CHM 1143

Homework Set 4

TUD Department of Chemistry Spring 2017 Page 1 of 3

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1) In the molecule below	?	1)			
Cl F-C-Br I					
A) Cl	B) C	C) I	D) Br	E) F	
 2) The ability of an atom A) diamagnetism B) first ionization p C) paramagnetism D) electron change E) electronegativit 	in a molecule to at potential to-mass ratio y	tract electrons is bes	t quantified by the		2)
3) Given the electronega	tivities below, whic	h covalent single bo	nd is most polar?		3)
Element: Electronegativity: A) O-N	H C N 2.1 2.5 3.0 B) O-H	O 3.5 C) O-C	D) C-H	E) N-H	
4) The Lewis structure of A) 0 B) 1 C) 2 D) 3 E) This cannot be o	f AsH3 shows determined from th	nonbonding o e data given.	electron pair(s) on As		4)
5) According to VSEPR t they will be arranged A) octahedral B) trigonal planar C) linear D) trigonal bipyrar E) tetrahedral	heory, if there are f in a(n) midal	our electron domain: geometry.	s in the valence shell	of an atom,	5)
6) The molecular geomet A) octahedral B) tetrahedral C) trigonal pyrami D) trigonal planar E) T-shaped	try of the SiH2Cl2 1 idal	nolecule is			6)

CHM 1143

Homework Set 4

TUD Department of Chemistry Spring 2017 Page 2 of 3

7) The molecular geometry of the PHCl₂ molecule is ______. 7) A) trigonal planar B) T-shaped C) tetrahedral D) bent E) trigonal pyramidal 8) A sample of gas (24.2 g) initially at 4.00 atm was compressed from 8.00 L to 2.00 L at constant 8) temperature. After the compression, the gas pressure was ______ atm. A) 4.00 B) 16.0 C) 2.00 D) 8.00 E) 1.00 9) A gas originally at 27 °C and 1.00 atm pressure in a 3.9 L flask is cooled at constant pressure until 9) the temperature is 11 °C. The new volume of the gas is _____ _ L. A) 4.1 B) 0.24 C) 0.27 D) 3.9 E) 3.7 10) 10) How many grams of H3PO4 are in 175 mL of a 3.5 M solution of H3PO4? D) 60 A) 4.9 B) 612 C) 0.61 E) 20 11) The concentration (M) of an aqueous methanol produced when 0.200 L of a 2.00 M solution was 11) diluted to 0.800 L is ____ B) 0.400 D) 0.500 A) 0.800 C) 8.00 E) 0.200 12) A 31.5 mL aliquot of HNO3 (aq) of unknown concentration was titrated with 0.0134 M NaOH 12) (aq). It took 23.9 mL of the base to reach the endpoint of the titration. The concentration (M) of the acid was B) 0.0102 A) 0.0051 C) 0.227 D) 1.02 E) 0.0204

CHM 1143

Homework Set 4

TUD Department of Chemistry

Spring 2017

Page 3 of 3

1	is atm		1		,
A) 7.5	B) 15	C) 0.67	D) 3.3	E) 1.5	
2) A sample of a gas	originally at 25 °C	and 1.00 atm pressu	re in a 2.5 L contain	er is subject to a	2)
pressure of 0.85 at	m and a temperatu	ure of 15°C. The fina	l volume of the gas	is L.	
A) 2.8	B) 0.38	C) 2.6	D) 2.1	E) 3.0	
3) The amount of gas	s that occupies 36.5	52 L at 68.0 °C and 67	2 mm Hg is	mol.	3)
A) 12.7	B) 127	C) 878	D) 24.4	E) 1.15	
4) The density of am	monia gas in a 4.32	2 L container at 837 to	orr and 45.0 °C is	g/L.	4)
A) 0.194					
B) 4.22 ×10 ^{−2}					
C) 0.719					
D) 3.86					
E) 0.432					
5) The molecular wei	ight of a gas is	g/mol if 3.5	g of the gas occupie	s 2.1 L at STP.	5)
A) 4.6×10^2					
B) 37					
C) 41					
D) 5.5 × 10 ³					
E) 2.7 ×10 ^{−2}					
6) The volume of HC	l gas required to r	eact with excess mag	nesium metal to pro	oduce 6.82 L of	6)
hydrogen gas at 2.	.19 atm and 35.0 °C	C is L.	1		,
A) 4.38	B) 6.82	C) 2.19	D) 3.41	E) 13.6	
,					
7) The molecular geo	metry of the SF ₂ r	nolecule is	<u></u> .		7)
7) The molecular geo A) trigonal pla	ometry of the SF2 r nar	nolecule is	·		7)
7) The molecular geo A) trigonal pla B) bent	ometry of the SF2 1 nar	nolecule is	·		7)
7) The molecular geo A) trigonal pla B) bent C) octahedral	ometry of the SF2 1 nar	nolecule is			7)
7) The molecular geo A) trigonal pla B) bent C) octahedral D) tetrahedral	ometry of the SF2 1 nar	nolecule is			7)
7) The molecular geo A) trigonal pla B) bent C) octahedral D) tetrahedral E) linear	ometry of the SF2 1 nar	nolecule is			7)
 7) The molecular geo A) trigonal pla B) bent C) octahedral D) tetrahedral E) linear 8) The molecular geo	ometry of the SF2 1 nar ometry of the H3O	nolecule is			7)
 7) The molecular geo A) trigonal pla B) bent C) octahedral D) tetrahedral E) linear 8) The molecular geo A) trigonal pyr 	ometry of the SF2 1 nar ometry of the H3O amidal	nolecule is + ion is			7) 8)
 7) The molecular geo A) trigonal pla B) bent C) octahedral D) tetrahedral E) linear 8) The molecular geo A) trigonal pyr B) tetrahedral 	ometry of the SF2 1 nar ometry of the H3O ⁷ amidal	nolecule is + ion is			7) 8)
 7) The molecular gec A) trigonal pla B) bent C) octahedral D) tetrahedral E) linear 8) The molecular geo A) trigonal pyr B) tetrahedral C) bent 	ometry of the SF2 1 nar ometry of the H3O camidal	nolecule is † ion is			7) 8)
 7) The molecular gec A) trigonal pla B) bent C) octahedral D) tetrahedral E) linear 8) The molecular geo A) trigonal pyr B) tetrahedral C) bent D) octahedral 	ometry of the SF2 1 nar ometry of the H3O camidal	nolecule is + ion is			7) 8)

1