CHM 1143	Exam 3
20 points each	TUD Department of Chemistry Fall 2017 Page 1 of 5
1) Λ vessel contains 0.50 M CO	0.05 M H ₂ O_{10} O 30 M CO ₂ and 0.10 M H ₂ All are

1) A vessel contains 0.50 M CO, 0.05 M H_2O , 0.30 M CO₂ and 0.10 M H_2 . All are gasses. At the temperature of the vessel K= 88 for the reaction below. In what direction will the reaction proceed in order to reach equilibrium? (You must show your calculation of Q to justify your answer. Simply stating a direction will receive no credit).

 $CO + H_2O = CO_2 + H_2$ (all species in the gas phase)

2) Calculate the pH and pOH of the following aqueous solutions:

a) 0.0035 M $\rm HNO_3$

b) 0.005 M Ba(OH)₂

CHM 1143

Exam 3

20 points each

TUD Department of Chemistry Fall 2017 Page 2 of 5

3) Calculate the pH of 0.25 M HF (Ka= 6.8×10^{-4})

4) Calculate the pH of 0.30 M potassium fluoride.

CHM 1143	Exam 3
20 points each	TUD Department of Chemistry Fall 2017
	Page 3 of 5

5) Titration of a 0.301 g sample of our blue copper complex required 13.67 mL of 0.254 M HCl to react with the NH_3 in the sample. How many mmoles of NH_3 are present per gram of the complex?

 $NH_3 + H^+ = NH_4$

6) Data for the aqueous reaction below are given in the table:

$$S_2O_8^{2-} + 3I^{1-} = 2SO_4^{2-} + I_3^{1-}$$

Determine the order of the reaction with respect to $S_2O_8^{2-}$ and to I^{1-} and write the rate expression. Determine the numeric value (with correct units) of k, the specific rate constant.

Exp #	[S ₂ O ₈ ²⁻]	[I ¹⁻]	Rate M/sec
1	0.012	0.050	7.0 x 10 ⁻⁶
2	0.024	0.050	1.4 x 10 ⁻⁵
3	0.024	0.10	2.8 x 10 ⁻⁵

CHM 1143

20 points each

TUD Department of Chemistry Fall 2017 Page 4 of 5

Exam 3

7) a) Write the equilibrium constant expression for the following reactions:

 $Pb^{2^+}(aq) + 2Cl^-(aq) = PbCl_2(s)$

$$2H_2O_2(g) = O_2(g) + 2H_2O(1)$$

$$Ca_3(PO_4)_2(s) = 3Ca^{2+}(aq) + 2PO_4^{3-}(aq)$$

$$Fe_2O_3(s) + 3CO(g) = 2Fe(s) + 3CO_2(g)$$

CHM 1143

Exam 3

20 points each

TUD Department of Chemistry Fall 2017 Page 5 of 5

8) The half-life of phenobarbital in the blood is 60 hours. If your epileptic black and white cocker spaniel receives a dose of 75 mg at 8 am, how much is still in his body 7 hours later?

9) Fill in the table:

[H ⁺]	[OH ⁻]	рН	рОН
0.005 M			
			3.00
		11.00	

10) a) Circle the compounds which would result in basic solutions when dissolved in water:

HC1 NaNO₃ NH₃ KBr MgCl₂ KF FeI₃ Mg(ClO)₂ Mg(ClO₄)₂

b) Calculate the pH of a solution of 4.0 g HF plus 8.4 g of NaF in enough water to make 250 mL of solution.