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Abstract. We present a solution of the extended Phillips-Kato extension prob-
lem about existence and parametrization of all accretive (∗)-extensions (with
the exit into triplets of rigged Hilbert spaces) of a densely defined non-negative
operator. In particular, the analogs of the von Neumann and Friedrichs the-
orems for existence of non-negative self-adjoint (∗)-extensions are obtained.
Relying on these results we introduce the extremal classes of Stieltjes and
inverse Stieltjes functions and show that each function from these classes can
be realized as the impedance function of an L-system. It is proved that in
this case the realizing L-system contains an accretive operator and, in case of
Stieltjes functions, an accretive (∗)-extension. Moreover, we establish the con-
nection between the above-mentioned classes and the Friedrichs and Krĕın-von
Neumann extremal non-negative extensions.
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1. Introduction

We recall that an operator-valued function 𝑉 (𝑧) acting on a finite-dimensional
Hilbert space 𝐸 belongs to the class of operator-valued Herglotz-Nevanlinna func-
tions if it is holomorphic on ℂ ∖ ℝ, if it is symmetric with respect to the real axis,
i.e., 𝑉 (𝑧)∗ = 𝑉 (𝑧), 𝑧 ∈ ℂ ∖ ℝ, and if it satisfies the positivity condition

Im𝑉 (𝑧) ≥ 0, 𝑧 ∈ ℂ+.

It is well known (see, e.g., [14], [16]) that operator-valued Herglotz-Nevanlinna
functions admit the following integral representation:

𝑉 (𝑧) = 𝑄+ 𝐿𝑧 +

∫
ℝ

(
1

𝑡 − 𝑧
− 𝑡

1 + 𝑡2

)
𝑑𝐺(𝑡), 𝑧 ∈ ℂ ∖ ℝ, (1.1)
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where 𝑄 = 𝑄∗, 𝐿 ≥ 0, and 𝐺(𝑡) is a nondecreasing operator-valued function on ℝ
with values in the class of nonnegative operators in 𝐸 such that∫

ℝ

(𝑑𝐺(𝑡)𝑥, 𝑥)𝐸
1 + 𝑡2

< ∞, 𝑥 ∈ 𝐸. (1.2)

The realization of a selected class of Herglotz-Nevanlinna functions is provided by
a system Θ of the form {

(𝔸 − 𝑧𝐼)𝑥 = 𝐾𝐽𝜑−
𝜑+ = 𝜑− − 2𝑖𝐾∗𝑥 (1.3)

or

Θ =

(
𝔸 𝐾 𝐽

ℋ+ ⊂ ℋ ⊂ ℋ− 𝐸

)
. (1.4)

In this system 𝔸, the state-space operator of the system, is a so-called (∗)-extension,
which is a bounded linear operator from ℋ+ into ℋ− extending a symmetric
operator 𝐴 in ℋ, where ℋ+ ⊂ ℋ ⊂ ℋ− is a rigged Hilbert space. Moreover, 𝐾 is
a bounded linear operator from the finite-dimensional Hilbert space 𝐸 into ℋ−,
while 𝐽 = 𝐽∗ = 𝐽−1 is acting on 𝐸, are such that Im𝔸 = 𝐾𝐽𝐾∗. Also, 𝜑− ∈ 𝐸 is
an input vector, 𝜑+ ∈ 𝐸 is an output vector, and 𝑥 ∈ ℋ+ is a vector of the state
space of the system Θ. The system described by (1.3)-(1.4) is called an L-system.
The operator-valued function

𝑊Θ(𝑧) = 𝐼 − 2𝑖𝐾∗(𝔸 − 𝑧𝐼)−1𝐾𝐽 (1.5)

is a transfer function of the system Θ. It was shown in [14] that an operator-valued
function 𝑉 (𝑧) acting on a Hilbert space 𝐸 of the form (1.1) can be represented
and realized in the form

𝑉 (𝑧) = 𝑖[𝑊Θ(𝑧) + 𝐼]−1[𝑊Θ(𝑧)− 𝐼] = 𝐾∗(Re𝔸− 𝑧𝐼)−1𝐾, (1.6)

where 𝑊Θ(𝑧) is a transfer function of some canonical scattering (𝐽 = 𝐼) system

Θ, and where the “real part” Re𝔸 = 1
2 (𝔸+𝔸∗) of 𝔸 satisfies Re𝔸 ⊃ 𝐴 = 𝐴∗ ⊃ 𝐴̇

if and only if the function 𝑉 (𝑧) in (1.1) satisfies the following two conditions:{
𝐿 = 0,
𝑄𝑥 =

∫
ℝ

𝑡
1+𝑡2 𝑑𝐺(𝑡)𝑥 when

∫
ℝ
(𝑑𝐺(𝑡)𝑥, 𝑥)𝐸 < ∞.

(1.7)

The class of all realizable Herglotz-Nevanlinna functions with conditions (1.7) is
denoted by 𝑁(𝑅) (see [14]).

In the first part of this paper we present a solution of the extended Phillips-
Kato extension problem. We show the existence and parameterize all accretive
(∗)-extensions (with the exit into triplets of rigged Hilbert spaces) of a densely de-
fined non-negative symmetric operator. Moreover, the analogs of the von Neumann
and Friedrichs theorems for existence of non-negative self-adjoint (∗)-extensions
are obtained. In the remaining part of the paper we focus on the introduced ex-
tremal classes of Stieltjes and inverse Stieltjes functions. We show that any func-
tion belonging to these classes can be realized as the impedance function of an
L-system with special properties. In the end we establish the connection between
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the above-mentioned classes and the Friedrichs and Krĕın-von Neumann extremal
non-negative extensions.

The complete proofs of some parts of the material from [6], [20], [30] are
presented here for the first time.

2. Preliminaries

For a pair of Hilbert spaces ℋ1, ℋ2 we denote by [ℋ1,ℋ2] the set of all bounded

linear operators from ℋ1 to ℋ2. Let 𝐴̇ be a closed, densely defined, symmetric
operator in a Hilbert space ℋ with inner product (𝑓, 𝑔), 𝑓, 𝑔 ∈ ℋ. Any operator 𝑇
in ℋ such that

𝐴̇ ⊂ 𝑇 ⊂ 𝐴̇∗

is called a quasi-self-adjoint extension of 𝐴̇.
Consider the rigged Hilbert space (see [14]) ℋ+ ⊂ ℋ ⊂ ℋ−, where ℋ+ =

Dom(𝐴̇∗) and

(𝑓, 𝑔)+ = (𝑓, 𝑔) + (𝐴̇∗𝑓, 𝐴̇∗𝑔), 𝑓, 𝑔 ∈ Dom(𝐴∗).

Let ℛ be the Riesz-Berezansky operator ℛ (see [14]) which maps ℋ− onto ℋ+

such that (𝑓, 𝑔) = (𝑓,ℛ𝑔)+ (∀𝑓 ∈ ℋ+, 𝑔 ∈ ℋ−) and ∥ℛ𝑔∥+ = ∥𝑔∥−. Note that
identifying the space conjugate to ℋ± with ℋ∓, we get that if 𝔸 ∈ [ℋ+,ℋ−] then
𝔸∗ ∈ [ℋ+,ℋ−].

Definition 2.1. An operator 𝔸 ∈ [ℋ+,ℋ−] is called a self-adjoint bi-extension of a
symmetric operator 𝐴̇ if 𝔸 = 𝔸∗ and 𝔸 ⊃ 𝐴̇.

Let 𝔸 be a self-adjoint bi-extension of 𝐴̇ and let the operator 𝐴 in ℋ be
defined as follows:

Dom(𝐴) = {𝑓 ∈ ℋ+ : 𝐴𝑓 ∈ ℋ}, 𝐴 = 𝔸↾Dom(𝐴).
The operator 𝐴 is called a quasi-kernel of a self-adjoint bi-extension 𝔸 (see [35]).

We say that a self-adjoint bi-extension 𝔸 of 𝐴̇ is twice-self-adjoint or t-self-adjoint

if its quasi-kernel 𝐴 is a self-adjoint operator in ℋ.
Definition 2.2. Let 𝑇 be a quasi-self-adjoint extension of 𝐴̇ with nonempty re-
solvent set 𝜌(𝑇 ). An operator 𝔸 ∈ [ℋ+,ℋ−] is called a (∗)-extension (or correct
bi-extension) of an operator 𝑇 if

1. 𝔸 ⊃ 𝑇 ⊃ 𝐴̇, 𝔸∗ ⊃ 𝑇 ∗ ⊃ 𝐴̇,
2. the quasi-kernel of self-adjoint bi-extension Re𝔸 = 1

2 (𝔸+𝔸∗) is a self-adjoint
extension of 𝐴̇.

The existence, description, and analog of von Neumann’s formulas for self-
adjoint bi-extensions and (∗)-extensions were discussed in [35] (see also [5], [9],

[14]). In what follows we suppose that 𝐴̇ has equal deficiency indices and will say

that a quasi-self-adjoint extension 𝑇 of 𝐴̇ belongs to the class Λ(𝐴̇) if 𝜌(𝑇 ) ∕= ∅,
Dom(𝐴̇) = Dom(𝑇 ) ∩Dom(𝑇 ∗), and 𝑇 admits (∗)-extensions.
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Recall that two quasi-self-adjoint extensions 𝑇1 and 𝑇2 of 𝐴̇ are called dis-
joint if

Dom(𝑇1) ∩Dom(𝑇2) = Dom(𝐴̇)

and transversal if, in addition,

Dom(𝑇1) + Dom(𝑇2) = Dom(𝐴̇∗).

Note that from von Neumann formulas immediately follows that two transversal
self-adjoint extensions are automatically disjoint.

Let 𝐴̇ be a closed densely defined symmetric operator and let 𝑇 ∈ Λ(𝐴̇).

It has been shown in [4] that 𝑇 ∈ Λ(𝐴̇) if and only if there exists a self-adjoint

extension 𝐴 of 𝐴̇ transversal to 𝑇, and, moreover, the formulas

𝔸 = 𝐴̇∗ − ℛ−1𝐴̇∗(𝐼 − 𝒫𝑇𝐴), 𝔸∗ = 𝐴̇∗ − ℛ−1𝐴̇∗(𝐼 − 𝒫𝑇∗𝐴), (2.1)

set a bijection between the set of all (∗)-extensions of 𝑇 ∈ Λ(𝐴̇) and their adjoint

and the set of all all self-adjoint extensions 𝐴 of the operator 𝐴̇ that are transversal
to 𝑇 . Here 𝒫𝑇𝐴 and 𝒫𝑇∗𝐴 are the projectors in ℋ+ onto Dom(𝑇 ) and Dom(𝑇 ∗),
corresponding to the direct decompositions

ℋ+ = Dom(𝑇 )+̇𝔐𝐴, ℋ+ = Dom(𝑇 ∗)+̇𝔐𝐴, (2.2)

where 𝔐𝐴 = Dom(𝐴) ⊖ Dom(𝐴̇). If a (∗)-extension 𝔸 of 𝑇 takes the form (2.1),

we say that 𝔸 is generated by 𝐴.
It is shown in [4] that if deficiency indices of 𝐴̇ are finite and equal, then for

each quasi-self-adjoint extension 𝑇 of 𝐴̇ with 𝜌(𝑇 ) ∕= ∅ there exists a self-adjoint
extension of 𝐴̇ transversal to 𝑇 . The latter is also true if there is 𝑧 ∈ ℂ such that
𝑧, 𝑧 ∈ 𝜌(𝑇 ) even for the case of infinite deficiency indices of 𝐴̇.

Recall that a linear operator 𝑇 in a Hilbert space ℌ is called accretive [24]
if Re (𝑇𝑓, 𝑓) ≥ 0 for all 𝑓 ∈ Dom(𝑇 ) and maximal accretive (𝑚-accretive) if it
is accretive and has no accretive extensions in ℌ. The following statements are
equivalent [31]:

(i) the operator 𝑇 is 𝑚-accretive;
(ii) the operator 𝑇 is accretive and its resolvent set contains points from the left

half-plane;
(iii) the operators 𝑇 and 𝑇 ∗ are accretive.
The resolvent set 𝜌(𝑇 ) of 𝑚-accretive operator contains the open left half-plane
Π− and

∣∣(𝑇 − 𝑧𝐼)−1∣∣ ≤ 1

∣Re 𝑧∣ , Re 𝑧 < 0.

Let 𝒜 and ℬ be two densely defined closed accretive operators such that

(𝒜𝑓, 𝑔) = (𝑓,ℬ𝑔), 𝑓 ∈ Dom(𝒜), 𝑔 ∈ Dom(ℬ).
It was proved in [31] that there exists a maximal accretive operator 𝑇 such that

𝑇 ⊃ 𝒜 and 𝑇 ∗ ⊃ ℬ.
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In particular, it follows that if 𝐴̇ is nonnegative symmetric operator, then there
exist maximal accretive quasi-self-adjoint extensions of 𝐴̇.

Let 𝑇 be a quasi-self-adjoint maximal accretive extension of a nonnegative
operator 𝐴̇. A (∗)-extension 𝔸 of 𝑇 is called accretive if Re (𝔸𝑓, 𝑓) ≥ 0 for all
𝑓 ∈ ℋ+. This is equivalent to that the real part Re𝔸 = (𝔸+𝔸∗)/2 is nonnegative
self-adjoint bi-extension of 𝐴̇.

Definition 2.3. Let 𝐴̇ have finite equal deficiency indices. A system of equations{
(𝔸 − 𝑧𝐼)𝑥 = 𝐾𝐽𝜑−
𝜑+ = 𝜑− − 2𝑖𝐾∗𝑥 ,

or an array

Θ =

(
𝔸 𝐾 𝐽

ℋ+ ⊂ ℋ ⊂ ℋ− 𝐸

)
(2.3)

is called an L-system if:

(1) 𝔸 is a (∗)-extension of an operator 𝑇 of the class Λ(𝐴̇);
(2) 𝐽 = 𝐽∗ = 𝐽−1 ∈ [𝐸,𝐸], dim𝐸 < ∞;
(3) Im𝔸 = 𝐾𝐽𝐾∗, where 𝐾 ∈ [𝐸,ℋ−], 𝐾∗ ∈ [ℋ+, 𝐸], and

Ran(𝐾) = Ran(Im𝔸). (2.4)

In the definition above 𝜑− ∈ 𝐸 stands for an input vector, 𝜑+ ∈ 𝐸 is an
output vector, and 𝑥 is a state space vector in ℋ. An operator 𝔸 is called a state-
space operator of the system Θ, 𝐽 is a direction operator, and 𝐾 is a channel
operator. A system Θ of the form (2.3) is called an accretive system [17] if its
main operator 𝔸 is accretive and accumulative system [18] if its main operator 𝔸
is accumulative, i.e., satisfies

(Re𝔸𝑓, 𝑓) ≤ (𝐴̇∗𝑓, 𝑓) + (𝑓, 𝐴̇∗𝑓), 𝑓 ∈ ℋ+. (2.5)

We associate with an L-system Θ the operator-valued function

𝑊Θ(𝑧) = 𝐼 − 2𝑖𝐾∗(𝔸− 𝑧𝐼)−1𝐾𝐽, 𝑧 ∈ 𝜌(𝑇 ), (2.6)

which is called a transfer operator-valued function of the L-system Θ. We also
consider the operator-valued function

𝑉Θ(𝑧) = 𝐾∗(Re𝔸− 𝑧𝐼)−1𝐾. (2.7)

It was shown in [14] that both (2.6) and (2.7) are well defined. The transfer
operator-function 𝑊Θ(𝑧) of the system Θ and an operator-function 𝑉Θ(𝑧) of the
form (2.7) are connected by the relations valid for Im 𝑧 ∕= 0, 𝑧 ∈ 𝜌(𝑇 ),

𝑉Θ(𝑧) = 𝑖[𝑊Θ(𝑧) + 𝐼]−1[𝑊Θ(𝑧)− 𝐼]𝐽,

𝑊Θ(𝑧) = (𝐼 + 𝑖𝑉Θ(𝑧)𝐽)
−1(𝐼 − 𝑖𝑉Θ(𝑧)𝐽).

(2.8)

The function 𝑉Θ(𝑧) defined by (2.7) is called the impedance function of an L-
system Θ of the form (2.3). It was shown in [14] that the class 𝑁(𝑅) of all Herglotz-
Nevanlinna functions in a finite-dimensional Hilbert space 𝐸 that can be realized as
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impedance functions of an L-system is described by conditions (1.7). In particular,
the following theorem [3], [14] takes place.

Theorem 2.4. Let Θ be an L-system of the form (2.3). Then the impedance function
𝑉Θ(𝑧) of the form (2.7) belongs to the class 𝑁(𝑅).

Conversely, let an operator-valued function 𝑉 (𝑧) belong to the class 𝑁(𝑅).
Then 𝑉 (𝑧) can be realized as the impedance function of an L-system Θ of the form
(2.3) with a preassigned direction operator 𝐽 for which 𝐼 + 𝑖𝑉 (−𝑖)𝐽 is invertible.

We will heavily rely on Theorem 2.4 in the last two sections of the present paper.

3. The Friedrichs and Krĕın-von Neumann extensions

We recall that a symmetric operator 𝐵̇ is called non-negative if

(𝐵̇𝑓, 𝑓) ≥ 0, ∀𝑓 ∈ Dom(𝐵̇).

Let 𝐵̇ be a closed densely defined non-negative operator a Hilbert space ℋ and let
𝐵̇∗ be its adjoint. Consider the sesquilinear form 𝜏𝐵̇ [𝑓, 𝑔] = (𝐵̇𝑓, 𝑔), 𝑓, 𝑔 ∈ Dom(𝐵̇).

A sequence {𝑓𝑛} ⊂ Dom(𝐵̇) is called 𝜏𝐵̇-converging to the vector 𝑢 ∈ ℋ if

lim
𝑛→∞ 𝑓𝑛 = 𝑢 and lim

𝑛,𝑚→∞ 𝜏𝐵̇[𝑓𝑛 − 𝑓𝑚] = 0.

The form 𝜏𝐵̇ is closable [24], i.e., there exists a minimal closed extension (the

closure) of 𝜏𝐵̇ . Following the M. Krĕın notations we denote by 𝐵̇[⋅, ⋅] the closure of
𝜏𝐵̇ and by 𝒟[𝐵̇] its domain. By definition 𝐵̇[𝑢] = 𝐵̇[𝑢, 𝑢] for all 𝑢 ∈ 𝒟[𝐵̇]. Because
𝐵̇[𝑢, 𝑣] is closed, it possesses the property: if

lim
𝑛→∞𝑢𝑛 = 𝑢 and lim

𝑛,𝑚→∞ 𝐵̇[𝑢𝑛 − 𝑢𝑚] = 0,

then lim
𝑛→∞ 𝐵̇[𝑢 − 𝑢𝑛] = 0. The Friedrichs extension 𝐵𝐹 of 𝐵̇ is defined as a non-

negative self-adjoint operator associated with the form 𝐵̇[⋅, ⋅] by the First Repre-
sentation Theorem [24]:

(𝐵𝐹𝑢, 𝑣) = 𝐵̇[𝑢, 𝑣] for all 𝑢 ∈ Dom(𝐵𝐹 ) and for all 𝑣 ∈ 𝒟[𝐵̇].
It follows that

Dom(𝐵𝐹 ) = 𝒟[𝐵̇] ∩Dom(𝐵̇∗), 𝐵𝐹 = 𝐵̇∗↾Dom(𝐵𝐹 ).
The Friedrichs extension 𝐵𝐹 is a unique non-negative self-adjoint extension having
the domain in 𝒟[𝐵̇]. Notice that by the Second Representation Theorem [24] one
has

𝒟[𝐵̇] = 𝒟[𝐵𝐹 ] = Dom(𝐵
1/2
𝐹 ), 𝐵̇[𝑢, 𝑣] = (𝐵

1/2
𝐹 𝑢,𝐵

1/2
𝐹 𝑣), 𝑢, 𝑣 ∈ 𝒟[𝐵̇].

Let 𝐵̇ be a non-negative closed densely defined symmetric operator. Consider the
family of symmetric contractions

𝐴̇(𝑎) = (𝑎𝐼 − 𝐵̇)(𝑎𝐼 + 𝐵̇)−1, 𝑎 > 0,
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defined on Dom(𝐴̇(𝑎)) = (𝑎𝐼+𝐵̇)Dom(𝐵̇). Notice that the orthogonal complement

𝔑(𝑎) = ℋ⊖Dom(𝐴̇(𝑎)) coincides with the defect subspace 𝔑−𝑎 of the operator 𝐵̇.
Let 𝐴̇ = 𝐴̇(1) and let 𝑏 = (1 − 𝑎)(𝑎+ 1)−1. Then 𝑏 ∈ (−1, 1) and

𝐴̇(𝑎) = (𝐴̇ − 𝑏𝐼ℋ)(𝐼 − 𝑏𝐴̇)−1.

Clearly, there is a one-one correspondence given by the Cayley transform

𝐵 = 𝑎(𝐼 − 𝐴(𝑎))(𝐼 +𝐴(𝑎))−1, 𝐴(𝑎) = (𝑎𝐼 − 𝐵)(𝑎𝐼 +𝐵)−1,

between all non-negative self-adjoint extensions 𝐵 of the operator 𝐵̇ and all self-
adjoint contractive (𝑠𝑐) extensions 𝐴(𝑎) of 𝐴̇(𝑎). As was established by M. Krĕın in

[25], [26] the set of all 𝑠𝑐-extensions of 𝐴̇ forms an operator interval [𝐴𝜇, 𝐴𝑀 ]. Fol-
lowing M. Krĕın’s notations we call the extreme contractive self-adjoint extensions
𝐴𝜇 and 𝐴𝑀 of a symmetric contraction 𝐴̇ by the rigid and the soft extensions,
respectively. The next result describe the sesquilinear form 𝐵[𝑢, 𝑣] by means the
fractional-linear transformation 𝐴 = (𝐼 − 𝐵)(𝐼 +𝐵)−1.

Proposition 3.1.
(1) Let 𝐵 be a non-negative self-adjoint operator and let 𝐴 = (𝐼 − 𝐵)(𝐼 +𝐵)−1

be its Cayley transform. Then

𝒟[𝐵] = Ran((𝐼 +𝐴)1/2),
𝐵[𝑢, 𝑣] = −(𝑢, 𝑣) + 2

(
(𝐼 +𝐴)−1/2𝑢, (𝐼 +𝐴)−1/2𝑣

)
, 𝑢, 𝑣 ∈ 𝒟[𝐵]. (3.1)

(2) Let 𝐵̇ be a closed densely defined non-negative symmetric operator and let

𝐵 be its non-negative self-adjoint extension. If 𝐴̇ = (𝐼 − 𝐵̇)(𝐼 + 𝐵̇)−1, 𝐴 =
(𝐼 − 𝐵)(𝐼 +𝐵)−1, then

𝒟[𝐵] = Ran(𝐼 +𝐴𝜇)
1/2 ∔ Ran(𝐴 − 𝐴𝜇)

1/2. (3.2)

Proof. (1). Since 𝐵 = (𝐼 − 𝐴)(𝐼 +𝐴)−1, one obtains with 𝑓 = (𝐼 +𝐴)ℎ,

𝐵[𝑓 ] = ((𝐼 − 𝐴)ℎ, (𝐼 +𝐴)ℎ) = −∥(𝐼 +𝐴)ℎ∥2 + 2∥(𝐼 +𝐴)1/2ℎ∥2
= −∥𝑓∥2 + 2∥(𝐼 +𝐴)−1/2𝑓∥2.

Now the closure procedure leads to (3.1).

(2) Since 𝐴 is a 𝑠𝑐-extension of 𝐴̇, we get 𝐴𝜇 ≤ 𝐴 ≤ 𝐴𝑀 . Hence 𝐼 + 𝐴 =
𝐼 + 𝐴𝜇 + (𝐴 − 𝐴𝜇). Because 𝐼 + 𝐴𝜇 and 𝐴 − 𝐴𝜇 are non-negative self-adjoint
operators, we get the equality [21]:

Ran((𝐼 +𝐴)1/2) = Ran((𝐼 +𝐴𝜇)
1/2) + Ran((𝐴 − 𝐴𝜇)

1/2).

Since Ran((𝐼+𝐴𝜇)
1/2)∩𝔑 = {0}, where 𝔑 = ℋ⊖Dom(𝐴̇), and Ran(𝐴−𝐴𝜇) ⊆ 𝔑,

we get Ran((𝐼 +𝐴𝜇)
1/2) ∩Ran((𝐴− 𝐴𝜇)

1/2) = {0}. Then we arrive to (3.2). □

We note that Ran(𝐵̃1/2) = Ran((𝐼−𝐴)1/2). Now let 𝐴𝜇 and 𝐴𝑀 be the rigid

and the soft extensions of 𝐴̇. Then the operators

𝐵𝐹 = (𝐼 − 𝐴𝜇)(𝐼 +𝐴𝜇)
−1, (3.3)

and
𝐵𝐾 = (𝐼 − 𝐴𝑀 )(𝐼 +𝐴𝑀 )

−1, (3.4)
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are non-negative self-adjoint extensions of 𝐵̇. It also follows (see [25], [26]) that

𝐵𝐹 = 𝑎(𝐼 − 𝐴(𝑎)
𝜇 )(𝐼 +𝐴(𝑎)

𝜇 )−1, 𝐵𝐾 = 𝑎(𝐼 − 𝐴
(𝑎)
𝑀 )(𝐼 +𝐴

(𝑎)
𝑀 )−1.

Since, the operators 𝐴
(𝑎)
𝜇 and 𝐴

(𝑎)
𝑀 posses the properties

Ran((𝐼 +𝐴(𝑎)
𝜇 )1/2) ∩ 𝔑−𝑎 = Ran((𝐼 − 𝐴

(𝑎)
𝑀 )1/2) ∩ 𝔑−𝑎 = {0},

we get the following result [25].

Proposition 3.2. Let 𝐵 be a non-negative self-adjoint extension of 𝐵̇ and let 𝐸(𝜆)
be its resolution of identity. Then

1. 𝐵 = 𝐵𝐹 if and only if at least for one 𝑎 > 0 (then for all 𝑎 > 0) the relation

∞∫
0

𝜆(𝑑𝐸(𝜆)𝜑, 𝜑) = +∞, (3.5)

holds for each 𝜑 ∈ 𝔑−𝑎 ∖ {0};
2. 𝐵 = 𝐵𝐾 if and only if at least for one 𝑎 > 0 (then for all 𝑎 > 0) the relation

∞∫
0

(𝑑𝐸(𝜆)𝜑, 𝜑)

𝜆
= +∞, (3.6)

holds for each 𝜑 ∈ 𝔑−𝑎 ∖ {0}.
The self-adjoint extension 𝐵𝐹 given by (3.3) coincides [25] with the Fried-

richs extension of 𝐵̇. In the sequel we will call the operator 𝐵𝐾 defined in (3.4)

by the Krĕın-von Neumann extension of 𝐵̇.

4. Bi-extensions of non-negative symmetric operators

First we consider the case of bounded non-densely defined non-negative symmetric
operator 𝐵̇.

Theorem 4.1. Let 𝐵̇ be a bounded non-densely defined non-negative symmetric
operator in a Hilbert space ℋ, Dom(𝐵̇) = ℋ0. Let 𝐵̇∗ ∈ [ℋ,ℋ0] be the adjoint of

𝐵̇. Put 𝐵̇0 = 𝑃ℋ0𝐵̇, 𝔏 = ℋ ⊖ ℋ0, where 𝑃ℋ0 is an orthogonal projection in ℋ
onto ℋ0. Then the following statements are equivalent:

(i) 𝐵̇ admits bounded non-negative self-adjoint extensions in ℋ;
(ii) sup

𝑓∈ℋ0

∣∣𝐵̇𝑓 ∣∣2
(𝐵̇𝑓, 𝑓)

< ∞;

(iii) 𝐵̇∗𝔏 ⊆ Ran(𝐵̇
1/2
0 ).

Proof. Since (𝐵̇𝑓, 𝑓) = ∣∣𝐵̇1/2
0 𝑓 ∣∣2, 𝑓 ∈ ℋ0, and

𝐵̇∗ = 𝐵̇0𝑃ℋ0 + 𝐵̇∗𝑃𝔏,
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conditions (i) and (ii) are equivalent due to the Douglas Theorem [19]. Suppose 𝐵̇
admits a bounded non-negative self-adjoint extension 𝐵. Then for 𝑓 ∈ ℋ0 one has

∣∣𝐵̇𝑓 ∣∣2 = ∣∣𝐵𝑓 ∣∣2 = ∣∣𝐵1/2𝐵1/2𝑓 ∣∣2 ≤ ∣∣𝐵1/2∣∣2∣∣𝐵1/2𝑓 ∣∣2

= ∣∣𝐵1/2∣∣2(𝐵𝑓, 𝑓) = ∣∣𝐵1/2∣∣2(𝐵̇𝑓, 𝑓) = ∣∣𝐵1/2∣∣2∣∣𝐵̇1/2
0 𝑓 ∣∣2.

It follows that statement (ii) holds true.

Now suppose that (iii) is fulfilled. Then the operator 𝐿0 := 𝐵̇
[−1/2]
0 𝐵̇∗↾𝔏 is

bounded, where 𝐵̇
[−1/2]
0 is the Moore-Penrose inverse to 𝐵̇

1/2
0 . Let 𝐿∗

0 ∈ [ℋ0,𝔏] be
the adjoint to 𝐿0. Set

ℬ0 = 𝐵̇𝑃ℋ0 + (𝐵̇∗ + 𝐿∗
0𝐿0)𝑃𝔏. (4.1)

Then ℬ0 is bounded extension of 𝐵̇ in ℋ. Let 𝑃𝔏 be the orthogonal projection
operator in ℋ onto 𝔏. For ℎ ∈ ℋ we have

(ℬ0ℎ, ℎ) = (𝐵̇𝑃ℋ0ℎ+ (𝐵̇∗ + 𝐿∗
0𝐿0)𝑃𝔏ℎ, 𝑃ℋ0ℎ+ 𝑃𝔏ℎ)

= ∣∣𝐵̇1/2
0 𝑃ℋ0ℎ∣∣2 + ∣∣𝐿0𝑃𝔏ℎ∣∣2 + 2Re (𝑃ℋ0ℎ, 𝐵̇

∗𝑃𝔏ℎ)

= ∣∣𝐵̇1/2
0 𝑃ℋ0ℎ∣∣2 + ∣∣𝐿0𝑃𝔏ℎ∣∣2 + 2Re (𝐵̇

1/2
0 𝑃ℋ0ℎ, 𝐵̇

[−1/2]
0 𝐵̇∗𝑃𝔏ℎ)

= ∣∣𝐵̇1/2
0 𝑃ℋ0ℎ+ 𝐿0𝑃𝔏ℎ∣∣2.

Thus, ℬ0 is non-negative bounded self-adjoint extension of 𝐵̇. Therefore (i) is
equivalent to (iii). □

Remark 4.2. It is easy to see that the conditions

1. sup
𝑓∈ℋ0

∣∣𝐵̇𝑓 ∣∣2
(𝐵̇𝑓, 𝑓)

< ∞,

2. there exists 𝑐 > 0 such that ∣(𝐵̇𝑓, 𝑔)∣2 ≤ 𝑐(𝐵̇𝑓, 𝑓)∣∣𝑔∣∣2, 𝑓 ∈ ℋ0, 𝑔 ∈ ℋ,

3. there exists 𝑐 > 0 such that ∣(𝐵̇𝑓, 𝑔)∣2 ≤ 𝑐(𝐵̇𝑓, 𝑓)∣∣𝑔∣∣2, 𝑓 ∈ ℋ0, 𝑔 ∈ 𝔏

are equivalent.

Now we consider semi-bounded (in particular non-negative) symmetric den-

sely defined operators 𝐴̇,

(𝐴̇𝑥, 𝑥) ≥ 𝑚(𝑥, 𝑥), 𝑥 ∈ Dom(𝐴̇).

According to the classical von Neumann’s theorem there exists a self-adjoint ex-
tension 𝐴 of 𝐴̇ with an arbitrary close to 𝑚 lower bound. It was shown later by
Friedrichs that operator 𝐴̇ actually admits a self-adjoint extension with the same
lower bound. In this section we are going to show that for the case of a self-adjoint
bi-extension of 𝐴̇ the analogue of von Neumann’s theorem is true while the ana-
logue of the Friedrichs theorem, generally speaking, does not take place.

Theorem 4.3. Let 𝐴̇ be a semi-bounded operator with a lower bound 𝑚 and 𝐴 be
its symmetric extension with the same lower bound. Then 𝐴̇ admits a self-adjoint
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bi-extension 𝔸 with the same lower bound and containing 𝐴 (𝔸 ⊃ 𝐴) if and only
if there exists a number 𝑘 > 0 such that∣∣∣((𝐴 − 𝑚𝐼)𝑓, ℎ)

∣∣∣2 ≤ 𝑘((𝐴 − 𝑚𝐼)𝑓, 𝑓) ∥ℎ∥2+, (4.2)

for all 𝑓 ∈ Dom(𝐴), ℎ ∈ ℋ+.

Proof. Let ℋ+ ⊆ ℋ ⊆ ℋ− be the rigged triplet generated by 𝐴̇ and ℛ be a
Riesz-Berezansky operator corresponding to this triplet. In the Hilbert space ℋ+

consider the operator

𝐵̇ := ℛ(𝐴 − 𝑚𝐼), Dom(𝐵̇) = Dom(𝐴).

Then (𝐵̇𝑓, 𝑓)+ = ((𝐴𝑓 − 𝑚𝐼)𝑓, 𝑓) ≥ 0 for all 𝑓 ∈ Dom(𝐵̇). Observe that 𝔸 is a

self-adjoint bi-extension of 𝐴̇ containing 𝐴 if and only if the operator 𝐵 := ℛ𝔸 is
a (+)-bounded and (+)-self-adjoint extension of the operator 𝐵̇ in ℋ+. It follows

from Theorem 4.1 and Remark 4.2 that the operator 𝐵̇ admits (+)-non-negative
bounded self-adjoint extension in ℋ+ if and only if there exists 𝑘 > 0 such that

∣(𝐵̇𝑓, ℎ)+∣2 ≤ 𝑘(𝐵̇𝑓, 𝑓)+∣∣ℎ∣∣2+, 𝑓 ∈ Dom(𝐵̇), ℎ ∈ ℋ+.

This is equivalent to (4.2) □

Remark 4.2 yields that if 𝐴̇ has at least one self-adjoint bi-extension 𝔸 con-
taining 𝐴 with the same lower bound, then it has infinitely many of such bi-
extensions.

Corollary 4.4. Inequalities (4.2) take place if and only if there exists a constant
𝐶 > 0 such that

∣((𝐴 − 𝑚𝐼)𝑓, 𝜑𝑎)∣2 ≤ 𝐶((𝐴 − 𝑚𝐼)𝑓, 𝑓) ∥𝜑𝑎∥2+, (4.3)

for all 𝑓 ∈ Dom(𝐴) and all 𝜑𝑎 such that (𝐴̇
∗ − (𝑚 − 𝑎)𝐼)𝜑𝑎 = 0, (𝑎 > 0).

Proof. Suppose (4.2). Then for ℎ = 𝜑𝑎 ∈ ker(𝐴̇∗ − (𝑚 − 𝑎)𝐼)) we have (4.3). Now
let us show that (4.2) follows from (4.3). It is known that there exists a self-adjoint

extension 𝐴 of 𝐴 (for instance, the Friedrichs extension of 𝐴) with the lower bound
𝑚. If 𝜆 is a regular point for 𝐴, then

ℋ+ = Dom(𝐴) ∔𝔑𝜆. (4.4)

Indeed, if 𝑓 ∈ ℋ+ = Dom(𝐴̇∗), then there exists an element 𝑔 ∈ Dom(𝐴) such

that (𝐴̇∗ − 𝜆𝐼)𝑓 = (𝐴 − 𝜆𝐼)𝑔. This implies (𝐴̇∗ − 𝜆𝐼)(𝑓 − 𝑔) = 0 and hence
(𝑓 − 𝑔) ∈ 𝔑𝜆 for any 𝑓 ∈ ℋ+ and 𝑔 ∈ Dom(𝐴), which confirms (4.4). Further,
applying Cauchy-Schwartz inequality we obtain

∣((𝐴 − 𝑚𝐼)𝑓, 𝑔)∣2 ≤ ((𝐴 − 𝑚𝐼)𝑓, 𝑓)((𝐴 − 𝑚𝐼)𝑔, 𝑔)

≤ 𝐶((𝐴 − 𝑚𝐼)𝑓, 𝑓)∥𝑔∥2+,
(4.5)

for 𝑓 ∈ Dom(𝐴) and 𝑔 ∈ Dom(𝐴). Clearly, all the points of the form (𝑚 − 𝑎),

(𝑎 > 0) are regular points for 𝐴 and the points of a regular type for 𝐴̇. Thus (4.4)
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implies

ℋ+ = Dom(𝐴)∔𝔑𝑚−𝑎. (4.6)

Let ℎ ∈ ℋ+ be an arbitrary vector. Applying (4.6) we get ℎ = 𝑔 + 𝜓𝑎, where
𝑔 ∈ Dom(𝐴) and 𝜓𝑎 ∈ 𝔑𝑚−𝑎. Adding up inequalities (4.3) and (4.5) and taking
into account that the norms ∥⋅∥ and ∥⋅∥+ are equivalent on𝔑𝑚−𝑎 we get (4.2). □

The following theorem is the analogue of the classical von Neumann’s result.

Theorem 4.5. Let 𝜀 be an arbitrary small positive number and 𝐴̇ be a semi-bounded
operator with the lower bound 𝑚. Then there exist infinitely many semi-bounded
self-adjoint bi-extensions with the lower bound (𝑚 − 𝜀).

Proof. First we show that the inequality

∣((𝐴̇ − (𝑚 − 𝜀)𝐼)𝑓, 𝑔)∣2 ≤ 𝑘((𝐴̇ − (𝑚 − 𝜀)𝐼)𝑓, 𝑓)∥𝑔∥2+,

takes place for all 𝑓 ∈ Dom(𝐴̇), 𝑔 ∈ 𝔐, and 𝑘 > 0. Indeed,

∣((𝐴̇ − (𝑚 − 𝜀)𝐼)𝑓, 𝑔)∣ = ∣(𝑓, (𝐴̇∗ − (𝑚 − 𝜀𝐼)𝑔)∣
≤ ∣(𝑓, 𝐴̇∗𝑔)∣+ ∣𝑚 − 𝜀∣ ⋅ ∣(𝑓, 𝑔)∣ ≤ ∥𝑓∥ ⋅ ∥𝐴∗𝑔∥+ ∣𝑚 − 𝜀∣ ⋅ ∥𝑓∥ ⋅ ∥𝑔∥

≤ 1√
𝜀
((𝐴̇ − (𝑚 − 𝜀)𝐼)𝑓, 𝑓)1/2∥𝑔∥+ + ∣𝑚 − 𝜀∣√

𝜀
((𝐴̇ − (𝑚 − 𝜀)𝐼)𝑓, 𝑓)1/2∥𝑔∥+

=
1 + ∣𝑚 − 𝜀∣√

𝜀
((𝐴̇ − (𝑚 − 𝜀)𝐼)𝑓, 𝑓)∥𝑔∥+.

The statement of the theorem follows from Theorem 4.3 and Remark 4.2. □

Theorem 4.6. A non-negative densely-defined operator 𝐴̇ admits a non-negative
self-adjoint bi-extension if and only if the Friedrichs and Krĕın-von Neumann ex-
tensions of 𝐴̇ are transversal.

Proof. It was shown in [28] (see also [12]) that the Friedrichs and Krĕın-von Neu-
mann extensions are transversal if and only if

Dom(𝐴̇∗) ⊆ 𝒟[𝐴𝐾 ]. (4.7)

Suppose that the Friedrichs extension 𝐴𝐹 and the Krĕın-von Neumann extension
𝐴𝐾 of the operator 𝐴̇ are transversal. Then the inclusion (4.7) holds. This means

that ℋ+ ⊆ Dom(𝐴
1/2
𝐾 ). Since ∣∣ℎ∣∣+ ≥ ∣∣ℎ∣∣ for all ℎ ∈ ℋ+, and 𝐴

1/2
𝐾 is closed in

ℋ, the closed graph theorem yields now that 𝐴
1/2
𝐾 ∈ [ℋ+,ℋ], i.e., there exists a

number 𝑐 > 0 such that

∣∣𝐴1/2
𝐾 𝑢∣∣2 = 𝐴𝐾 [𝑢] ≤ 𝑐∣∣𝑢∣∣2+.

It follows that the sesquilinear form 𝐴𝐾 [𝑢, 𝑣] = (𝐴
1/2
𝐾 𝑢,𝐴

1/2
𝐾 𝑣), 𝑢, 𝑣 ∈ ℋ+ is

bounded on ℋ+. Therefore, by Riesz theorem, there exists an operator 𝔸𝐾 ∈
[ℋ+,ℋ−] such that

(𝔸𝐾𝑢, 𝑣) = 𝐴𝐾 [𝑢, 𝑣], 𝑢, 𝑣 ∈ ℋ+, 𝑢 ∈ ℋ+.



82 Yu. Arlinskĭı, S. Belyi and E. Tsekanovskĭı

Due to 𝐴𝐾 [𝑢] ≥ 0 for all 𝑢 ∈ 𝒟[𝐴𝐾 ], the operator 𝔸𝐾 is non-negative. Since
(𝐴𝐾𝑢, 𝑣) = 𝐴𝐾 [𝑢, 𝑣] for all 𝑢 ∈ Dom(𝐴𝐾) and all 𝑣 ∈ 𝒟[𝐴𝐾 ], we get

(𝔸𝐾𝑢, 𝑣) = (𝐴𝐾𝑢, 𝑣), 𝑢 ∈ Dom(𝐴𝐾), 𝑣 ∈ ℋ+.

Hence 𝔸𝐾 ⊃ 𝐴𝐾 , i.e., 𝔸𝐾 is t-self-adjoint bi-extension of 𝐴̇ with quasi-kernel 𝐴𝐾 .

Conversely, let 𝐴̇ admits a non-negative self-adjoint bi-extension. Then from
Theorem 4.3 we get the equality

∣(𝐴̇𝑓, ℎ)∣2 ≤ 𝑘(𝐴̇𝑓, 𝑓)∣∣ℎ∣∣2+,

for all 𝑓 ∈ Dom(𝐴̇) and all ℎ ∈ ℋ+ = Dom(𝐴̇∗), and some 𝑘 > 0. Applying the
theorem by T. Ando and K. Nishio [2] (see also [12]) we get that ℋ+ ⊆ 𝒟[𝐴𝐾 ].
Now (4.7) yields that 𝐴𝐹 and 𝐴𝐾 are transversal. □

Corollary 4.7. If a non-negative densely-defined symmetric operator 𝐴̇ admits
a non-negative self-adjoint bi-extension, then it also admits a non-negative self-
adjoint bi-extension 𝔸 with quasi-kernel 𝐴𝐾 .

It follows from Theorem 4.6 that if 𝐴𝐾 = 𝐴𝐹 , then the operator 𝐴̇ does
not admit non-negative self-adjoint bi-extensions. Consequently, in this case the
analogue of the Friedrichs theorem is not true. The following theorem provides a
criterion on when the analogue of the Friedrichs theorem does take place.

Theorem 4.8. A non-negative densely-defined symmetric operator 𝐴̇ admits a non-
negative self-adjoint bi-extensions if and only if∫ ∞

0

𝑡 𝑑(𝐸(𝑡)ℎ, ℎ) < ∞ for all ℎ ∈ 𝔑−𝑎, 𝑎 > 0, (4.8)

where 𝐸(𝑡) is a spectral function of the Krĕın-von Neumann extension 𝐴𝐾 of 𝐴̇.

Proof. The inequality (4.8) is equivalent to the inclusion

𝔑−𝑎 ⊂ Dom(𝐴
1/2
𝐾 ) = 𝒟[𝐴𝐾 ].

Since −𝑎 is a regular point of 𝐴𝐾 , the direct decomposition

Dom(𝐴̇∗) = Dom(𝐴𝐾)+̇𝔑−𝑎,

holds. So, from (4.7) we get that (4.8) is equivalent to transversality of 𝐴𝐹 and
𝐴𝐾 . The latter is equivalent to existence of non-negative self-adjoint bi-extension
of 𝐴̇ (see Theorem 4.6). □

Observe, that since𝔑−𝑎 is a subspace inℋ, 𝐴𝐾 is closed in ℋ, condition (4.8)
is equivalent to the following: there exists a positive number 𝑘 > 0, depending on
𝑎, such that ∫ ∞

0

𝑡 𝑑(𝐸(𝑡)ℎ, ℎ) < 𝑘∣∣ℎ∣∣2, ∀ℎ ∈ 𝔑−𝑎, 𝑎 > 0. (4.9)
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On the other hand, (4.8) is equivalent (see proof of Theorem 4.6) to the existence
of 𝑘 > 0 such that∫ ∞

0

𝑡 𝑑(𝐸(𝑡)𝑓, 𝑓) < 𝑘∣∣𝑓 ∣∣2+, ∀𝑓 ∈ Dom(𝐴̇∗).

5. Accretive bi-extensions

Let 𝐴̇ be a densely defined and closed non-negative symmetric operator. In this
section we will study the existence of accretive (∗)-extensions of a given maximal
accretive operator 𝑇 ∈ Λ(𝐴̇).

Theorem 5.1. If 𝔸 is a quasi-self-adjoint bi-extension of 𝑇 ∈ Ω(𝐴̇) generated by 𝐴

via (2.1), then for all 𝜙 = ℎ+ 𝑓 ∈ ℋ+, ℎ ∈ Dom(𝑇 ), and 𝑓 ∈ Dom(𝐴) we have

(𝔸𝜙, 𝜙) = (𝑇ℎ, ℎ) + (𝐴𝑓, 𝑓) + 2Re (𝑇ℎ, 𝑓). (5.1)

Proof. Let 𝔸 = 𝐴̇∗ − ℛ−1𝐴̇∗(𝐼 − 𝒫𝑇𝐴) according to (2.1). Note that for any

𝑓 ∈ Dom(𝐴) we have that 𝑃𝑇𝐴𝑓 ∈ Dom(𝐴̇) and hence

(𝒫𝑇𝐴𝑓, 𝑇ℎ) = (𝐴̇𝒫𝑇𝐴𝑓, ℎ),
for any ℎ ∈ Dom(𝑇 ). Besides,(

ℛ−1𝐴̇∗(𝐼 − 𝒫𝑇𝐴)𝑓, 𝑔
)
= 0, ∀𝑓, 𝑔 ∈ Dom(𝐴).

Indeed, since Dom(𝐴) = Dom(𝐴̇)⊕ (𝑈 + 𝐼)𝔑𝑖, where 𝑈 is a unitary operator from
𝔑𝑖 onto 𝔑−𝑖, we have (𝐼 − 𝒫𝑇𝐴)𝑓 = (𝐼 + 𝑈)𝜑, for 𝜑 ∈ 𝔑𝑖, and

𝐴̇∗(𝐼 − 𝒫𝑇𝐴)𝑓 = 𝑖(𝐼 − 𝑈)𝜑.

Moreover, from the (+)-orthogonality of (𝑈 + 𝐼)𝔑𝑖 and (𝑈 − 𝐼)𝔑𝑖 we obtain the
desired equation. Further,

(𝔸𝜙, 𝜙) = (𝑇ℎ+𝐴𝑓 − ℛ−1𝐴(𝐼 − 𝒫𝑇𝐴)𝑓, ℎ+ 𝑓)

= (𝑇ℎ, ℎ) + (𝐴𝑓, 𝑓) + (𝑇ℎ, 𝑓)− (𝐴(𝐼 − 𝒫𝑇𝐴)𝑓, ℎ)+ + (𝐴𝑓, ℎ),

and

(𝐴(𝐼 − 𝒫𝑇𝐴)𝑓, ℎ)+ = (𝐴(𝐼 − 𝒫𝑇𝐴)𝑓, ℎ)− ((𝐼 − 𝒫𝑇𝐴)𝑓, 𝑇ℎ)

= (𝐴𝑓, ℎ)− (𝐴̇𝒫𝑇𝐴𝑓, ℎ)− (𝑓, 𝑇ℎ) + (𝒫𝑇𝐴𝑓, 𝑇ℎ)

= (𝐴𝑓, ℎ)− (𝑓, 𝑇ℎ).

Consequently, (𝔸𝜙, 𝜙) = (𝑇ℎ, ℎ) + (𝐴𝑓, 𝑓) + 2Re (𝑇ℎ, 𝑓). □

Corollary 5.2. Let 𝑇 be a quasi-self-adjoint maximal accretive extension of 𝐴̇. As-
sume that 𝔸 ∈ [ℋ+,ℋ−] is given by (2.1) and generated by a self-adjoint extension
𝐴 transversal to 𝑇 . Then 𝔸 is accretive if and only if the form

Re (𝑇ℎ, ℎ) + (𝐴𝑔, 𝑔) + 2Re (𝑇ℎ, 𝑔), (5.2)

is non-negative for all ℎ ∈ Dom(𝑇 ) and 𝑔 ∈ Dom(𝐴).
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By Ξ(𝐴̇) we denote the set of all maximal accretive quasi-self-adjoint ex-

tensions of the operator 𝐴̇. In particular, the class Ξ(𝐴̇) contains all nonnegative

self-adjoint extensions of 𝐴̇. It follows from Lemma 5.2 that if 𝑇 ∈ Ξ(𝐴̇) and if

𝔸 ∈ [ℋ+,ℋ+] of the form (2.1) is accretive, then 𝐴 ∈ Ξ(𝐴̇). On the class Ξ(𝐴̇) we
define Cayley transform given by the formula

𝐾(𝑇 ) = (𝐼 − 𝑇 )(𝐼 + 𝑇 )−1, 𝑇 ∈ Ξ(𝐴̇). (5.3)

This Cayley transform sets one-to-one correspondence between the class Ξ(𝐴̇) and
the set of quasi-self-adjoint contractive (qsc) extensions of a symmetric contraction

𝑆̇ = (𝐼 − 𝐴̇)(𝐼 + 𝐴̇)−1,

defined on a subspace Dom(𝑆̇) = (𝐼 + 𝐴̇)Dom(𝐴̇), i.e., both 𝑄 and 𝑄∗ are exten-
sions of 𝑆 and ∣∣𝑄∣∣ ≤ 1. Put

𝔑 = ℋ ⊖Dom(𝑆̇). (5.4)

Notice that 𝔑 = 𝔑−1 = ker(𝐴̇∗ + 𝐼) (the deficiency subspace of 𝐴̇).

Let 𝑆𝜇 = 𝐾(𝐴𝐹 ) and 𝑆𝑀 = 𝐾(𝐴𝐾). It was shown in [7], [8], [10] that

𝑄 ∈ [ℋ,ℋ] is a qsc-extension of a symmetric contraction 𝑆̇ if and only if it can be
represented in the form

𝑄 =
1

2
(𝑆𝑀 + 𝑆𝜇) +

1

2
(𝑆𝑀 − 𝑆𝜇)

1/2𝑋(𝑆𝑀 − 𝑆𝜇)
1/2, (5.5)

where 𝑋 is a contraction in the subspace Ran(𝑆𝑀 − 𝑆𝜇) ⊆ 𝔑.

Clearly, if 𝑋 is a self-adjoint contraction, then (5.5) provides a description of
all sc-extensions of a symmetric contraction 𝑆.

Lemma 5.3.
1) The class Ξ(𝐴̇) contains mutually transversal operators if and only if 𝐴𝐹 and

𝐴𝐾 are mutually transversal.

2) Let 𝑇1 and 𝑇2 belong to Ξ(𝐴̇). Then 𝑇1 and 𝑇2 are mutually transversal if
and only if

(𝐾(𝑇1)− 𝐾(𝑇2))𝔑 = 𝔑.

Proof. It follows from (5.5) that

𝐾(𝑇1)− 𝐾(𝑇2) =
1

2
(𝑆𝑀 − 𝑆𝜇)

1/2(𝑋1 − 𝑋2)(𝑆𝑀 − 𝑆𝜇)
1/2,

where 𝑋𝑙, (𝑙 = 1, 2) are the corresponding to 𝑇𝑙 contractions in Ran(𝑆𝑀 − 𝑆𝜇).
Relation (5.3) yields

𝐾(𝑇1)− 𝐾(𝑇2) = 2
(
(𝐼 + 𝑇1)

−1 − (𝐼 + 𝑇2)
−1
)
.

Thus

(𝐼 + 𝑇1)
−1 − (𝐼 + 𝑇2)

−1 =
1

4
(𝑆𝑀 − 𝑆𝜇)

1/2(𝑋1 − 𝑋2)(𝑆𝑀 − 𝑆𝜇)
1/2.
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Furthermore, using [35] we get that(
(𝐼 + 𝑇1)

−1 − (𝐼 + 𝑇2)
−1
)
𝔑−1 = 𝔑−1

⇐⇒
{
Ran(𝑆𝑀 − 𝑆𝜇) = Ran(𝑆𝑀 − 𝑆𝜇) = 𝔑 = 𝔑−1,

Ran(𝑋1 − 𝑋2)𝔑 = 𝔑. □

In what follows we assume that 𝐴𝐾 and 𝐴𝐹 are mutually transversal. Let 𝐴1

and 𝐴2 be two mutually transversal operators from Ξ(𝐴̇). Consider a form defined
on Dom(𝐴1)×Dom(𝐴2) as follows

𝐵(𝑓1, 𝑓2) = (𝐴1𝑓1, 𝑓1) + (𝐴2𝑓2, 𝑓2) + 2Re (𝐴1𝑓1, 𝑓2), (5.6)

where 𝑓𝑙 ∈ Dom(𝐴𝑙), (𝑙 = 1, 2). Let

𝜙𝑙 =
1

2
(𝐼 +𝐴𝑙)𝑓𝑙, 𝑆𝑙𝜙𝑙 =

1

2
(𝐼 − 𝐴𝑙)𝑓𝑙,

be the Cayley transform of 𝐴𝑙 for 𝑙 = 1, 2. Then

𝑓𝑙 = (𝐼 + 𝑆𝑙)𝜙𝑙, 𝐴𝑙𝑓𝑙 = (𝐼 − 𝑆𝑙)𝜙𝑙, (𝑙 = 1, 2). (5.7)

Substituting (5.7) into (5.6) we obtain a form defined on ℋ × ℋ
𝐵̃(𝜙1, 𝜙2) = ∥𝜙1 + 𝜙2∥2 − ∥𝑆1𝜙1 + 𝑆2𝜙2∥2 − 2Re ((𝑆1 − 𝑆2)𝜙1, 𝜙2) .

Let us set

𝐹 =
1

2
(𝑆1 − 𝑆2), 𝐺 =

1

2
(𝑆1 + 𝑆2), 𝑢 =

1

2
(𝜙1 + 𝜙2), 𝑣 =

1

2
(𝜙1 − 𝜙2). (5.8)

Then 𝐵̃(𝜙1, 𝜙2) = 4𝐻(𝑢, 𝑣) where

𝐻(𝑢, 𝑣) = ∥𝑢∥2 + (𝐹𝑣, 𝑣)− (𝐹𝑢, 𝑢)− ∥𝐹𝑣 +𝐺𝑢∥2. (5.9)

Moreover, 𝐹 ±𝐺 are contractive operators. From the above reasoning we conclude
that non-negativity of the form 𝐵(𝑓1, 𝑓2) on Dom(𝐴1)×Dom(𝐴2) is equivalent to
non-negativity of the form 𝐻(𝑢, 𝑣) on ℋ × ℋ.
Lemma 5.4. The form 𝐻(𝑢, 𝑣) in (5.9) is non-negative for all 𝑢, 𝑣 ∈ ℋ if and only
if operator 𝐹 defined in (5.8) is non-negative.

Proof. If 𝐻(𝑢, 𝑣) ≥ 0 for all 𝑢, 𝑣 ∈ ℋ then 𝐻(0, 𝑣) ≥ 0 for all 𝑣 ∈ ℋ. Hence
(𝐹𝑣, 𝑣) ≥ ∥𝐹𝑣∥2 ≥ 0, i.e., 𝐹 ≥ 0.

Conversely, let 𝐹 ≥ 0. Since both operators 𝐹 ± 𝐺 are self-adjoint contrac-
tions, then −𝐼 ≤ 𝐹 +𝐺 ≤ 𝐼 and −𝐼 ≤ 𝐹 − 𝐺 ≤ 𝐼. This implies −(𝐼 − 𝐹 ) ≤ 𝐺 ≤
𝐼 − 𝐹, and thus

𝐺 = (𝐼 − 𝐹 )1/2𝑋(𝐼 − 𝐹 )1/2, (5.10)

where 𝑋 is a self-adjoint contraction. Then (5.10) yields that for all 𝑢, 𝑣 ∈ ℋ
∥𝐹𝑣 +𝐺𝑢∥ = ∥𝐹𝑣∥2 + ∥𝐺𝑢∥2 + 2Re (𝐹𝑣,𝐺𝑢)

≤ ∥𝐹𝑣∥2 +
(
(𝐼 − 𝐹 )𝑋(𝐼 − 𝐹 )1/2𝑢,𝑋(𝐼 − 𝐹 )1/2𝑢

)
+ 2
∣∣∣(𝐹 (𝐼 − 𝐹 )1/2𝑋(𝐼 − 𝐹 )1/2𝑢, 𝑣

)∣∣∣
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= ∥𝐹𝑣∥2 + ∥𝑋(𝐼 − 𝐹 )1/2𝑢∥2 − (𝐹𝑋(𝐼 − 𝐹 )1/2𝑢,𝑋(𝐼 − 𝐹 )1/2𝑢)

+ 2
∣∣∣(𝐹𝑋(𝐼 − 𝐹 )1/2𝑢, (𝐼 − 𝐹 )1/2𝑣

)∣∣∣
≤ ∥𝐹𝑣∥2 + ∥𝑋(𝐼 − 𝐹 )1/2𝑢∥2 − (𝐹𝑋(𝐼 − 𝐹 )1/2𝑢,𝑋(𝐼 − 𝐹 )1/2𝑢)

+ (𝐹𝑋(𝐼 − 𝐹 )1/2𝑢,𝑋(𝐼 − 𝐹 )1/2𝑢) + (𝐹 (𝐼 − 𝐹 )1/2𝑣, (𝐼 − 𝐹 )1/2𝑣)

= ∥𝐹𝑣∥2 + ∥𝑋(𝐼 − 𝐹 )1/2𝑢∥2 + (𝐹𝑣, 𝑣)− ∥𝐹𝑣∥2
≤ (𝐹𝑣, 𝑣) + ∥𝑢∥2 − (𝐹𝑢, 𝑢).

Therefore, for all 𝑢, 𝑣 ∈ ℋ
𝐻(𝑢, 𝑣) = ∥𝑢∥2 − (𝐹𝑢, 𝑢) + (𝐹𝑣, 𝑣)− ∥𝐹𝑣 +𝐺𝑢∥2 ≥ 0.

The lemma is proved. □

Theorem 5.5. Let 𝔸 = 𝐴̇∗ − ℛ−1𝐴̇∗(𝐼 − 𝒫𝐴𝐴) be a self-adjoint (∗)-extension of a
non-negative symmetric operator 𝐴̇, with a self-adjoint quasi-kernel 𝐴 ∈ Ξ(𝐴̇), and
generated (via (2.1)) by a self-adjoint extension 𝐴. Then the following statements
are equivalent

(i) 𝔸 is non-negative

(ii)
(
𝐾(𝐴)− 𝐾(𝐴)

)
↾ 𝔑, (where 𝔑 is defined by (5.4)) is positively defined,

(iii) (𝐴+ 𝐼)−1 ≥ (𝐴+ 𝐼)−1, and 𝐴 is transversal to 𝐴,

(iv) 𝐴 ≤ 𝐴 and 𝐴 is transversal to 𝐴.

Proof. Let (𝔸𝑓, 𝑓) ≥ 0 for all 𝑓 ∈ ℋ+. Then due to (5.1) and Corollary 5.2 we
have that the form

𝐵(𝑔, ℎ) = (𝐴𝑔, ℎ) + (𝐴ℎ, 𝑔) + 2Re (𝐴𝑔, ℎ), (𝑔 ∈ Dom(𝐴), ℎ ∈ Dom(𝐴)),

is non-negative on Dom(𝐴) × Dom(𝐴). Consequently, the form 𝐻(𝑢, 𝑣) given by
(5.9) is non-negative for all 𝑢, 𝑣 ∈ ℋ where

𝐹 =
1

2

(
𝐾(𝐴)− 𝐾(𝐴)

)
and 𝐺 =

1

2

(
𝐾(𝐴) +𝐾(𝐴)

)
.

Using Lemma 5.4 we conclude that 𝐹 ↾𝔑 ≥ 0 and applying Lemma 5.3 yields
𝐹𝔑 = 𝔑. This proves that (i) ⇒ (ii). The implication (ii) ⇒ (i) can be shown by
reversing the argument. Since

𝐾(𝐴) = −𝐼 + 2(𝐴+ 𝐼)−1, 𝐾(𝐴) = −𝐼 + 2(𝐴+ 𝐼)−1,

we get that (ii) ⇐⇒ (iii). Applying inequalities from [24] yields that (iii) ⇐⇒
(iv). □

Theorem 5.6. A self-adjoint operator 𝐴 ∈ Ξ(𝐴̇) admits non-negative (∗)-extensions
if and only if 𝐴 is transversal to 𝐴𝐹 .
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Proof. If 𝐴 is transversal to 𝐴𝐹 , then
(
𝐾(𝐴)− 𝐾(𝐴𝐹 )

)
↾𝔑 is positively defined.

Applying Theorem 5.5 we obtain that

𝔸 = 𝐴̇∗ − ℛ−1𝐴̇∗(𝐼 − 𝒫𝐴𝐴𝐹
),

is a non-negative (∗)-extension.
Conversely, if 𝔸 = 𝐴̇∗ − ℛ−1𝐴̇∗(𝐼 − 𝒫𝐴𝐴) is a (∗)-extension of 𝐴, then via

Theorem 5.5 we get that
(
𝐾(𝐴)− 𝐾(𝐴)

)
↾𝔑 is positively defined. But then due

to the chain of inequalities

𝐾(𝐴) ≥ 𝐾(𝐴) ≥ 𝐾(𝐴𝐹 ),

the operator
(
𝐾(𝐴)− 𝐾(𝐴𝐹 )

)
↾𝔑 is positively defined as well. According to

Lemma 5.3 𝐴 is transversal 𝐴𝐹 . □

We note that if 𝐴 is a self-adjoint extension of 𝐴̇, then all self-adjoint (∗)-
extensions of 𝐴 coincide with t-self-adjoint bi-extensions of 𝐴̇ with the quasi-kernel
𝐴. Consequently, Theorem 5.6 gives the criterion of the existence of a non-negative
t-self-adjoint bi-extension of 𝐴̇ and hence provides the conditions when Friedrichs
theorem for t-self-adjoint bi-extensions is true.

Now we focus on non-self-adjoint accretive (∗)-extensions of operator 𝑇 ∈ Ξ(𝐴̇).

Lemma 5.7. Let 𝔸 be a (∗)-extensions of operator 𝑇 ∈ Ξ(𝐴̇) generated by an

operator 𝐴 ∈ Ξ(𝐴̇). Then the quasi-kernel 𝐴 of the operator Re𝔸 is defined by the
formula

𝑓 = (𝑄 + 𝐼)𝑔 +
1

2
(𝑆 + 𝐼)(𝑄∗ − 𝑆)−1(𝑄 − 𝑄∗)𝑔,

𝐴𝑓 = (𝐼 − 𝑄)𝑔 +
1

2
(𝐼 − 𝑆)(𝑄∗ − 𝑆)−1(𝑄 − 𝑄∗)𝑔,

(5.11)

where 𝑔 ∈ ℋ, 𝑄 = 𝐾(𝑇 ), 𝑄∗ = 𝐾(𝑇 ∗), and 𝑆 = 𝐾(𝐴).

Proof. Let 𝔸 = 𝐴̇∗ − ℛ−1𝐴̇∗(𝐼 − 𝒫𝑇𝐴) (of the form (2.1)) be a (∗)-extensions of
operator 𝑇 generated by a self-adjoint extension 𝐴. Let

Dom(𝐴) = Dom(𝐴̇)⊕ (𝒰 + 𝐼)𝔑𝑖,

where 𝒰 ∈ [𝔑𝑖,𝔑−𝑖] is a unitary mapping. Suppose 𝑓 ∈ Dom(𝐴), where 𝐴 is a
quasi-kernel of Re𝔸. Due to the transversality of 𝑇 ∗ and 𝐴 and 𝑇 and 𝐴 we have

𝑓 = 𝑢+ (𝒰 + 𝐼)𝜑, 𝑓 = 𝑣 + (𝒰 + 𝐼)𝜓,

where 𝑢 ∈ Dom(𝑇 ), 𝑣 ∈ Dom(𝑇 ∗), and 𝜑, 𝜓 ∈ 𝔑𝑖. Also

𝔸𝑓 = 𝑇𝑢+ 𝐴̇∗(𝒰 + 𝐼)𝜑 − 𝑖ℛ−1(𝐼 − 𝒰)𝜑,

𝔸∗𝑓 = 𝑇 ∗𝑣 + 𝐴̇∗(𝒰 + 𝐼)𝜓 − 𝑖ℛ−1(𝐼 − 𝒰)𝜓,
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and

𝐴𝑓 =
1

2
(𝔸𝑓 + 𝔸∗𝑓)

=
1

2

(
𝑇𝑢+ 𝑇 ∗𝑣 + 𝐴̇∗(𝒰 + 𝐼)𝜑+ 𝐴̇∗(𝒰 + 𝐼)𝜓 − 𝑖ℛ−1(𝐼 − 𝒰)(𝜑 + 𝜓)

)
.

Since 𝐴𝑓 ∈ ℋ, then 𝜑 = −𝜓 and hence any vector 𝑓 ∈ Dom(𝐴) is uniquely
represented in the form

𝑓 = 𝑢+ 𝜙, 𝑢 ∈ Dom(𝑇 ), 𝜙 ∈ (𝒰 + 𝐼)𝔑𝑖,

or in the form 𝑓 = 𝑣 − 𝜙, 𝑣 ∈ Dom(𝑇 ∗). By (2.1) (see also [11]) 𝐴 is transversal
to 𝐴 and

Re𝔸 = 𝐴̇∗ − ℛ−1(𝐼 − 𝑃𝐴𝐴).

Thus 𝔐𝐴 ∔ (𝒰 + 𝐼)𝔑𝑖 = 𝔐, where 𝔐𝐴 = Dom(𝐴)⊖Dom(𝐴̇). It follows from

𝔐𝑇 ∔ (𝒰 + 𝐼)𝔑𝑖 = 𝔐, where 𝔐𝑇 = Dom(𝑇 )⊖Dom(𝐴̇),

that 𝒫𝐴𝐴𝔐𝑇 = 𝔐𝐴 and hence for any 𝑢 ∈ Dom(𝑇 ) there exists a 𝜙 ∈ (𝒰 + 𝐼)𝔑𝑖
and 𝑓 ∈ Dom(𝐴) such that 𝑓 = 𝑢+ 𝜙. Similarly, for any 𝑣 ∈ Dom(𝑇 ) there exists

a 𝜙 ∈ (𝒰 + 𝐼)𝔑𝑖 and 𝑓 ∈ Dom(𝐴) such that 𝑓 = 𝑢 − 𝜙. Since

Dom(𝑇 ) = (𝐼 +𝑄)ℋ, Dom(𝑇 ∗) = (𝐼 +𝑄∗)ℋ, Dom(𝐴) = (𝐼 + 𝑆)ℋ,

and

𝑄↾Dom(𝑆̇) = 𝑄∗↾Dom(𝑆̇) = 𝑆↾Dom(𝑆̇),
we conclude that for any 𝑓 ∈ Dom(𝐴) there are uniquely defined 𝑔, 𝑔∗ ∈ ℋ and
ℎ ∈ 𝔑 such that

𝑓 = (𝑄+ 𝐼)𝑔 + (𝑆 + 𝐼)ℎ, 𝑓 = (𝑄∗ + 𝐼)𝑔∗ − (𝑆 + 𝐼)ℎ. (5.12)

Conversely, for every 𝑔 ∈ ℋ (respectively, 𝑔∗ ∈ ℋ) there are 𝑔∗ ∈ ℋ (respectively,

𝑔 ∈ ℋ) and ℎ ∈ 𝔑, such that (5.12) holds with 𝑓 ∈ Dom(𝐴). Since 𝐴̇∗(𝑄+ 𝐼)𝑔 =

(𝐼 − 𝑄)𝑔, 𝐴̇∗(𝐼 +𝑄∗)𝑔∗ = (𝐼 − 𝑄∗)𝑔∗, and 𝐴̇∗(𝐼 + 𝑆)ℎ = (𝐼 − 𝑆)ℎ, then

𝐴𝑓 = (𝐼 − 𝑄)𝑔 + (𝐼 − 𝑆)ℎ, 𝐴𝑓 = (𝐼 − 𝑄∗)𝑔∗ − (𝐼 − 𝑆)ℎ. (5.13)

From (5.12) and (5.13) we have 2ℎ = 𝑔∗ − 𝑔 and 2𝑆ℎ = 𝑄∗𝑔∗ − 𝑔, which implies

2(𝑄∗ − 𝑆)ℎ = (𝑄 − 𝑄∗)𝑔. (5.14)

Since 𝑇 ∗ and 𝐴 are mutually transversal, according to Lemma 5.3 (𝑄∗ − 𝑆)↾𝔑 is
an isomorphism on 𝔑. Then (5.14) implies

ℎ =
1

2
(𝑄∗ − 𝑆)−1(𝑄 − 𝑄∗)𝑔. (5.15)

Substituting (5.15) into (5.12) and (5.13) we obtain (5.11). □
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Lemma 5.8. Let 𝑇 ∈ Ξ(𝐴̇) and 𝐴 ∈ Ξ(𝐴̇) be a transversal to 𝑇 self-adjoint opera-
tor. If the operator

[𝐾(𝑇 ) +𝐾(𝑇 ∗)− 2𝐾(𝐴)]↾𝔑,

is an isomorphism of the space 𝔑 (defined in (5.4)), then the quasi-kernel 𝐴 of

the real part of the operator 𝔸 = 𝐴̇∗ − ℛ−1𝐴̇∗(𝐼 − 𝒫𝑇𝐴) is a Cayley transform of
the operator

𝑆 = 𝑆 + (𝑄 − 𝑆)(Re𝑄 − 𝑆)−1(𝑄∗ − 𝑆),

where 𝑆 = 𝐾(𝐴) and Re𝑄 = (1/2)[𝐾(𝑇 ) +𝐾(𝑇 ∗)].

Proof. Let 𝔸 = 𝐴̇∗ −ℛ−1𝐴̇∗(𝐼 −𝒫𝑇𝐴). Then by the virtue of Lemma 5.7, formula
(5.11) defines the quasi-kernel 𝐴 of the operator Re𝔸. It also follows from (5.11)
that

𝑓 +𝐴𝑓 = 2𝑔 + (𝑄∗ − 𝑆)−1(𝑄 − 𝑄∗)𝑔.
Let 𝑃𝔑 and 𝑃𝑆̇ denote the orthoprojection operators in ℋ according to (5.4) onto

𝔑 and Dom(𝑆̇), respectively. Then

2𝑔 + (𝑄∗ − 𝑆)−1(𝑄 − 𝑄∗)𝑔 = 2𝑃𝑆̇𝑔 + (𝑄∗ − 𝑆)−1(2𝑄∗ − 2𝑆 +𝑄 − 𝑄∗)𝑃𝔑𝑔

= 2𝑃𝑆̇𝑔 + 2(𝑄∗ − 𝑆)−1(Re𝑄 − 𝑆)𝑃𝔑𝑔,

and

(𝐼 +𝐴)𝑓 = 2𝑃𝑆̇𝑔 + 2(𝑄∗ − 𝑆)−1(Re𝑄 − 𝑆)𝑃𝔑𝑔. (5.16)

From the statement of the lemma we have that (Re𝑄 − 𝑆)↾𝔑 is an isomorphism

of the space 𝔑. Hence, (5.16) Ran(𝐼 + 𝐴) = ℋ and the Cayley transform is well

defined for 𝐴. Let

𝑆 = (𝐼 − 𝐴)(𝐼 +𝐴)−1.

It follows from (5.11) that

(𝑆 + 𝐼)𝜙 = (𝑄+ 𝐼)𝑔 + 1
2 (𝑆 + 𝐼)(𝑄∗ − 𝑆)−1(𝑄 − 𝑄∗)𝑔,

(𝐼 − 𝑆)𝜙 = (𝐼 − 𝑄)𝑔 + 1
2 (𝐼 − 𝑆)(𝑄∗ − 𝑆)−1(𝑄 − 𝑄∗)𝑔.

Therefore,
𝜙 = 𝑔 + 1

2 (𝑄
∗ − 𝑆)−1(𝑄 − 𝑄∗)𝑔,

𝑆𝜙 = 𝑄𝑔 + 1
2𝑆(𝑄

∗ − 𝑆)−1(𝑄 − 𝑄∗)𝑔.
and hence

𝑆𝜙 = 𝑆𝜙+ (𝑄 − 𝑆)𝑃𝔑𝑔,

𝜙 = 𝑃𝑆̇𝑔 + (𝑄∗ − 𝑆)−1(Re𝑄 − 𝑆)𝑃𝔑𝑔.
(5.17)

Using the second half of (5.17) we have

𝑃𝔑𝑔 = (Re𝑄 − 𝑆)−1(𝑄∗ − 𝑆)𝑃𝔑𝜙. (5.18)

Substituting, (5.18) into the first part of (5.17) we obtain

𝑆𝜙 = 𝑆𝜙+ (𝑄 − 𝑆)(Re𝑄 − 𝑆)−1(𝑄∗ − 𝑆)𝜙,

which proves the lemma. □
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Let 𝑇 ∈ Ξ(𝐴̇). By the class Ξ𝐴𝑇 we denote the set of all non-negative self-

adjoint operators 𝐴 ⊃ 𝐴̇ satisfying the following conditions:

1. [𝐾(𝑇 ) + 𝐾(𝑇 ∗) − 2𝐾(𝐴)]↾𝔑 is a non-negative operator in 𝔑, where 𝔑 is
defined in (5.4);

2. 𝐾(𝐴)+2[𝐾(𝑇 )−𝐾(𝐴)][𝐾(𝑇 )+𝐾(𝑇 ∗)−2𝐾(𝐴)]−1[𝐾(𝑇 ∗)−𝐾(𝐴)] ≤ 𝐾(𝐴𝐾).
1

Theorem 5.9. A (∗)-extension of operator 𝑇 ∈ Ξ(𝐴̇)

𝔸 = 𝐴̇∗ − ℛ−1𝐴̇∗(𝐼 − 𝒫𝑇𝐴),
generated by a self-adjoint operator 𝐴 ⊃ 𝐴̇ is accretive if and only if 𝐴 ∈ Ξ𝐴𝑇 .

Proof. We prove the necessity part first. Let 𝔸 = 𝐴̇∗ − ℛ−1𝐴̇∗(𝐼 − 𝒫𝑇𝐴) be an
accretive (∗)-extension, then Re𝔸 is a non-negative (∗)-extension of the quasi-

kernel 𝐴 ∈ Ξ(𝐴̇). But according to Lemma 5.7 𝐴 is defined by formulas (5.11).

Since (−1) is a regular point of operator 𝐴, then (5.16) implies that the operator

(Re𝑄 − 𝑆)↾𝔑 =
1

2
[𝐾(𝑇 ) +𝐾(𝑇 ∗)− 2𝐾(𝐴)]↾𝔑,

is an isomorphism of the space 𝔑. According to Lemma 5.8 we have

𝐾(𝐴) = 𝐾(𝐴) + 2[𝐾(𝑇 )− 𝐾(𝐴)][𝐾(𝑇 ) +𝐾(𝑇 ∗)− 2𝐾(𝐴)]−1[𝐾(𝑇 ∗)− 𝐾(𝐴)].

Since𝐾(𝐴) is a self-adjoint contractive extension of 𝑆̇, then 𝐾(𝐴) ≤ 𝐾(𝐴𝐾). Also,
since Re𝔸 is generated by 𝐴 and Re𝔸 ≥ 0, then by Theorem 5.5 the operator
[𝐾(𝐴)− 𝐾(𝐴)]↾𝔑 is non-negative. Consequently, the operator [𝐾(𝑇 ) +𝐾(𝑇 ∗)−
2𝐾(𝐴)↾𝔑 is non-negative as well and we conclude that 𝐴 ∈ Ξ𝐴𝑇 .

Now we prove sufficiency. Let 𝐴 ∈ Ξ𝐴𝑇 , then by Lemma 5.8, 𝐴 is a Cayley
transform of a self-adjoint extension 𝑆 of the operator 𝑆̇. Since

[𝑆 − 𝑆]↾𝔑 = [𝐾(𝐴)− 𝐾(𝐴)]↾𝔑,

is a non-negative operator, then due to Theorem 5.5 the operator Re𝔸 is a non-
negative (∗)-extension of 𝐴. That is why 𝔸 is an accretive (∗)-extension of opera-
tor 𝑇 . □

Theorem 5.10. An operator 𝑇 ∈ Ξ(𝐴̇) admits accretive (∗)-extensions if and only
if 𝑇 is transversal to 𝐴𝐹 .

Proof. If 𝑇 admits accretive (∗)-extensions, then the class Ξ𝐴𝑇 is non-empty, i.e.,

there exists a self-adjoint operator 𝐴 ∈ Ξ(𝐴̇) such that the operator

[(𝐾(𝑇 ) +𝐾(𝑇 ∗)− 2𝐾(𝐴)]↾𝔑,

is non-negative. But then [(𝐾(𝑇 ) +𝐾(𝑇 ∗)− 2𝐾(𝐴𝐹 )]↾𝔑 is non-negative as well.
This yields that [𝐾(𝑇 )−𝐾(𝐴𝐹 )]↾𝔑 is an isomorphism of 𝔑. Then by Lemma 5.3
𝑇 and 𝐴𝐹 are mutually transversal. This proves the necessity.

1When we write [𝐾(𝑇 )+𝐾(𝑇 ∗)− 2𝐾(𝐴)]−1 we mean the operator inverse to [𝐾(𝑇 )+𝐾(𝑇 ∗)−
2𝐾(𝐴)]↾𝔑.
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Now let us assume that 𝑇 and 𝐴𝐹 are mutually transversal. We will show
that in this case 𝐴𝐹 ∈ Ξ𝐴𝑇 . By Lemma 5.3, [𝐾(𝑇 )−𝐾(𝐴𝐹 )]↾𝔑 is an isomorphism
of the space 𝔑. Then using formula (5.5) we have

𝐾(𝑇 ) = 𝑄 =
1

2
(𝑆𝑀 + 𝑆𝜇) +

1

2
(𝑆𝑀 − 𝑆𝜇)

1/2𝑋(𝑆𝑀 − 𝑆𝜇)
1/2,

where 𝑋 ∈ [𝔑,𝔑] is a contraction. Furthermore,

(𝑄 − 𝑆𝜇)↾𝔑 =
1

2
(𝑆𝑀 − 𝑆𝜇)

1/2(𝑋 + 𝐼)(𝑆𝑀 − 𝑆𝜇)
1/2↾𝔑.

Thus, 𝑋 + 𝐼 is an isomorphism of the space 𝔑. Moreover, Re𝑋 + 𝐼 ≥ 0 and for
every 𝑓 ∈ 𝔑

((Re𝑋 + 𝐼)𝑓, 𝑓) =
1

2

(∥𝑓∥2 − ∥𝑋𝑓∥2 + ∥(𝑋 + 𝐼)𝑓∥2) . (5.19)

But since ∥(𝑋 + 𝐼)𝑓∥2 ≥ 𝑎∥𝑓∥2, where 𝑎 > 0, 𝑓 ∈ 𝔑, we have

((Re𝑋 + 𝐼)𝑓, 𝑓) ≥ 𝑏∥𝑓∥2, (𝑏 > 0).

Hence, Re𝑋 + 𝐼 is a non-negative operator implying that

[(1/2)(𝐾(𝑇 ) +𝐾(𝑇 ∗)− 𝐾(𝐴)]↾𝔑 =
1

2
(𝑆𝑀 − 𝑆𝜇)

1/2(Re𝑋 + 𝐼)(𝑆𝑀 − 𝑆𝜇)
1/2↾𝔑,

is non-negative too. Also (5.19) implies

Re𝑋 + 𝐼 ≥ 1

2
(𝑋∗ + 𝐼)(𝑋 + 𝐼).

It is easy to see then that (Re𝑋 + 𝐼)−1 ≤ 2(𝑋 + 𝐼)−1(𝑋∗ + 𝐼)−1. Therefore,

1

2
(𝑋 + 𝐼)(Re𝑋 + 𝐼)−1(𝑋∗ + 𝐼) ≤ 𝐼. (5.20)

Now, since

𝐾(𝐴𝐹 ) + 2[𝐾(𝑇 )− 𝐾(𝐴)][𝐾(𝑇 ) +𝐾(𝑇 ∗)− 2𝐾(𝐴)]−1[𝐾(𝑇 ∗)− 𝐾(𝐴)]

= 𝑆𝜇 +
1

2
(𝑆𝑀 − 𝑆𝜇)

1/2(𝑋 + 𝐼)(Re𝑋 + 𝐼)−1(𝑋∗ + 𝐼)(𝑆𝑀 − 𝑆𝜇)
1/2,

then applying (5.20) we obtain

𝐾(𝐴𝐹 ) + 2[𝐾(𝑇 )−𝐾(𝐴)][𝐾(𝑇 ) +𝐾(𝑇 ∗)− 2𝐾(𝐴)]−1[𝐾(𝑇 ∗)−𝐾(𝐴)] ≤ 𝐾(𝐴𝐾).

Thus, 𝐴𝐹 belongs to the class Ξ𝐴𝑇 and applying theorem (5.9) we conclude that

𝔸 = 𝐴̇∗ − ℛ−1𝐴̇∗(𝐼 − 𝒫𝐴𝑇 ) is an accretive (∗)-extension of 𝑇 . □
A qsc-extension

𝑄 =
1

2
(𝑆𝑀 + 𝑆𝜇) +

1

2
(𝑆𝑀 − 𝑆𝜇)

1/2𝑋(𝑆𝑀 − 𝑆𝜇)
1/2

is called extremal if 𝑋 is isometry.

Theorem 5.11. Let 𝑇 ∈ Ξ(𝐴̇) be transversal to 𝐴𝐹 . Then the accretive (∗)-extension
𝔸 of 𝑇 generated by 𝐴𝐹 has a property that Re𝔸 ⊃ 𝐴𝐾 if and only if 𝑇 and 𝑇 ∗

are extremal extensions of 𝐴̇.
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Proof. Suppose Re𝔸 ⊃ 𝐴𝐾 and Re𝔸 = 𝐴̇∗ −ℛ−1𝐴̇∗(𝐼 −𝒫𝑇𝐴𝐹 ). Then by Lemma
5.8 we have

𝑆𝑀 = 𝑆𝜇 + (𝑄 − 𝑆𝜇)(Re𝑄 − 𝑆𝜇)
−1(𝑄∗ − 𝑆𝜇).

Thus,
(𝑋 + 𝐼)(Re𝑋 + 𝐼)−1(𝑋∗ + 𝐼) = 2𝐼, (5.21)

where

𝑄 = 𝐾(𝑇 ) =
1

2
(𝑆𝑀 + 𝑆𝜇) +

1

2
(𝑆𝑀 − 𝑆𝜇)

1/2𝑋(𝑆𝑀 − 𝑆𝜇)
1/2.

It is easy to see that

(𝑋∗ + 𝐼)(Re𝑋 + 𝐼)−1(𝑋 + 𝐼) = (𝑋 + 𝐼)(Re𝑋 + 𝐼)−1(𝑋∗ + 𝐼). (5.22)

Then it follows from (5.21) and (5.22) that

𝑋∗𝑋 = 𝑋𝑋∗ = 𝐼,

i.e., 𝑋 is a unitary operator in 𝔑. Then both operators 𝑇 and 𝑇 ∗ are extremal
𝑚-accretive extensions of 𝐴̇.

The second part of the theorem is proved by reversing the argument. □

6. Realization of Stieltjes functions

Definition 6.1. An operator-valued Herglotz-Nevanlinna function 𝑉 (𝑧) in a finite-
dimensional Hilbert space 𝐸 is called a Stieltjes function if 𝑉 (𝑧) is holomorphic
in Ext[0,+∞) and

Im[𝑧𝑉 (𝑧)]

Im 𝑧
≥ 0. (6.1)

Consequently, an operator-valued Herglotz-Nevanlinna function 𝑉 (𝑧) is Stiel-
tjes if 𝑧𝑉 (𝑧) is also a Herglotz-Nevanlinna function. Applying the integral repre-
sentation (1.1) (see also [17]) for this case we get that

𝑛∑
𝑘,𝑙=1

(
𝑧𝑘𝑉 (𝑧𝑘)− 𝑧𝑙𝑉 (𝑧𝑙)

𝑧𝑘 − 𝑧𝑙
ℎ𝑘, ℎ𝑙

)
𝐸

≥ 0, (6.2)

for an arbitrary sequence {𝑧𝑘} (𝑘 = 1, . . . , 𝑛) of (Im 𝑧𝑘 > 0) complex numbers and
a sequence of vectors {ℎ𝑘} in 𝐸.

Similar to (1.1) formula holds true for the case of a Stieltjes function. Indeed,
if 𝑉 (𝑧) is a Stieltjes operator-valued function, then

𝑉 (𝑧) = 𝛾 +

∞∫
0

𝑑𝐺(𝑡)

𝑡 − 𝑧
, (6.3)

where 𝛾 ≥ 0 and 𝐺(𝑡) is a non-decreasing on [0,+∞) operator-valued function
such that ∞∫

0

(𝑑𝐺(𝑡)ℎ, ℎ)𝐸
1 + 𝑡

< ∞, ℎ ∈ 𝐸. (6.4)
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Theorem 6.2. Let Θ be an L-system of the form (2.3) with a densely defined non-

negative symmetric operator 𝐴̇. Then the impedance function 𝑉Θ(𝑧) defined by
(2.7) is a Stieltjes function if and only if the operator 𝔸 of the L-system Θ is
accretive.

Proof. Let us assume first that 𝔸 is an accretive operator, i.e., (Re𝔸𝑓, 𝑓) ≥ 0, for
all 𝑓 ∈ ℋ+. Let {𝑧𝑘} (𝑘 = 1, . . . , 𝑛) be a sequence of (Im 𝑧𝑘 > 0) complex numbers
and ℎ𝑘 be a sequence of vectors in 𝐸. Let us denote

𝐾ℎ𝑘 = 𝛿𝑘, 𝑔𝑘 = (Re𝔸− 𝑧𝑘𝐼)
−1𝛿𝑘, 𝑔 =

𝑛∑
𝑘=1

𝑔𝑘. (6.5)

Since (Re𝔸𝑔, 𝑔) ≥ 0, we have
𝑛∑

𝑘,𝑙=1

(Re𝔸𝑔𝑘, 𝑔𝑙) ≥ 0. (6.6)

By formal calculations one can have (Re𝔸)𝑔𝑘 = 𝛿𝑘 + 𝑧𝑘(Re𝔸− 𝑧𝑘𝐼)
−1𝛿𝑘, and

𝑛∑
𝑘,𝑙=1

(Re𝔸𝑔𝑘, 𝑔𝑙) =
𝑛∑

𝑘,𝑙=1

[
(𝛿𝑘, (Re𝔸− 𝑧𝑙𝐼)

−1𝛿𝑙)

+ (𝑧𝑘(Re𝔸− 𝑧𝑘𝐼)
−1𝛿𝑘, (Re𝔸− 𝑧𝑘𝐼)

−1𝛿𝑙)
]
.

Using obvious equalities(
(Re𝔸− 𝑧𝑘𝐼)

−1𝐾ℎ𝑘,𝐾ℎ𝑙
)
=
(
𝑉Θ(𝑧𝑘)ℎ𝑘, ℎ𝑙

)
𝐸
,

and (
(Re𝔸− 𝑧𝑙𝐼)

−1(Re𝔸− 𝑧𝑘𝐼)
−1𝐾ℎ𝑘,𝐾ℎ𝑙

)
=

(
𝑉Θ(𝑧𝑘)− 𝑉Θ(𝑧𝑙)

𝑧𝑘 − 𝑧𝑙
ℎ𝑘, ℎ𝑙

)
𝐸

,

we obtain
𝑛∑

𝑘,𝑙=1

((Re𝔸)𝑔𝑘, 𝑔𝑙) =
𝑛∑

𝑘,𝑙=1

(
𝑧𝑘𝑉Θ(𝑧𝑘)− 𝑧𝑙𝑉Θ(𝑧𝑙)

𝑧𝑘 − 𝑧𝑙
ℎ𝑘, ℎ𝑙

)
𝐸

≥ 0, (6.7)

which implies that 𝑉Θ(𝑧) is a Stieltjes function.

Now we prove necessity. First we assume that 𝐴̇ is a prime operator2. Then
the equivalence of (6.7) and (6.6) implies that (Re𝔸𝑔, 𝑔) ≥ 0 for any 𝑔 from

c.l.s.{𝔑𝑧}. It was shown in [11] that a symmetric operator 𝐴̇ with the equal defi-
ciency indices is prime if and only if

𝑐.𝑙.𝑠.
𝑧 ∕=𝑧

𝔑𝑧 = ℋ. (6.8)

Thus (Re𝔸𝑔, 𝑔) ≥ 0 for any 𝑔 ∈ ℋ+ and therefore 𝔸 is an accretive operator.

Now let us assume that 𝐴̇ is not a prime operator. Then there exists a sub-
space ℋ1 ⊂ ℋ on which 𝐴̇ generates a self-adjoint operator 𝐴1. Let us denote by

2We call a closed linear operator in a Hilbert space ℋ a prime operator if there is no non-trivial
reducing invariant subspace of ℋ on which it induces a self-adjoint operator.
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𝐴̇0 an operator induced by 𝐴̇ on ℋ0 = ℋ ⊖ ℋ1. As it was shown shown in the
proof of Theorem 12 of [14] the decomposition

ℋ+ = ℋ0
+ ⊕ ℋ1

+, ℋ0
+ = Dom(𝐴̇∗

0), ℋ1
+ = Dom(𝐴1), (6.9)

is (+)-orthogonal. Since 𝐴̇ is a non-negative operator, then

(Re𝔸𝑔, 𝑔) = (𝐴1𝑔, 𝑔) = (𝐴̇𝑔, 𝑔) ≥ 0, ∀𝑔 ∈ ℋ1
+ = Dom(𝐴1).

On the other hand operator 𝐴̇0 is prime in ℋ0 and hence 𝑐.𝑙.𝑠.
𝑧 ∕=𝑧

𝔑0
𝑧 = ℋ0, where

𝔑0
𝑧 are the deficiency subspaces of the symmetric operator 𝐴̇0 in ℋ0. Then the

equivalence of (6.7) and (6.6) again implies that (Re𝔸𝑔, 𝑔) ≥ 0 for any 𝑔 ∈ ℋ0
+.

Taking into account decomposition (6.9) we conclude that Re (𝔸𝑔, 𝑔) ≥ 0 holds for
all 𝑔 ∈ ℋ+ and hence 𝔸 is accretive. □

Now we define a class of realizable Stieltjes functions. At this point we need to
note that since Stieltjes functions form a subset of Herglotz-Nevanlinna functions,
then according to (1.7) and realization Theorems 8 and 9 of [14], we have that
the class of all realizable Stieltjes functions is a subclass of 𝑁(𝑅). To see the
specifications of this class we recall that aside of the integral representation (6.3),
any Stieltjes function admits a representation (1.1). According to (1.7) a Herglotz-
Nevanlinna operator-function can be realized if and only if in the representation
(1.1) 𝐿 = 0 and

𝑄ℎ =

∫ +∞

−∞

𝑡

1 + 𝑡2
𝑑𝐺(𝑡)ℎ, (6.10)

for all ℎ ∈ 𝐸 such that ∫ ∞

−∞
(𝑑𝐺(𝑡)ℎ, ℎ)𝐸 < ∞. (6.11)

holds. Considering this we obtain

𝑄 =
1

2
[𝑉 (−𝑖) + 𝑉 ∗(−𝑖)] = 𝛾 +

∫ +∞

0

𝑡

1 + 𝑡2
𝑑𝐺(𝑡). (6.12)

Combining (6.10) and (6.12) we conclude that 𝛾ℎ = 0 for all ℎ ∈ 𝐸 such that
(6.11) holds.

Definition 6.3. An operator-valued Stieltjes function 𝑉 (𝑧) in a finite-dimensional
Hilbert space 𝐸 belongs to the class 𝑆(𝑅) if in the representation (6.3)

𝛾ℎ = 0

for all ℎ ∈ 𝐸 such that ∫ ∞

0

(𝑑𝐺(𝑡)ℎ, ℎ)𝐸 < ∞. (6.13)
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We are going to focus though on the subclass 𝑆0(𝑅) of 𝑆(𝑅) whose definition
is the following.

Definition 6.4. An operator-valued Stieltjes function 𝑉 (𝑧) in a finite-dimensional
Hilbert space 𝐸 belongs to the class 𝑆0(𝑅) if in the representation (6.3) we have∫ ∞

0

(𝑑𝐺(𝑡)ℎ, ℎ)𝐸 = ∞, (6.14)

for all non-zero ℎ ∈ 𝐸.

An L-system Θ of the form (2.3) is called an accretive L-system if its operator
𝔸 is accretive. The following theorem is the direct realization theorem for the
functions of the class 𝑆0(𝑅).

Theorem 6.5. Let Θ be an accretive L-system of the form (2.3) with an invert-

ible channel operator 𝐾 and a densely defined symmetric operator 𝐴̇. Then its
impedance function 𝑉Θ(𝑧) of the form (2.7) belongs to the class 𝑆0(𝑅).

Proof. Since our L-system Θ is accretive, then by Theorem 6.2, 𝑉Θ(𝑧) is a Stieltjes
function. Now let us show that 𝑉Θ(𝑧) belongs to 𝑆0(𝑅). It follows from Theorem

7 of [14] that 𝐸1 = 𝐾−1𝔏, where 𝔏 = ℋ ⊖Dom(𝐴̇) and

𝐸1 =

{
ℎ ∈ 𝐸 :

∫ +∞

0

(𝑑𝐺(𝑡)ℎ, ℎ)𝐸 < ∞
}

.

But Dom(𝐴̇) = ℋ and consequently 𝔏 = {0}. Next, 𝐸1 = {0},∫ ∞

0

(𝑑𝐺(𝑡)ℎ, ℎ)𝐸 = ∞,

for all non-zero ℎ ∈ 𝐸, and therefore 𝑉Θ(𝑧) ∈ 𝑆0(𝑅). □
We can also state and prove the following inverse realization theorem for the

classes 𝑆0(𝑅).

Theorem 6.6. Let an operator-valued function 𝑉 (𝑧) belong to the class 𝑆0(𝑅). Then
𝑉 (𝑧) can be realized as an impedance function of a minimal accretive L-system Θ
of the form (2.3) with an invertible channel operator 𝐾, a densely defined non-

negative symmetric operator 𝐴̇, Dom(𝑇 ) ∕= Dom(𝑇 ∗), and a preassigned direction
operator 𝐽 for which 𝐼 + 𝑖𝑉 (−𝑖)𝐽 is invertible.3

Proof. We have already noted that the class of Stieltjes function lies inside the
wider class of all Herglotz-Nevanlinna functions. Thus all we actually have to show
is that 𝑆0(𝑅) ⊂ 𝑁0(𝑅), where the subclass 𝑁0(𝑅) was defined in [16], and that the
realizing L-system in the proof of Theorem 11 of [16] appears to be an accretive
L-system. The former is rather obvious and follows directly from the definition of
the class 𝑆0(𝑅). To see that the realizing L-system is accretive we need to recall
that the model L-system Θ was constructed in the proof of Theorem 11 of [16] and

3It was shown in [14] that if 𝐽 = 𝐼 this invertibility condition is satisfied automatically.
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then it was shown that 𝑉Θ(𝑧) = 𝑉 (𝑧). But 𝑉 (𝑧) is a Stieltjes function and hence
so is 𝑉Θ(𝑧). Applying Theorem 6.2 yields the desired result. □

Let us define a subclass of the class 𝑆0(𝑅).

Definition 6.7. An operator-valued Stieltjes function 𝑉 (𝑧) of the class 𝑆0(𝑅) is
said to be a member of the class 𝑆𝐾0 (𝑅) if∫ ∞

0

(𝑑𝐺(𝑡)ℎ, ℎ)𝐸
𝑡

= ∞, (6.15)

for all non-zero ℎ ∈ 𝐸.

Below we state and prove direct and inverse realization theorem for this
subclass.

Theorem 6.8. Let Θ be an accretive L-system of the form (2.3) with an invertible

channel operator 𝐾 and a densely defined symmetric operator 𝐴̇. If the Krĕın-von
Neumann extension 𝐴𝐾 is a quasi-kernel for Re𝔸, then the impedance function
𝑉Θ(𝑧) of the form (2.7) belongs to the class 𝑆𝐾0 (𝑅).

Conversely, if 𝑉 (𝑧) ∈ 𝑆𝐾0 (𝑅), then it can be realized as the impedance func-
tion of an accretive L-system Θ of the form (2.3) with Re𝔸 containing 𝐴𝐾 as
a quasi-kernel and a preassigned direction operator 𝐽 for which 𝐼 + 𝑖𝑉 (−𝑖)𝐽 is
invertible.

Proof. We begin with the proof of the second part. First we use realization The-
orem 2.4 and Theorem 6.6 to construct a minimal model L-system Θ whose
impedance function is 𝑉 (𝑧). Then we will show that (6.15) is equivalent to the
fact that self-adjoint operator 𝐴 introduced in the proof of Theorem 2.4 (see [14])
and constructed to be a quasi-kernel for Re𝔸, coincides with 𝐴𝐾 , that is the Krĕın-
von Neumann extension of the model symmetric operator 𝐴̇ of multiplication by
an independent variable (see [14]). Let 𝐿2

𝐺(𝐸) be a model space constructed in the
proof of Theorem (2.4) (see [14]). Let also 𝐸(𝑠) be the orthoprojection operator
in 𝐿2

𝐺(𝐸) defined by

𝐸(𝑠)𝑓(𝑡) =

{
𝑓(𝑡), 0 ≤ 𝑡 ≤ 𝑠

0, 𝑡 > 𝑠
(6.16)

where 𝑓(𝑡) ∈ 𝐶00(𝐸, [0,+∞)). Here be 𝐶00(𝐸, [0,+∞)) is the set of continuous
compactly supported functions 𝑓(𝑡), ([0 < 𝑡 < +∞)) with values in 𝐸. Then for
the operator 𝐴, that is the operator of multiplication by independent variable
defined in the proof of Theorem 2.4 (see [14]), we have

𝐴 =

∫ ∞

0

𝑠 𝑑𝐸(𝑠), (6.17)

and 𝐸(𝑠) is the resolution of identity of the operator 𝐴. By construction provided
in the proof of Theorem 2.4, the operator 𝐴 is the quasi-kernel of Re𝔸, where 𝔸
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is an accretive (∗)-extension of the model system. Let us calculate (𝐸(𝑠)𝑓(𝑡), 𝑓(𝑡))
and (𝐴𝑓(𝑡), 𝑓(𝑡)) (here we use 𝐿2

𝐺(𝐸) scalar product).

(𝐸(𝑠)𝑓(𝑡), 𝑓(𝑡)) =

∞∫
0

(𝑑𝐺(𝑡)𝐸(𝑠)𝑓(𝑡), 𝑓(𝑡))𝐸 =

𝑠∫
0

(𝑑𝐺(𝑡)𝑓(𝑡), 𝑓(𝑡))𝐸 , (6.18)

(𝐴𝑓(𝑡), 𝑓(𝑡)) =

∞∫
0

𝑠 𝑑

⎧⎨⎩
𝑠∫

0

(𝑑𝐺(𝑡)𝑓(𝑡), 𝑓(𝑡))𝐸

⎫⎬⎭ =

∞∫
0

𝑠 𝑑(𝐺(𝑠)𝑥(𝑠), 𝑥(𝑠))𝐸 . (6.19)

The equality 𝐴 = 𝐴𝐾 holds (see Proposition 3.2) if for all 𝜑 ∈ 𝔑−𝑎, 𝜑 ∕= 0∫ ∞

0

(𝑑𝐸(𝑡)𝜑, 𝜑)

𝑡
= ∞, (6.20)

where 𝔑−𝑎 is the deficiency subspace of the operator 𝐴̇ corresponding to the point
(−𝑎), (𝑎 > 0). But according to Theorem 2.4 we have

𝔑𝑧 =

{
ℎ

𝑡 − 𝑧
∈ 𝐿2

𝐺(𝐸) ∣ ℎ ∈ 𝐸

}
,

and hence

𝔑−𝑎 =
{

ℎ

𝑡+ 𝑎
∈ 𝐿2

𝐺(𝐸) ∣ ℎ ∈ 𝐸

}
. (6.21)

Taking into account (6.15) we have for all ℎ ∈ 𝐸
∞∫
0

(𝑑𝐸(𝑠)𝜑, 𝜑)𝐿2𝐺(𝐸)

𝑠
=

∞∫
0

(𝑑𝐸(𝑠) ℎ𝑡+𝑎 ,
ℎ
𝑡+𝑎 )𝐿2𝐺(𝐸)

𝑠
=

∞∫
0

(𝑑𝐺(𝑠)ℎ, ℎ)𝐸
𝑠(𝑠+ 𝑎)2

.

Hence the operator 𝐴 = 𝐴𝐾 iff
∞∫
0

(𝑑𝐺(𝑡)ℎ, ℎ)𝐸
𝑡(𝑡+ 𝑎)2

= ∞, ∀ℎ ∈ 𝐸, ℎ ∕= 0. (6.22)

Let us transform (6.15)∫ ∞

0

(𝑑𝐺(𝑡)ℎ, ℎ)𝐸
𝑡

=

∫ ∞

0

(𝑡+ 𝑎)2

𝑡

(
𝑑𝐺(𝑡)

ℎ

𝑡 + 𝑎
,

ℎ

𝑡+ 𝑎

)
𝐸

=

∫ ∞

0

𝑡

(
𝑑𝐺(𝑡)

ℎ

𝑡 + 𝑎
,

ℎ

𝑡+ 𝑎

)
𝐸

+ 2𝑎

∫ ∞

0

(
𝑑𝐺(𝑡)

ℎ

𝑡+ 𝑎
,

ℎ

𝑡+ 𝑎

)
𝐸

+ 𝑎2
∫ ∞

0

(𝑑𝐺(𝑡)ℎ, ℎ)𝐸
𝑡(𝑡+ 𝑎)2

.

(6.23)

Since Re𝔸 is a non-negative self-adjoint bi-extension of 𝐴̇ in the model system,
then we can apply Theorem 4.8 to get (4.9). Then first two integrals in (6.23)
converge for a fixed 𝑎 because of (4.9) and equality∫ ∞

0

(
𝑑𝐺(𝑡)

ℎ

𝑡+ 𝑎
,

ℎ

𝑡+ 𝑎

)
𝐸

=

∫ ∞

0

𝑑 (𝐸(𝑡)𝜑, 𝜑) , 𝜑 ∈ 𝔑−𝑎.
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Therefore the divergence of integral in (6.15) completely depends on divergence of
the last integral in (6.23).

Now we can prove the first part of the theorem. Let Θ be our L-system with
𝐴𝐾 that is a quasi-kernel for Re𝔸, and the impedance function 𝑉Θ(𝑧). Without
loss of generality we can consider Θ as a minimal system, otherwise we would take
the principal part of Θ that is minimal and has the same impedance function (see
[14]). Furthermore, 𝑉Θ(𝑧) can be realized as an impedance function of the model
L-system Θ1 constructed in the proof of Theorem 2.4. Some of the elements of Θ1

were already described above during the proof of the second part of the theorem. If
the L-system Θ1 is not minimal, we consider its principal part Θ1,0 that is described
in Theorem 12 of [14] and has the same impedance function as Θ1. Since both Θ
and Θ1,0 share the same impedance function 𝑉Θ(𝑧) they also have the same transfer
function 𝑊Θ(𝑧) and thus we can apply the theorem on bi-unitary equivalence of
[11]. According to this theorem the quasi-kernel operator 𝐴0 of Θ1,0 is unitary
equivalent to the quasi-kernel 𝐴𝐾 in Θ. Consequently, property (6.20) of 𝐴𝐾 gets
transferred by the unitary equivalence mapping to the corresponding property of
𝐴0 making it, by Proposition 3.2, the Krĕın-von Neumann self-adjoint extension
of the corresponding symmetric operator 𝐴̇0 of Θ1,0. But this implies that the
quasi-kernel operator 𝐴 of Θ1 (defined by (6.17)) is also the Krĕın-von Neumann
self-adjoint extension and hence has property (6.20) that causes (6.22). Using
(6.22) in conjunction with (6.23) we obtain (6.15). That proves the theorem. □

7. Realization of inverse Stieltjes functions

Definition 7.1. We will call an operator-valued Herglotz-Nevanlinna function 𝑉 (𝑧)
in a finite-dimensional Hilbert space 𝐸 by an inverse Stieltjes if 𝑉 (𝑧) it is holo-
morphic in Ext[0,+∞) and

Im[𝑉 (𝑧)/𝑧]

Im 𝑧
≥ 0. (7.1)

Combining (7.1) with (1.1) we obtain (see [18])
𝑛∑

𝑘,𝑙=1

(
𝑉 (𝑧𝑘)/𝑧𝑘 − 𝑉 (𝑧𝑙)/𝑧𝑙

𝑧𝑘 − 𝑧𝑙
ℎ𝑘, ℎ𝑙

)
𝐸

≥ 0,

for an arbitrary sequence {𝑧𝑘} (𝑘 = 1, . . . , 𝑛) of (Im 𝑧𝑘 > 0) complex numbers
and a sequence of vectors {ℎ𝑘} in 𝐸. It can be shown (see [23]) that every inverse
Stieltjes function 𝑉 (𝑧) in a finite-dimensional Hilbert space 𝐸 admits the following
integral representation

𝑉 (𝑧) = 𝛼+ 𝑧𝛽 +

∫ ∞

0

(
1

𝑡 − 𝑧
− 1

𝑡

)
𝑑𝐺(𝑡), (7.2)

where 𝛼 ≤ 0, 𝛽 ≥ 0, and 𝐺(𝑡) is a non-decreasing on [0,+∞) operator-valued
function such that ∫ ∞

0

(𝑑𝐺(𝑡)ℎ, ℎ)

𝑡+ 𝑡2
< ∞, ∀ℎ ∈ 𝐸.
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The following definition provides the description of all realizable inverse Stieltjes
operator-valued functions.

Definition 7.2. An operator-valued inverse Stieltjes function 𝑉 (𝑧) in a finite-
dimensional Hilbert space 𝐸 is a member of the class 𝑆−1(𝑅) if in the repre-
sentation (7.2) we have

i) 𝛽 = 0,

ii) 𝛼ℎ = 0,

for all ℎ ∈ 𝐸 with ∫ ∞

0

(𝑑𝐺(𝑡)ℎ, ℎ)𝐸 < ∞.

In what follows we will, however, be mostly interested in the following sub-
class of 𝑆−1(𝑅).

Definition 7.3. An inverse Stieltjes function 𝑉 (𝑧) ∈ 𝑆−1(𝑅) is a member of the
class 𝑆−1

0 (𝑅) if ∫ ∞

0

(𝑑𝐺(𝑡)ℎ, ℎ)𝐸 = ∞,

for all ℎ ∈ 𝐸, ℎ ∕= 0.

We recall that an L-system Θ of the form (2.3) is called accumulative if its
state-space operator 𝔸 is accumulative, i.e., satisfies (2.5). It is easy to see that if

an L-system is accumulative, then (2.5) implies that the operator 𝐴̇ of the system
is non-negative and both operators 𝑇 and 𝑇 ∗ are accretive.

The following statement is the direct realization theorem for the functions of
the class 𝑆−1

0 (𝑅).

Theorem 7.4. Let Θ be an accumulative L-system of the form (2.3) with an invert-

ible channel operator 𝐾 and Dom(𝐴̇) = ℋ. Then its impedance function 𝑉Θ(𝑧) of
the form (2.7) belongs to the class 𝑆−1

0 (𝑅).

Proof. First we will show that 𝑉Θ(𝑧) is an inverse Stieltjes function. Let {𝑧𝑘} (𝑘 =
1, . . . , 𝑛) is a sequence of non-real (𝑧𝑘 ∕= 𝑧𝑘) complex numbers and 𝜑𝑘 (𝑧𝑘 ∕= 𝑧𝑘)

is a sequence of elements of 𝔑𝑧𝑘 , the defect subspace of the operator 𝐴̇. Then for
every 𝑘 there exists ℎ𝑘 ∈ 𝐸 such that

𝜑𝑘 = 𝑧𝑘(Re𝔸 − 𝑧𝑘𝐼)
−1𝐾ℎ𝑘, (𝑘 = 1, . . . , 𝑛). (7.3)

Taking into account that 𝐴̇∗𝜑𝑘 = 𝑧𝑘𝜑𝑘, formula (7.3), and letting 𝜑 =
∑𝑛
𝑘=1 𝜑𝑘

we get

(𝐴̇∗𝜑, 𝜑) + (𝜑, 𝐴̇∗𝜑)− (Re𝔸𝜑, 𝜑)

=

𝑛∑
𝑘,𝑙=1

[
(𝐴̇∗𝜑𝑘, 𝜑𝑙) + (𝜑𝑘, 𝐴̇

∗𝜑𝑙)− (Re𝔸𝜑𝑘, 𝜑𝑙)
]

=
𝑛∑

𝑘,𝑙=1

([−Re𝔸+ 𝑧𝑘 + 𝑧𝑙]𝜑𝑘, 𝜑𝑙)
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=

𝑛∑
𝑘,𝑙=1

(
(Re𝔸− 𝑧𝑙𝐼)

−1(𝑧𝑙(Re𝔸− 𝑧𝑙𝐼)− 𝑧𝑘(Re𝔸 − 𝑧𝑘𝐼))(Re𝔸− 𝑧𝑘𝐼)
−1

𝑧𝑘𝑧𝑙(𝑧𝑘 − 𝑧𝑙)

× 𝐾ℎ𝑘,𝐾ℎ𝑙

)
=

𝑛∑
𝑘,𝑙=1

(
𝑧𝑙𝐾

∗(Re𝔸− 𝑧𝑘𝐼)
−1𝐾 − 𝑧𝑘𝐾

∗(Re𝔸 − 𝑧𝑙𝐼)
−1𝐾

𝑧𝑘𝑧𝑙(𝑧𝑘 − 𝑧𝑙)
ℎ𝑘, ℎ𝑙

)

=

𝑛∑
𝑘,𝑙=1

(
𝑧𝑙𝑉Θ(𝑧𝑘)− 𝑧𝑘𝑉Θ(𝑧𝑙)

𝑧𝑘𝑧𝑙(𝑧𝑘 − 𝑧𝑙)
ℎ𝑘, ℎ𝑙

)
≥ 0.

The last line can be re-written as follows
𝑛∑

𝑘,𝑙=1

(
𝑉Θ(𝑧𝑘)/𝑧𝑘 − 𝑉Θ(𝑧𝑙)/𝑧𝑙

𝑧𝑘 − 𝑧𝑙
ℎ𝑘, ℎ𝑙

)
≥ 0. (7.4)

Letting in (7.4) 𝑛 = 1, 𝑧1 = 𝑧, and ℎ1 = ℎ we get(
𝑉Θ(𝑧)/𝑧 − 𝑉Θ(𝑧)/𝑧

𝑧 − 𝑧
ℎ, ℎ

)
≥ 0, (7.5)

which means
Im (𝑉Θ(𝑧)/𝑧)

Im 𝑧
≥ 0,

and therefore 𝑉Θ(𝑧)/𝑧 is a Herglotz-Nevanlinna function. In Theorem 8 of [14]
we have shown that 𝑉Θ(𝑧) ∈ 𝑁(𝑅). Applying (7.1) we conclude that 𝑉Θ(𝑧) is an
inverse Stieltjes function.

Now we will show that 𝑉Θ(𝑧) belongs to 𝑆−1(𝑅). As any inverse Stieltjes
function 𝑉Θ(𝑧) has its integral representation (7.2) where 𝛼 ≤ 0, 𝛽 ≥ 0, and∫ ∞

0

(𝑑𝐺(𝑡)ℎ, ℎ)

𝑡+ 𝑡2
< ∞, ∀ℎ ∈ 𝐸.

In a neighborhood of zero the expression (𝑡+ 𝑡2) is equivalent to the (𝑡+ 𝑡3) and
in a neighborhood of the point at infinity

1

𝑡+ 𝑡3
<

1

𝑡+ 𝑡2
.

Hence, ∫ ∞

0

(𝑑𝐺(𝑡)ℎ, ℎ)

𝑡+ 𝑡3
< ∞, ∀ℎ ∈ 𝐸.

Furthermore,

𝑉Θ(𝑧) = 𝛼+ 𝑧𝛽 +

∫ ∞

0

(
1

𝑡 − 𝑧
− 𝑡

1 + 𝑡2
+

𝑡

1 + 𝑡2
− 1

𝑡

)
𝑑𝐺(𝑡)

=

(
𝛼 −
∫ ∞

0

𝑑𝐺(𝑡)

𝑡+ 𝑡3

)
+ 𝑧𝛽 +

∫ ∞

0

(
1

𝑡 − 𝑧
− 𝑡

1 + 𝑡2

)
𝑑𝐺(𝑡).
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On the other hand, as it was shown in [14], a Herglotz-Nevanlinna function can
be realized if and only if it belongs to the class 𝑁(𝑅) and hence in representation
(1.1) condition (1.7) holds. Considering this and the uniqueness of the function
𝐺(𝑡) we obtain (

𝛼 −
∫ ∞

0

𝑑𝐺(𝑡)

𝑡+ 𝑡3

)
𝑓 =

∫ +∞

0

𝑡

1 + 𝑡2
𝑑𝐺(𝑡)𝑓, (7.6)

for all 𝑓 ∈ 𝐸 such that
∫ +∞
−∞ (𝑑𝐺(𝑡)𝑓, 𝑓)𝐸 < ∞. Solving (7.6) for 𝛼 we get

𝛼𝑓 =

∫ ∞

0

1

𝑡
𝑑𝐺(𝑡)𝑓, (7.7)

for the same selection of 𝑓 . The left-hand side of (7.7) is non-positive but the
right-hand side is non-negative. This means that 𝛼 = 0 and 𝑉Θ(𝑧) ∈ 𝑆−1(𝑅). The
proof of the fact that 𝑉Θ(𝑧) ∈ 𝑆−1

0 (𝑅) is similar to the proof of Theorem 6.5. □

The inverse realization theorem can be stated and proved for the class 𝑆−1
0 (𝑅)

as follows.

Theorem 7.5. Let an operator-valued function 𝑉 (𝑧) belong to the class 𝑆−1
0 (𝑅).

Then 𝑉 (𝑧) can be realized as an impedance function of an accumulative minimal
L-system Θ of the form (2.3) with an invertible channel operator 𝐾, a non-negative

densely defined symmetric operator 𝐴̇ and 𝐽 = 𝐼.

Proof. The class 𝑆−1
0 (𝑅) is a subclass of 𝑁0(𝑅) and hence it is realizable by a

minimal L-system Θ with a densely defined symmetric operator 𝐴̇ and 𝐽 = 𝐼.
Thus all we have to show is that the L-system Θ we have constructed in the proof
of Theorem 11 of [16] is an accumulative L-system, i.e., satisfying the condition
(2.5).

Since the L-system Θ is minimal then the operator 𝐴̇ is prime. Applying (6.8)
yields

𝑐.𝑙.𝑠.
𝑧 ∕=𝑧

𝔑𝑧 = ℋ, 𝑧 ∕= 𝑧. (7.8)

In the proof of Theorem 7.4 we have shown that

(Re𝔸𝜑, 𝜑) ≤ (𝐴̇∗𝜑, 𝜑) + (𝜑, 𝐴̇∗𝜑), 𝜑 =

𝑛∑
𝑘=1

𝜑𝑘, 𝜑𝑘 ∈ 𝔑𝑧𝑘 , (7.9)

is equivalent to (7.4), where 𝑧𝑘 are defined by (7.3). Combining (7.8) and (7.9) we
get property (2.5) and conclude that Θ is an accumulative L-system. □

It is not hard to see that members of the classes 𝑆0(𝑅) and 𝑆−1
0 (𝑅) are

the Krĕın-Langer 𝑄-functions [27] corresponding to a self-adjoint extensions of a
densely defined symmetric operator.

Now we define a subclass of the class 𝑆−1
0 (𝑅).
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Definition 7.6. An operator-valued Stieltjes function 𝑉 (𝑧) of the class
𝑆−1
0 (𝑅) is said to be a member of the class 𝑆−1

0,𝐹 (𝑅) if∫ ∞

0

𝑡

𝑡2 + 1
(𝑑𝐺(𝑡)ℎ, ℎ)𝐸 = ∞, (7.10)

for all non-zero ℎ ∈ 𝐸.

Theorem 7.7. Let Θ be an accumulative L-system of the form (2.3) with an invert-

ible channel operator 𝐾 and a symmetric densely defined operator 𝐴̇. If Friedrichs
extension 𝐴𝐹 is a quasi-kernel for Re𝔸, then the impedance 𝑉Θ(𝑧) of the form
(2.7) belongs to the class 𝑆−1

0,𝐹 (𝑅).

Conversely, if 𝑉 (𝑧) ∈ 𝑆−1
0,𝐹 (𝑅), then it can be realized as an impedance of an

accumulative L-system Θ of the form (2.3) with Re𝔸 containing 𝐴𝐹 as a quasi-
kernel and a preassigned direction operator 𝐽 for which 𝐼 + 𝑖𝑉 (−𝑖)𝐽 is invertible.

Proof. Following the framework of the proof of Theorem 6.8, we begin with the
proof of the second part. First we use the realization Theorem 2.4 and Theorem
7.5 to construct a minimal model L-system Θ whose impedance function is 𝑉 (𝑧).
Then we will show that (6.15) is equivalent to the fact that self-adjoint operator
𝐴 introduced in the proof of Theorem (2.4) (see [14]) and constructed to be a
quasi-kernel for Re𝔸, coincides with 𝐴𝐹 , that is the Friedrichs extension of the
symmetric operator 𝐴̇ of multiplication by an independent variable (see [14]). Let
𝐿2
𝐺(𝐸) be a model space constructed in the proof or of Theorem (2.4). Let also

𝐸(𝑠) be the orthoprojection operator in 𝐿2
𝐺(𝐸) defined by (6.16). Then for the

operator 𝐴 defined in the proof of Theorem 2.4 (see [14]) we have

𝐴 =

∫ ∞

0

𝑡 𝑑𝐸(𝑡),

and 𝐸(𝑡) is the spectral function of operator 𝐴. As we have shown in the proof
of Theorem 6.8 the relations (6.18) and (6.19) take place. The equality 𝐴 = 𝐴𝐹
holds (see Proposition 3.2) if for all 𝜑 ∈ 𝔑−𝑎∫ ∞

0

𝑡 (𝑑𝐸(𝑡)𝜑, 𝜑)𝐸 = ∞, (7.11)

where 𝔑−𝑎 is the deficiency subspace of the operator 𝐴̇ corresponding to the point
(−𝑎), (𝑎 > 0). But according to Theorem 2.4 we have 𝔑−𝑎 described by (6.21).
Taking into account (7.10) we have for all ℎ ∈ 𝐸

∞∫
0

𝑠(𝑑𝐸(𝑠)𝜑, 𝜑)𝐿2𝐺(𝐸) =

∞∫
0

𝑠𝑑

(
𝐸(𝑠)

ℎ

𝑡+ 𝑎
,

ℎ

𝑡+ 𝑎

)
𝐿2𝐺(𝐸)

=

∞∫
0

𝑠 (𝑑𝐺(𝑠)ℎ, ℎ)𝐸
(𝑠+ 𝑎)2

.

Hence the operator 𝐴 = 𝐴𝐹 iff
∞∫
0

𝑡 (𝑑𝐺(𝑡)ℎ, ℎ)𝐸
(𝑡+ 𝑎)2

= ∞, ∀ℎ ∈ 𝐸, ℎ ∕= 0. (7.12)
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Let us transform (7.10)∫ ∞

0

𝑡

𝑡2 + 1
(𝑑𝐺(𝑡)ℎ, ℎ)𝐸 =

∫ ∞

0

𝑡(𝑡+ 𝑎)2

𝑡2 + 1

(
𝑑𝐺(𝑡)

ℎ

𝑡+ 𝑎
,

ℎ

𝑡+ 𝑎

)
𝐸

=

∫ ∞

0

𝑡

(𝑡+ 𝑎)2
⋅ 𝑡2

𝑡2 + 1

(
𝑑𝐺(𝑡)

ℎ

𝑡+ 𝑎
,

ℎ

𝑡+ 𝑎

)
𝐸

+ 2𝑎

∫ ∞

0

𝑡2

(𝑡+ 𝑎)2(𝑡2 + 1)

(
𝑑𝐺(𝑡)

ℎ

𝑡 + 𝑎
,

ℎ

𝑡+ 𝑎

)
𝐸

+ 𝑎2
∫ ∞

0

1

𝑡2 + 1
⋅ 𝑡 (𝑑𝐺(𝑡)ℎ, ℎ)𝐸

(𝑡+ 𝑎)2
.

(7.13)

Consider the following obvious inequality

𝑡2

(𝑡+ 𝑎)2(𝑡2 + 1)
− 1

𝑡2 + 1
=

𝑡2 − (𝑡+ 𝑎)2

(𝑡+ 𝑎)2(𝑡2 + 1)
=

(2𝑡+ 𝑎)(−𝑎)

(𝑡+ 𝑎)2(𝑡2 + 1)
< 0.

Taking into account this inequality and the fact that the integral∫ ∞

0

(𝑑𝐺(𝑡)ℎ, ℎ)𝐸
𝑡2 + 1

,

converges for all ℎ ∈ 𝐸, we conclude that the second integral in (7.13) is convergent.
Let us denote this integral as𝑄. Then using (7.13) and obvious estimates we obtain∫ ∞

0

𝑡

𝑡2 + 1
(𝑑𝐺(𝑡)ℎ, ℎ)𝐸 ≤

∫ ∞

0

𝑡

(𝑡+ 𝑎)2

(
𝑑𝐺(𝑡)

ℎ

𝑡+ 𝑎
,

ℎ

𝑡+ 𝑎

)
𝐸

+ 2𝑎𝑄+ 𝑎2
∫ ∞

0

𝑡 (𝑑𝐺(𝑡)ℎ, ℎ)𝐸
(𝑡+ 𝑎)2

,

or∫ ∞

0

𝑡

𝑡2 + 1
(𝑑𝐺(𝑡)ℎ, ℎ)𝐸 ≤ (𝑎2 + 1)

∫ ∞

0

𝑡

(𝑡+ 𝑎)2

(
𝑑𝐺(𝑡)

ℎ

𝑡+ 𝑎
,

ℎ

𝑡+ 𝑎

)
𝐸

+ 2𝑎𝑄.

Since 𝑉 (𝑧) ∈ 𝑆−1
0 (𝑅), then (7.7) holds and the integral on the left diverges causing

the integral on the right side diverge as well. Thus 𝐴 = 𝐴𝐹 .
Now we can prove the first part of the theorem. Let Θ be our L-system with

𝐴𝐹 that is a quasi-kernel for Re𝔸, and the impedance function 𝑉Θ(𝑧). Then 𝑉Θ(𝑧)
can be realized as an impedance function of the model L-system Θ1 constructed
in the proof of Theorem 2.4. Repeating the argument of the second part of the
proof of Theorem 6.8 with 𝐴𝐾 replaced by 𝐴𝐹 we conclude that the quasi-kernel
operator 𝐴 of Θ1 is the Friedrichs self-adjoint extension and hence has property
(7.11) that in turn causes (7.12) for any 𝑎 > 0. Let 𝑎 = 1, then by (7.12)

∞ =

∞∫
0

𝑡 (𝑑𝐺(𝑡)ℎ, ℎ)𝐸
(𝑡+ 1)2

≤
∞∫
0

𝑡 (𝑑𝐺(𝑡)ℎ, ℎ)𝐸
𝑡2 + 1

, ∀ℎ ∈ 𝐸, ℎ ∕= 0,

and hence the integral on the right diverges and (7.10) holds. This completes the
proof. □



104 Yu. Arlinskĭı, S. Belyi and E. Tsekanovskĭı

8. Examples

Let ℋ = 𝐿2[𝑎,+∞) and 𝑙(𝑦) = −𝑦′′ + 𝑞(𝑥)𝑦 where 𝑞 is a real locally summable
function. Suppose that the symmetric operator{

𝐴𝑦 = −𝑦′′ + 𝑞(𝑥)𝑦
𝑦(𝑎) = 𝑦′(𝑎) = 0

(8.1)

has deficiency indices (1,1). Let 𝐷∗ be the set of functions locally absolutely con-
tinuous together with their first derivatives such that 𝑙(𝑦) ∈ 𝐿2[𝑎,+∞). Consider
ℋ+ = 𝐷(𝐴∗) = 𝐷∗ with the scalar product

(𝑦, 𝑧)+ =

∫ ∞

𝑎

(
𝑦(𝑥)𝑧(𝑥) + 𝑙(𝑦)𝑙(𝑧)

)
𝑑𝑥, 𝑦, 𝑧 ∈ 𝐷∗.

Let ℋ+ ⊂ 𝐿2[𝑎,+∞) ⊂ ℋ− be the corresponding triplet of Hilbert spaces. Con-
sider operators{

𝑇ℎ𝑦 = 𝑙(𝑦) = −𝑦′′ + 𝑞(𝑥)𝑦
ℎ𝑦(𝑎) = 𝑦′(𝑎) ,

{
𝑇 ∗
ℎ𝑦 = 𝑙(𝑦) = −𝑦′′ + 𝑞(𝑥)𝑦

ℎ𝑦(𝑎) = 𝑦′(𝑎)
, (8.2)

{
𝐴𝑦 = 𝑙(𝑦) = −𝑦′′ + 𝑞(𝑥)𝑦
𝜇𝑦(𝑎) = 𝑦′(𝑎)

, Im𝜇 = 0.

It is well known [1] that 𝐴 = 𝐴∗. The following theorem was proved in [11].

Theorem 8.1. The set of all (∗)-extensions of a non-self-adjoint Schrödinger op-
erator 𝑇ℎ of the form (8.2) in 𝐿2[𝑎,+∞) can be represented in the form

𝔸𝑦 = −𝑦′′ + 𝑞(𝑥)𝑦 − 1

𝜇 − ℎ
[𝑦′(𝑎)− ℎ𝑦(𝑎)] [𝜇𝛿(𝑥 − 𝑎) + 𝛿′(𝑥 − 𝑎)],

𝔸∗𝑦 = −𝑦′′ + 𝑞(𝑥)𝑦 − 1

𝜇 − ℎ
[𝑦′(𝑎)− ℎ𝑦(𝑎)] [𝜇𝛿(𝑥 − 𝑎) + 𝛿′(𝑥 − 𝑎)].

(8.3)

In addition, the formulas (8.3) establish a one-to-one correspondence between the
set of all (∗)-extensions of a Schrödinger operator 𝑇ℎ of the form (8.2) and all real
numbers 𝜇 ∈ [−∞,+∞].

Suppose that the symmetric operator 𝐴 of the form (8.1) with deficiency
indices (1,1) is nonnegative, i.e., (𝐴𝑓, 𝑓) ≥ 0 for all 𝑓 ∈ 𝐷(𝐴)). It was shown in
[34] that the Schrödinger operator 𝑇ℎ of the form (8.2) is accretive if and only if

Reℎ ≥ −𝑚∞(−0), (8.4)

where 𝑚∞(𝜆) is the Weyl-Titchmarsh function [1]. For real ℎ such that ℎ ≥
−𝑚∞(−0) we get a description of all nonnegative self-adjoint extensions of an
operator 𝐴. For ℎ = −𝑚∞(−0) the corresponding operator{

𝐴𝐾 𝑦 = −𝑦′′ + 𝑞(𝑥)𝑦
𝑦′(𝑎) +𝑚∞(−0)𝑦(𝑎) = 0

(8.5)
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is the Krĕın-von Neumann extension of 𝐴 and for ℎ = +∞ the corresponding
operator {

𝐴𝐹 𝑦 = −𝑦′′ + 𝑞(𝑥)𝑦
𝑦(𝑎) = 0

(8.6)

is the Friedrichs extension of 𝐴 (see [34], [11]).
We conclude this paper with two simple illustrations for Theorems 6.8 and 7.7.

Example. Consider a function

𝑉 (𝑧) =
𝑖√
𝑧
. (8.7)

A direct check confirms that 𝑉 (𝑧) in (8.7) is a Stieltjes function. It was shown in
[29] that the inversion formula

𝐺(𝑡) = 𝐶 + lim
𝑦→0

1

𝜋

∫ 𝑡
0

Im

(
𝑖√

𝑥+ 𝑖𝑦

)
𝑑𝑥 (8.8)

describes the measure 𝐺(𝑡) in the representation (6.3). By direct calculations one
can confirm that

𝑉 (𝑧) =

∫ ∞

0

𝑑𝐺(𝑡)

𝑡 − 𝑧
=

𝑖√
𝑧
, and that

∫ ∞

0

𝑑𝐺(𝑡)

𝑡
=

∫ ∞

0

𝑑𝑡

𝜋𝑡3/2
= ∞.

Thus we can conclude that 𝑉 (𝑧) ∈ 𝑆𝐾0 (𝑅). It was shown in [17] that 𝑉 (𝑧) can be
realized as the impedance function of the L-system

Θ =

(
𝔸 𝐾 1

ℋ+ ⊂ 𝐿2[𝑎,+∞) ⊂ ℋ− ℂ

)
,

where

𝔸 𝑦 = −𝑦′′ + [𝑖𝑦(0)− 𝑦′(0)]𝛿(𝑥).
The operator 𝑇ℎ in this case is {

𝑇ℎ𝑦 = −𝑦′′

𝑦′(0) = 𝑖𝑦(0),
(8.9)

and channel operator 𝐾𝑐 = 𝑐𝑔, 𝑔 = 𝛿(𝑥), (𝑐 ∈ ℂ) with

𝐾∗𝑦 = (𝑦, 𝑔) = 𝑦(0).

The real part of 𝔸
Re𝔸 𝑦 = −𝑦′′ − 𝑦′(0)𝛿(𝑥)

contains the self-adjoint quasi-kernel{
𝐴𝑦 = −𝑦′′

𝑦′(0) = 0.

Clearly, 𝐴 = 𝐴𝐾 , where 𝐴𝐾 is given by (8.5).

Example. Consider a function

𝑉 (𝑧) = 𝑖
√
𝑧. (8.10)



106 Yu. Arlinskĭı, S. Belyi and E. Tsekanovskĭı

A direct check confirms that 𝑉 (𝑧) in (8.10) is an inverse Stieltjes function. Applying
the inversion formula similar to (8.8) we obtain

𝐺(𝑡) = 𝐶 + lim
𝑦→0

1

𝜋

∫ 𝑡
0

Im
(
𝑖
√

𝑥+ 𝑖𝑦
)

𝑑𝑥,

where 𝐺(𝑡) is the function in the representation (7.2). By direct calculations one
can confirm that

𝑉 (𝑧) =

∫ ∞

0

(
1

𝑡 − 𝑧
− 1

𝑡

)
𝑑𝐺(𝑡) = 𝑖

√
𝑧,

and that ∫ ∞

0

𝑡

𝑡2 + 1
𝑑𝐺(𝑡) =

∫ ∞

0

𝑑𝐺(𝑡)

𝑡
=

∫ ∞

0

𝑑𝑡

𝜋
√
𝑡
= ∞.

Thus we can conclude that 𝑉 (𝑧) ∈ 𝑆−1
0,𝐹 (𝑅). It was shown in [18] that 𝑉 (𝑧) can be

realized as the impedance function of the L-system

Θ =

(
𝔸 𝐾 1

ℋ+ ⊂ 𝐿2[𝑎,+∞) ⊂ ℋ− ℂ

)
,

where
𝔸 𝑦 = −𝑦′′ − [𝑖𝑦′(0) + 𝑦′(0)]𝛿′(𝑥).

The operator 𝑇ℎ in this case is again given by (8.9) and channel operator 𝐾𝑐 = 𝑐𝑔,
𝑔 = 𝛿′(𝑥), (𝑐 ∈ ℂ) with

𝐾∗𝑦 = (𝑦, 𝑔) = −𝑦′(0).
The real part of 𝔸

Re𝔸 𝑦 = −𝑦′′ − 𝑦(0)𝛿′(𝑥)
contains the self-adjoint quasi-kernel{

𝐴𝑦 = −𝑦′′

𝑦(0) = 0.

Clearly, 𝐴 = 𝐴𝐹 , where 𝐴𝐹 is given by (8.6).
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[30] Okunskĭı, M.D., Tsekanovskĭı, E.R.: On the theory of generalized selfadjoint exten-
sions of semibounded operators. (Russian) Funkcional. Anal. i Prilozen., 7, No. 3,
92–93 (1973)

[31] Phillips, R.: On dissipative operators, in “Lectures in Differential Equations”, vol.
II, Van Nostrand-Reinhold, New York, 65–113 (1965).
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