

Theorem 5.5. Let V (z) ∈ SL−1
0 (R). Then it can be realized by a prime system Θ

of the form (3.1).

Proof. We start by applying the general realization theorems from [11] and [13] to
a Herglotz-Nevanlinna function V (z) and obtain a rigged canonical system of the
Livsic type

ΘΛ =
(

Λ Kτ 1
Hτ

+ ⊂ Lτ
2 [0, +∞) ⊂ Hτ− C

)
, (5.12)
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such that V (z) = VΘΛ(z). Following the steps for construction of the model system
described in [11] and [13], we note that

Λ = ReΛ + iKτ(Kτ )∗

is a correct (∗)-extension of an operator T τ such that Λ ⊃ T τ ⊃ Λ0
τ where Λ0

τ is
defined in (5.6). The real part ReΛ is a self-adjoint bi-extension of Λ0

τ that has
a quasi-kernel Λτ of the form (5.5). It was also shown in [13] that the operator
Λ possess the accumulative property (2.7). The operator Kτ in the above system
(see [11], [13]) is defined by

Kτc = c · α, (Kτ )∗x = (x, α) c ∈ C, α ∈ Hτ
−, x(t) ∈ Hτ

+.

In addition we can observe that the function η(λ) ≡ 1 belongs to Hτ
−. To confirm

this we need to show that (x, 1) defines a continuous linear functional for every
x ∈ Hτ

+. It was shown in [11], [12] that

Hτ
+ = D(Λ0

τ ) �
{

c1

1 + t2

}
�
{

c2t

1 + t2

}
, c1, c2 ∈ C. (5.13)

Consequently, every vector x ∈ Hτ
+ has three components x = x1 + x2 + x3

according to the decomposition (5.13) above. Obviously, (x1, 1) and (x2, 1) yield
convergent integrals while (x3, 1) boils down to

∫ ∞

0

t

1 + t2
dτ(t).

The convergence of the latter is guaranteed by the definition of inverse Stieltjes-
like function. The state space of the system ΘΛ is Hτ

+ ⊂ Lτ
2 [0, +∞) ⊂ Hτ

−, where
Hτ

+ = D((Λ0
τ )∗
)
.

We can also show that the system ΘΛ is a prime system. In order to do so
we need to show that

c.l.s.
λ�=λ̄, λ∈ρ(T τ )

Nλ = Lτ
2 [0, +∞), (5.14)

where Nλ are defect subspaces of the symmetric operator Λ0
τ . It is known (see [11],

[13]) that Λ0
τ is a non-negative prime operator. Hence we can follow the reasoning

of the proof of theorem 4.5 and only confirm that operator T τ has regular points
in the upper and lower half-planes. To see this we first note that non-negative
operator Λ0

τ has no kernel spectrum [1] on the left real half-axis. Then we apply
Theorem 1 of [1] (see page 149 of vol. 2 of [1]) that gives the complete description
of the spectrum of T τ . This theorem implies that there are regular points of T τ

on the left real half-axis. Since ρ(T τ ) is an open set we confirm the presence of
non-real regular points of T τ in both half-planes. Thus (5.14) holds and ΘΛ is a
prime system.

In order to complete the proof of the theorem we merely set

A = Λ = ReΛ + iKτ (Kτ )∗ and K = Kτ . �
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At this point we are ready to state and prove the main realization result of
this paper.

Theorem 5.6. Let V (z) ∈ SL−1
0 (R) and the function τ(t) be the distribution func-

tion of an operator pair B̃θ of the form (5.2) and B̃ of the form (5.3). Then there
exist unique Schrödinger operator Th (Im h > 0) of the form (5.1), operator A

given by (2.6), operator K as in (3.13), and the rigged canonical system of the
Livsic type

Θ =
(

A K 1
H+ ⊂ L2[a, +∞) ⊂ H− C

)
, (5.15)

of the form (3.14) so that V (z) is realized by Θ, i.e., V (z) = VΘ(z).

Proof. Since τ(t) is the distribution function of the positive self-adjoint operator,
then (see [25]) we can completely restore the operator B̃θ of the form (5.3) as
well as a symmetric operator B̃ of the form (5.2). It follows from the definition of
the distribution function above that there is operator U defined in (5.4) establish-
ing one-to-one isometric correspondence between Lτ

2 [0, +∞) and L2[a, +∞) while
providing for the unitary equivalence between the operator B̃θ and operator of
multiplication by independent variable Λτ of the form (5.5).

Let us consider the system ΘΛ of the form (5.12) constructed in the proof
of Theorem 5.5. Applying Theorem 3.2 on unitary equivalence to the isometry U
defined in (5.4) we obtain a triplet of isometric operators U+, U , and U−, where

U+ = U
∣∣
Hτ

+
, U∗

− = U∗
+.

This triplet of isometric operators will map the rigged Hilbert space of ΘΛ, that
is Hτ

+ ⊂ Lτ
2 [0, +∞) ⊂ Hτ

−, into another rigged Hilbert space H+ ⊂ Lτ
2 [a, +∞) ⊂

H−. Moreover, U+ is an isometry from Hτ
+ = D(Λ0∗

τ ) onto H+ = D(B̃∗), and
U∗− = U∗

+ is an isometry from Hτ
+ onto H−. This is true since the operator U

provides the unitary equivalence between the symmetric operators B̃ and Λ0
τ .

Now we construct a system

Θ =
(

A K 1
H+ ⊂ L2[a, +∞) ⊂ H− C

)

where K = U−Kτ and A = U−ΛU−1
+ is a correct (∗)-extension of operator T =

UT τU−1 such that A ⊃ T ⊃ B̃. The real part ReA contains the quasi-kernel B̃θ.
This construction of A is unique due to the theorem on the uniqueness of a (∗)-
extension for a given quasi-kernel (see [30]). On the other hand, all (∗)-extensions
based on a pair B̃, B̃θ must take form (2.6) for some values of parameters h and µ.
Consequently, our function V (z) is realized by the system Θ of the form (5.15) and

V (z) = VΘΛ(z) = VΘ(z). �

The theorem below gives the criteria for the operator Th of the realizing
system to be accretive.
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Theorem 5.7. Let V (z) ∈ SL−1
0 (R) satisfy the conditions of Theorem 5.5. Then

the operator Th in the conclusion of the Theorem 5.5 is accretive if and only if

α2 − α

∫ ∞

0

dτ(t)
t

+ 1 ≥ 0. (5.16)

The operator Th is φ-sectorial for some φ ∈ (0, π/2) if and only if the inequality
(5.16) is strict. In this case the exact value of angle φ can be calculated by the
formula

tanφ =

∫∞
0

dτ(t)
t

α2 − α
∫∞
0

dτ(t)
t + 1

. (5.17)

Proof. It was shown in [29] that for the system Θ in (5.15) described in the previous
theorem the operator Th is accretive if and only if the function

Vh(z) = −i[W−1
Θ (−1)WΘ(z) + I]−1[W−1

Θ (−1)WΘ(z) − I]

= −i
1 − [(m∞(z) + h̄)/(m∞(z) + h)][(m∞(−1) + h)/(m∞(−1) + h̄)]
1 + [(m∞(z) + h̄)/(m∞(z) + h)][(m∞(−1) + h)/(m∞(−1) + h̄)]

,

(5.18)
is holomorphic in Ext[0, +∞) and satisfies the following inequality

1 + Vh(0)Vh(−∞) ≥ 0. (5.19)

Here WΘ(z) is the transfer function of (5.15). It is also shown in [29] that the
operator Th is α-sectorial for some α ∈ (0, π/2) if and only if the inequality (5.19)
is strict while the exact value of angle α can be calculated by the formula

cotα =
1 + Vh(0)Vh(−∞)
|Vh(−∞) − Vh(0)| . (5.20)

According to Theorem 5.5 and equation (3.5)

WΘ(z) = (I − iV (z)J)(I + iV (z)J)−1.

By direct calculations one obtains

WΘ(−1) =
1 − i

[
α − ∫∞

0
dτ(t)
t+t2

]

1 + i
[
α − ∫∞0 dτ(t)

t+t2

] , W−1
Θ (−1) =

1 + i
[
α − ∫∞

0
dτ(t)
t+t2

]

1 − i
[
α − ∫∞0 dτ(t)

t+t2

] . (5.21)

Using the following notations

c = α −
∫ ∞

0

dτ(t)
t + t2

and d = α −
∫ ∞

0

dτ(t)
t

,

and performing straightforward calculations we obtain

WΘ(−1) =
1 − i c

1 + i c
, WΘ(−∞) =

1 − i d

1 + i d
,

and

Vh(0) =
c − α

1 + c α
and Vh(−∞) =

c − d

1 + c d
. (5.22)
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Substituting (5.22) into (5.20) and performing the necessary steps we get

cotφ =
1 + α d

α − d
=

α2 − α
∫∞
0

dτ(t)
t + 1∫∞

0
dτ(t)

t

. (5.23)

Taking into account that α− d > 0 we combine (5.19), (5.20) with (5.23) and this
completes the proof of the theorem. �

Below we will derive the formulas for calculation of the boundary parameter
h in the restored Schrödinger operator Th of the form (5.1). We consider two major
cases.
Case 1. In the first case we assume that

∫∞
0

dτ(t)
t < ∞. This means that our

function V (z) belongs to the class SL−1
01 (R, K). In what follows we denote

b =
∫ ∞

0

dτ(t)
t

and m = m∞(−0).

Suppose that b ≥ 2. Then the quadratic inequality (5.16) implies that for all α
such that

α ∈
(
−∞,

b −√
b2 − 4
2

]
∪
[

b +
√

b2 − 4
2

, +∞
)

(5.24)

the restored operator Th is accretive. Clearly, this operator is extremal accretive if

α =
b ±√

b2 − 4
2

.

In particular if b = 2 then α = 1 and the function

V (z) = 1 +
∫ ∞

0

(
1

t − z
− 1

t

)
dτ(t)

is realized using an extremal accretive Th.
Now suppose that 0 < b < 2. Then for every α ∈ (−∞, +∞) the restored

operator Th will be accretive and φ-sectorial for some φ ∈ (0, π/2). Consider a
function V (z) defined by (5.8). Conducting realizations of V (z) by operators Th

for different values of α ∈ (−∞, +∞) we notice that the operator Th with the
largest angle of sectoriality occurs when

α =
b

2
, (5.25)

and is found according to the formula

φ = arctan
b

1 − b2/4
. (5.26)

This follows from the formula (5.17), the fact that α2 − α b + 1 > 0 for all α, and
the formula

α2 − α b + 1 =
(

α − b

2

)2

+
(

1 − b2

4

)
.
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Now we will focus on the description of the parameter h in the restored operator
Th. It was shown in [6] that the quasi-kernel Â of the realizing system Θ from
theorem 5.5 takes a form{

Ây = −y′′ + qy
y′(a) = ηy(a)

, η =
µRe h − |h|2

µ − Reh
(5.27)

On the other hand, since σ(t) is also the distribution function of the positive self-
adjoint operator, we can conclude that Â equals to the operator B̃θ of the form
(5.3). This connection allows us to obtain

θ = η =
µRe h − |h|2

µ − Re h
. (5.28)

Assuming that
h = x + iy

we will use (5.28) to derive the formulas for x and y in terms of γ. First, to
eliminate parameter µ, we notice that (3.15) and (3.5) imply

WΘ(λ) =
µ − h

µ − h

m∞(λ) + h

m∞(λ) + h
=

1 − iV (z)
1 + iV (z)

. (5.29)

Passing to the limit in (5.29) when λ → −∞ and taking into account that
V (−∞) = α − b and m∞(−∞) = ∞ (see [14]) we obtain

µ − h

µ − h
=

1 − i(α − b)
1 + i(α − b)

.

Let us denote

a =
1 − i(α − b)
1 + i(α − b)

. (5.30)

Solving (5.30) for µ yields

µ =
h − ah̄

1 − a
.

Substituting this value into (5.28) after simplification produces

x + iy − a(x − iy)x − (x2 + y2)(1 − a)
x + iy − a(x − iy) − x(1 − a)

= θ.

After straightforward calculations targeting to represent numerator and denomi-
nator of the last equation in standard form one obtains the following relation

x − (α − b) y = θ. (5.31)

It was shown in [29] that the φ-sectoriality of the operator Th and (5.20) lead to

tanφ =
Im h

Reh + m∞(−0)
=

y

x + m∞(−0)
. (5.32)

Combining (5.31) and (5.32) one obtains

x − (α − b)(x tan φ + m∞(−0) tan φ) = θ,
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or

x =
θ + (α − b)m∞(−0) tan φ

1 − (α − b) tan φ
.

But tanφ is also determined by (5.17). Direct substitution of

tanφ =
b

1 + α(α − b)

into the above equation yields

x = θ +

[
θ + m∞(−0)

]
b(α − b)

1 + (α − b)2
.

Using the short notation and finalizing calculations we get

h = x + iy, x = θ +
(α − b)[θ + m]b

1 + (α − b)2
, y =

[θ + m]b
1 + (α − b)2

. (5.33)

At this point we can use (5.33) to provide analytical and graphical interpre-
tation of the parameter h in the restored operator Th. Let

c = (θ + m)b.

Again we consider three subcases.
Subcase 1. b > 2 Using basic algebra we transform (5.33) into

(x − θ)2 +
(
y − c

2

)2

=
c2

4
. (5.34)

Since in this case the parameter α belongs to the interval in (5.24), we can see
that h traces the highlighted part of the circle on Figure 1 as α moves from
−∞ towards +∞. We also notice that the removed point (θ, 0) corresponds
to the value of α = ±∞ while the points h1 and h2 correspond to the values
α1 = b−√

b2−4
2 and α2 = b+

√
b2−4
2 , respectively (see Figure 1).

Subcase 2. b < 2 For every α ∈ (−∞, +∞) the restored operator Th will be
accretive and φ-sectorial for some φ ∈ (0, π/2). As we have mentioned above,
the operator Th achieves the largest angle of sectoriality when α = b

2 . In this
particular case (5.33) becomes

h = x + iy, x = θ − 2(θ + m)b2

4 + b2
, y =

4(θ + m)b
4 + b2

. (5.35)

The value of h from (5.35) is marked on Figure 2.
Subcase 3. b = 2 The behavior of parameter h in this case is depicted on Figure 3.

It shows that in this case the function V (z) can be realized using an extremal
accretive Th when α = 1. The value of the parameter h according to (5.33)
then becomes

h = x + iy, x = −m, y = θ + m. (5.36)

Clockwise direction of the circle again corresponds to the change of α from
−∞ to +∞ and the marked value of h occurs when α = 1.



Inverse Stieltjes-like Functions and Schrödinger Systems 39

Figure 1. b > 2

Figure 2. b < 2

Now we consider the second case.
Case 2. Here we assume that

∫∞
0

dτ(t)
t = ∞. This means that our function V (z)

belongs to the class SL−1
0 (R, K) and b = ∞. According to Theorem 5.7 and

formulas (5.16) and (5.17), the restored operator Th is accretive if and only if

α ≤ 0,
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Figure 3. b = 2

and φ-sectorial if and only if α < 0. It directly follows from (5.17) that the exact
value of the angle φ is then found from

tan φ = − 1
α

. (5.37)

The latter implies that the restored operator Th is extremal if α = 0. This means
that a function V (z) ∈ SL−1

0 (R, K) is realized by a system with an extremal
operator Th if and only if

V (z) =
∫ ∞

0

(
1

t − z
− 1

t

)
dτ(t). (5.38)

On the other hand since α ≤ 0 the function V (z) is an inverse Stieltjes function
of the class S−1

0 (R). Applying realization theorems from [13] we conclude that
V (z) admits realization by an accumulative system Θ of the form (3.1) with AR

containing the Friedrichs extension AF as a quasi-kernel. Here AF is defined by
(2.10). This yields

θ =
µx − (x2 + y2)

µ − x
= ∞, (5.39)

and hence µ = x. As in the beginning of the previous case we derive the formulas
for x and y, where h = x + iy. Assuming that α �= 0 and using (5.32) and (5.37)
leads to

x = µ, y = −x + m

α
. (5.40)

To proceed, we first notice that our function V (z) satisfies the conditions of
Theorem 4.9 of [6]. Indeed, the inequality

µ ≥ (Im h)2

m∞(−0) + Re h
+ Reh,
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that is required to apply this theorem, in our case turns into

µ ≥ − 1
α

+ µ,

that is obvious if α < 0. Applying Theorem 4.9 of [6] yields

∞∫

0

dτ(t)
1 + t2

=
Im h

|µ − h|2


 sup

y∈D(AF )

|µy(a) − y′(a)|(∞∫
a

(|y(x)|2 + |l(y)|2) dx

) 1
2




2

. (5.41)

Taking into account that for the case of AF

|µy(a) − y′(a)| = |y′(a)|

and setting

d1/2 = sup
y∈D(AF )

|y′(a)|(∞∫
a

(|y(x)|2 + |l(y)|2) dx

) 1
2
, (5.42)

we obtain

Im h

|µ − h|2 d =

∞∫

0

dτ(t)
1 + t2

. (5.43)

Considering that Imh = y and µ = x, solving (5.43) for y yields

y =
d∫∞

0
dτ(t)
1+t2

. (5.44)

Consequently, equations (5.40) describing h = x + iy take form

x = −m +
α d∫∞

0
dτ(t)
1+t2

, y =
d∫∞

0
dτ(t)
1+t2

. (5.45)

The equations (5.45) above provide parametrical equations of the straight hori-
zontal line shown on Figure 4. The connection between the parameters α and h in
the accretive restored operator Th is depicted in bold.

As we mentioned earlier the restored operator Th is extremal if α = 0. In this
case formulas (5.45) become

x = −m, y =
d∫∞

0
dτ(t)
1+t2

. (5.46)
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Figure 4. b = ∞

6. Realizing systems with Schrödinger operator

Now once we described all the possible outcomes for the restored accretive operator
Th, we can concentrate on the main operator A of the system (5.15). We recall
that A is defined by formulas (2.6) and beside the parameter h above contains also
parameter µ. We will obtain the behavior of µ in terms of the components of our
function V (z) the same way we treated the parameter h. As before we consider
two major cases dividing them into subcases when necessary.

Case 1. Assume that b =
∫∞
0

dτ(t)
t < ∞. In this case our function V (z) belongs to

the class SL−1
01 (R, K). First we will obtain the representation of µ in terms of x

and y, where h = x + iy. We recall that

µ =
h − ah̄

1 − a
,

where a is defined by (5.30). By direct computations we derive that

a =
1 − (α − b)2

1 + (α − b)2
− 2(α − b)

1 + (α − b)2
i, 1 − a =

2(α − b)2

1 + (α − b)2
+

2(α − b)
1 + (α − b)2

i,

and

h− ah̄ =
(

2(α − b)2

1 + (α − b)2
x +

2(α − b)
1 + (α − b)2

y

)
+
(

2
1 + (α − b)2

y +
2(α − b)

1 + (α − b)2
x

)
i.
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Figure 5. b > 2

Plugging the last two equations into the formula for µ above and simplifying we
obtain

µ = x +
y

α − b
. (6.1)

We recall that during the present case x and y parts of h are described by the
formulas (5.33).

Once again we elaborate in three subcases.
Subcase 1. b > 2 As we have shown this above, the formulas (5.33) can be trans-

formed into equation of the circle (5.34). In this case the parameter α belongs
to the interval in (5.24), the accretive operator Th corresponds to the values
of h shown in the bold part of the circle on Figure 1 as α moves from −∞
towards +∞.
Substituting the expressions for x and y from (5.33) into (6.1) and simplifying
we get

µ = θ +
(θ + m)b

α − b
. (6.2)

The connection between values of α and µ is depicted on Figure 5.
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We note that µ = 0 when α = −mb
θ . Also, the endpoints

α1 =
b −√

b2 − 4
2

and α2 =
b +

√
b2 − 4
2

of α-interval (5.24) are responsible for the µ-values

µ1 = θ +
(θ + m)b

α1
and µ2 = θ +

(θ + m)b
α2

.

The values of µ that are acceptable parameters of operator A of the restored
system with an accretive operator Th make the bold part of the hyperbola
on Figure 5. It follows from Theorems 4.4 and 4.4 that the operator A of the
form (2.6) is accumulative if and only if α ≤ 0 and thus µ belongs to the part
of the left branch on the hyperbola where α ∈ (−∞, 0]. We note that Figure
5 shows the case when −m < 0, θ > 0, and θ > −m. Other possible cases,
such as (−m < 0, θ < 0, θ > −m), (−m < 0, θ = 0), and (m = 0, θ > 0)
require corresponding adjustments to the graph shown in the picture 5.

Subcase 2. b < 2 For every α ∈ (−∞, +∞) the restored operator Th will be
accretive and φ-sectorial for some φ ∈ (0, π/2). As we have mentioned above,
the operator Th achieves the largest angle of sectoriality when α = b

2 . In this
particular case (5.33) becomes (5.35). Substituting α = b/2 and (5.35) into
(6.1) we obtain

µ = −(θ + 2m). (6.3)

This value of µ from (6.3) is marked on Figure 6. The corresponding operator
A of the realizing system is based on these values of parameters h and µ.

Subcase 3. b = 2 The behavior of parameter µ in this case is also shown on Figure 6.
It was shown above that in this case the function V (z) can be realized using
an extremal accretive Th when α = 1. The values of the parameters h and µ
then become

h = x + iy, x = −m, y = θ + m, µ = −(θ + 2m).

The value of µ above is marked on the left branch of the hyperbola and occurs
when α = 1 = b/2.

Case 2. Again we assume that
∫∞
0

dτ(t)
t = ∞. Hence V (z) ∈ SL−1

0 (R, K) and
b = ∞. As we mentioned above the restored operator Th is accretive if and only
if α ≤ 0 and φ-sectorial if and only if α < 0. It is extremal if α = 0. The values of
x and y, were already calculated and are given in (5.45). In particular, the value
for µ is given by

µ = x = −m +
α d∫∞

0
dτ(t)
1+t2

. (6.4)

where d is defined in (5.42). Figure 7 gives graphical representation of this case. The
left bold part of the line corresponds to the values of µ that yield an accumulative
realizing system. If m = 0 then the line passes through the origin and the graph
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Figure 6. b < 2 and b = 2

should be adjusted accordingly. In the case when α = 0 and Th is extremal we
have µ = m.

Example

We conclude this paper with simple illustration. Consider a function

V (z) = i
√

z. (6.5)

A direct check confirms that V (z) is an inverse Stieltjes function. It can be shown
(see [25] pp. 140–142) that the inversion formula

τ(λ) = C + lim
y→0

1
π

∫ λ

0

Im
(
i
√

x + iy
)

dx (6.6)

describes the distribution function for a self-adjoint operator
{

B̃∞y = −y′′

y(0) = 0.
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Figure 7. b = ∞

The corresponding to B̃∞ symmetric operator is{
B∞y = −y′′

y(0) = y′(0) = 0.
(6.7)

It was also shown in [25] that τ(λ) = 0 for λ ≤ 0 and

τ ′(λ) =
1
π

√
λ for λ > 0. (6.8)

By direct calculations one can confirm that

V (z) =
∫ ∞

0

(
1

t − z
− 1

t

)
dτ(t) = i

√
z,

and that ∫ ∞

0

dτ(t)
t

=
∫ ∞

0

dt

π
√

t
= ∞.

It is also clear that the constant term in the integral representation (5.7) is zero,
i.e., α = 0.

Let us assume that τ(t) satisfies our definition of spectral distribution func-
tion of the pair B∞, B̃∞ given in Section 5. Operating under this assumption, we
proceed to restore parameters h and µ and apply formulas (5.45) for the values
α = 0 and m = m∞(−0) = 0 (see [6]). This yields x = 0. To obtain y we first find
the value of ∫ ∞

0

dτ(t)
1 + t2

=
1√
2
,
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and then use formula (5.42) to get the value of d. This yields d = 1/
√

2. Conse-
quently,

y =
d∫∞

0
dτ(t)
1+t2

= 1,

and hence h = yi = i. From (6.4) we have that µ = 0 and (2.6) becomes

A y = −y′′ − [iy′(0) + y′(0)]δ′(x). (6.9)

The operator Th in this case is {
Thy = −y′′

y′(0) = iy(0).

The channel vector g of the form (3.11) then equals

g = δ′(x), (6.10)

satisfying

Im A =
A − A∗

2i
= KK∗ = (., g)g,

and channel operator Kc = cg, (c ∈ C) with

K∗y = (y, g) = y′(0). (6.11)

The real part of A

Re A y = −y′′ − y(0)δ′(x)
contains the self-adjoint quasi-kernel{

Ây = −y′′

y(0) = 0.

A system of the Livs̆ic type with Schrödinger operator of the form (5.15) that
realizes V (z) can now be written as

Θ =
(

A K 1
H+ ⊂ L2[a, +∞) ⊂ H− C

)
.

where A and K are defined above. Now we can back up our assumption on τ(t) to
be the spectral distribution function of the pair B∞, B̃∞. Indeed, calculating the
function VΘ(z) for the system Θ above directly via formula (3.16) with µ = 0 and
comparing the result to V (z) gives the exact value of h = i. Using the uniqueness
of the unitary mapping U in the definition of spectral distribution function (see
Remark 5.6 of [14]) we confirm that τ(t) is the spectral distribution function of
the pair B∞, B̃∞.

Remark 6.1. All the derivations above can be repeated for an inverse Stieltjes-like
function

V (z) = α + i
√

z, −∞ < α < +∞,

with very minor changes. In this case the restored values for h and µ are described
as follows:

h = x + iy, x = α, y = 1, µ = α.
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The dynamics of changing h according to changing α is depicted on Figure 4
where the horizontal line has a y-intercept of 1. The behavior of µ is described by
a sloped line µ = α (see Figure 7 with m = 0). In the case when α ≤ 0 our function
becomes inverse Stieltjes and the restored system Θ is accretive. The operators A

and K of the restored system are given according to the formulas (2.6) and (3.13),
respectively.
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[5] Yu. Arlinskĭı and E. Tsekanovskĭı. Regular (∗)-extension of unbounded operators,
characteristic operator-functions and realization problems of transfer functions of
linear systems. Preprint, VINITI, Dep.-2867, 72p., 1979.
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