Exam 3

TUD Department of Chemistry Spring 2019

200 points total

Page 1 of 5

25 pts 1):

The table below lists several simple chemical tests in the rows and some organic compounds in the columns. Place a "+" in the table to indicate a positive result for the test and a "0" to indicate a negative test. (Consider solubility a positive test and insolubility a negative test for H_2O , H_2SO_4 , HCl, and NaOH. A positive test for $NaHCO_3$ is evolution of CO_2 bubbles).

	ethanol	В	С	D	E
H ₂ O solubility					
aq HCl solubility					
aq NaOH solubility					
conc H ₂ SO ₄ solubility					
NaHCO ₃					
Decolorizes Br ₂ / CCl ₄					

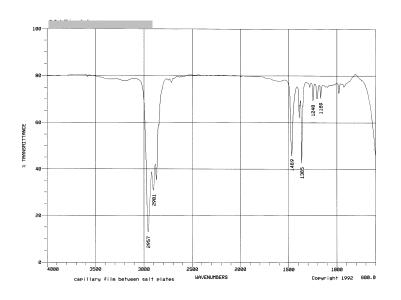
Exam 3

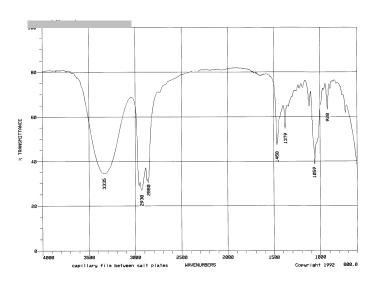
TUD Department of Chemistry Spring 2019 Page 2 of 5

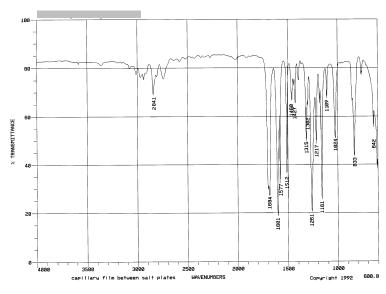
200 points total

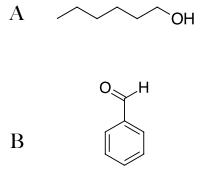
30pts	2)	For each statement below, write S_N1 , S_N2 , E1, or E2 if the statement applies to that mechanism.(Some statements are applicable to more than one mechanism)			
	a) [Ooes not involve a carbocation intermediate			
	b) Is first order in haloalkane and zero order in nucleophile				

- c) Involves inversion of configuration at site of substitution_____
- d) Is first order in haloalkane and first order in base_____
- e) Rearrangements may occur_____
- f) Order of reactivity of haloalkanes is 3° > 2° > 1° ______
- 25 pts 3) Circle the compound in each pair that you would expect to react more rapidly as a substrate via S_N2 mechanism:
 - a) CH₃CH₂CH₂Br or (CH₃)₂CHBr
 - b) CH₃CH₂CH₂CH₂F or CH₃CH₂CH₂Br
 - c) $(CH_3)_2CHNH_2$ or $CH_3CH_2CH_2CI$
 - d) $(CH_3CH_2)_2CHOH$ or $(CH_3CH_2)_2CHOCOCH_3$
 - e) CH₃CH₂I or CH₃CH₂OH


Exam 3


TUD Department of Chemistry Spring 2019


200 points total


Page 3 of 5

30 pts 4) For the structures below, associate the structure with its IR spectrum (place the correct letter prominently on the spectrum).

Exam 3

TUD Department of Chemistry Spring 2019

200 points total

Page 4 of 5

20 pts 5) Show the expected major product for the following $S_N 2$ reactions:

$$CI + NH21-$$

$$S^{\Theta}$$

$$CH_3CO_2CH_3$$

$$CI + CH_3CO_2CH_3$$

$$CI + OH^-$$

20 pts 6) Circle the compound in each pair that would undergo solvolysis in aqueous methanol more rapidly:

TUD Department of Chemistry Spring 2019

200 points total

Page 5 of 5

20 pts 7) a) Draw the structure of 2,3,5,5-tetramethyl-2-hexene:

b) Give the IUPAC names for the compound on the left and state whether the compound on the right is (Z)- or (E)-

30 pts 8) Show the expected major products of the reactions below:

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & &$$