Chapter 17;

C++

From Control Structures
through Obijects

STARTING OUT WITH

seventh edition

Linked Lists

TONY GADDIS

Addison-Wesley
is an imprint of

HFVSTOLN M Copyright © 2012 Pearson Education, Inc.
B

From Control Structures

through Objects
1 ; [1 TONY GADDIS

Introduction to the Linked List
ADT

Copyright © 2012 Pearson Education, Inc.

Introduction to the Linked List ADT

* Linked list: set of data structures (nodes)
that contain references to other data
structures

»NULL

list
head

Copyright © 2012 Pearson Education, Inc.

Introduction to the Linked List ADT

» References may be addresses or array
Indices

 Data structures can be added to or
removed from the linked list during newNode
execution

list
head NULL

Copyright © 2012 Pearson Education, Inc.

Linked Lists vs. Arrays and Vectors

 Linked lists can grow and shrink as
needed, unlike arrays, which have a fixed

size

* Linked lists can insert a node between
other nodes easily

»NULL

list
head

Copyright © 2012 Pearson Education, Inc.

Node Organization

A node contains:

— data: one or more data fields — may be
organized as structure, object, etc.

— a pointer that can point to another node

pointer
data .

Copyright © 2012 Pearson Education, Inc.

Linked List Organization

 Linked list contains O or more nodes:

»NULL

list
head

« Has a list head to point to first node
» Last node points to NULL

Copyright © 2012 Pearson Education, Inc.

Empty List

* |f a list currently contains O nodes, it Is
the empty list

* In this case the list head points to NULL

list
head

o—/— NULL

Copyright © 2012 Pearson Education, Inc.

Declaring a Node

 Declare a node:
struct ListNode

{

int data;

ListNode *next;
bi
 No memory Is allocated at this time

Copyright © 2012 Pearson Education, Inc.

Defining a Linked List

* Define a pointer for the head of the list:
ListNode *head = NULL;

* Head pointer initialized to NULL to indicate
an empty list

head

> NULL

Copyright © 2012 Pearson Education, Inc.

NULL Pointer

* |s used to indicate end-of-list

« Should always be tested for before using a
pointer:

ListNode *p;

while (p != NULL)
« Can also test the pointer itself:
while (!p) ... // same meaning

// as above

Copyright © 2012 Pearson Education, Inc.

‘ S STARTINGOUTWITH -+

From Control Structures
through Objects

seventh edition

TONY GADDIS

Linked List Operations

Copyright © 2012 Pearson Education, Inc.

Linked List Operations

* Basic operations:
— append a node to the end of the list
— Insert a node within the list
— traverse the linked list
— delete a node
— delete/destroy the list

Copyright © 2012 Pearson Education, Inc.

Contents of NumberList.h

1 // Specification file for the NumberList class

2 #ifndef NUMBERLIST H

3 #define NUMBERLIST H

4

5 <class NumberlList

6 {

7 private:

8 // Declare a structure for the list

9 struct ListNode
10 {
11 double value; // The value in this node
12 struct ListNode *next; // To point to the next node
13 }i
14
15 ListNode *head; // List head pointer
16

Copyright © 2012 Pearson Education, Inc.

Contents of NumberList.h
(Continued)

17 public:

18 // Constructor

19 NumberList ()

20 { head = NULL; }

21

22 // Destructor

23 ~NumberList () ;

24

25 // Linked list operations
26 vold appendNode (double) ;
277 vold insertNode (double) ;
28 volid deleteNode (double) ;
29 vold displaylList () const;
30 };

31 #endif

Copyright © 2012 Pearson Education, Inc.

Create a New Node

newNode

 Allocate memory for the new node:

newNode = new ListNode;

* Initialize the contents of the node: ,..noae

newNode->value = num;

23

« Set the pointer field to NULL:

newNode->next = NULL; npewhode

23 o »NULL

Copyright © 2012 Pearson Education, Inc.

Appending a Node

 Add a node to the end of the list

» Basic process:
— Create the new node (as already described)

— Add node to the end of the list:
* If list is empty, set head pointer to this node
 Else,
—traverse the list to the end
— set pointer of last node to point to new node

Copyright © 2012 Pearson Education, Inc.

Appending a Node

| e
k////////////;odePtr
- I 9% | 1] L8] »NULL
list
head
- 29] . ,NULL
newNode

New node created, end of list located

Copyright © 2012 Pearson Education, Inc.

Appending a Node

e

5 13 19

® > ° > ° > e

list
head

23 "NULL

A 4
®

newNode

New node added to end of list

Copyright © 2012 Pearson Education, Inc.

C++ code for Appending a Node

11
12
13
14
15
16
17
18
19
20
21
22
23

void NumberList: :appendNode (double num)

{

ListNode *newNode; // To point to a new node
ListNode *nodePtr; // To move through the list

// Allocate a new node and store num there.
newNode = new ListNode;

newNode->value = num;

newNode->next = NULL;

// If there are no nodes in the list
// make newNode the first node.
if (!'head)

Copyright © 2012 Pearson Education, Inc.

C++ code for Appending a Node (Continued)

24
25
26
277
28
29
30
31
32
33
34
35
36
37

head = newNode;

else // Otherwise, insert newNode at end.

{

// Initialize nodePtr to head of list.
nodePtr = head;

// Find the last node in the list.
while (nodePtr->next)
nodePtr = nodePtr->next;

// Insert newNode as the last node.
nodePtr—->next = newNode;

Copyright © 2012 Pearson Education, Inc.

Program 17-1

// This program demonstrates a simple append
// operation on a linked list.

tinclude <iostream:>

tinclude "NumberList.h"

using namespace std;

int main()

1
// Define a NumberlList cbject.
MumberList list:

// RAppend scme values to the list.
list.appendlode(2.5);
list.appendlode(7.9);
list.appendlode(12.6);

return 0;

(This program displays no output.)

Copyright © 2012 Pearson Education, Inc.

Inserting a Node into a Linked List

 Used to maintain a linked list In order

* Requires two pointers to traverse the list:

— pointer to locate the node with data value
greater than that of node to be inserted

— pointer to 'trail behind' one node, to point to
node before point of insertion

* New node Is inserted between the nodes
pointed at by these pointers

Copyright © 2012 Pearson Education, Inc.

Inserting a Node Into a Linked List

previousNode nodePtr
. Jo2 | e Jo13 . S0 . " NULL
list
head
. R »NULL

newNode

New node created, correct position located

Copyright © 2012 Pearson Education, Inc.

Inserting a Node Into a Linked List

previousNode nodePtr
5 13 19
o > o > o »NULL
1
list
head
° > 17 o
newNode

New node inserted in order in the linked list

Copyright © 2012 Pearson Education, Inc.

volid NumberList::insertNode(double num)

{

ListNode *newlNode: 08 new node
ListNode *nodePtr: // To traverse the list
ListNeode *previcusNede = NULL; // The previocus node

/f Allocate a new node and store num there.
newllode = new ListNode:;
newhlode->value = num;

// If there are no nodes in the list
/7 make newNode the first node
if (!head)
{
head = newlode:
newlode->next = NUILL;
¥
else // Otherwise, insert newlode
{
J/ Position nodePtr at the head of list.
nodePtr = head:

Copyright © 2012 Pearson Education, Inc.

// Initialize previouslode to NULL.
previousNode = NULL;

// Bkip all nodes whose value is less than num.

while (nodePtr != NULL && nodePtr->value < num)

1
previocusilode = nodePtr;

nodePtr = nodePtr->=next:

// If the new node is to be the lst in the list,
{/ insert it before all other nodes.
if (previouslode == HNULL)

1

Copyright © 2012 Pearson Education, Inc.

head = newlNode:
newhode->next = nodePtr;

I
else // Otherwise insert after the previous node.
1
previousNode->next = newlode;
newhlode->next = nodePtr;
I

Copyright © 2012 Pearson Education, Inc.

Program 17-3

// This program demonstrates the insertlNode member function.
tinclude <iostream>

¢include "HumberList.h"

using namespace std;

int maini)

{
/f Define a MumberList object.
MumberList list:

// Build the list with some values.
list.appendiiode(2.5);
list.appendiiode(7.9);
list.appendlode (12.6);

// Insert a node in the middle of the list.
list.insertNode (10.5);

/f Dispay the list
list.displayList();

return 0;
h
Program Output
2.5
7.9
10.5
12.6

Copyright © 2012 Pearson Education, Inc.

Traversing a Linked List

* Visit each node in a linked list: display
contents, validate data, etc.

» Basic process:

— set a pointer to the contents of the head
pointer

— while pointer is not NULL

e process data

* go to the next node by setting the pointer to the
pointer field of the current node in the list

— end while

Copyright © 2012 Pearson Education, Inc.

Traversing a Linked List

A

list
head

nodePtr points to the node containing 5, then the
node containing 13, then the node containing 19,

19

nodePtr

»NULL

then points to NULL, and the list traversal stops

Copyright © 2012 Pearson Education, Inc.

Deleting a Node

 Used to remove a node from a linked list

* If list uses dynamic memory, then delete
node from memory

* Requires two pointers: one to locate the
node to be deleted, one to point to the
node before the node to be deleted

Copyright © 2012 Pearson Education, Inc.

Deleting a Node

previousNode nodePtr

\

list
head

A 4
®
A 4
®

Locating the node containing 13

Copyright © 2012 Pearson Education, Inc.

A 4

19

»NULL

Deleting a Node

previousNode nodePtr

|

o »NULL

vy

list
head

Adjusting pointer around the node to be deleted

Copyright © 2012 Pearson Education, Inc.

Deleting a Node

previousNode nodePtr
5
[> ([
list
head

\4

19

Linked list after deleting the node containing 13

Copyright © 2012 Pearson Education, Inc.

»NULL

vold NumberList::deletelNode(double num)

{
ListNode *nodePtr: // To traverse the 1list

ListNode *previousNode; // To point to the previcus node

/7 If the list is empty, do nothing.
if (lhead)
return;

// Determine if the first node is the one.
if (head->value == num)
i

nodePtr = head-=next:

delete head;

head = nodePtr:

i

else

1

Copyright © 2012 Pearson Education, Inc.

J/ Initialize nodePtr to head of list
nodePtr = head;

// 8kip all nodes whose value member 1is
// not equal to num.
while (nodePtr != NULL && nodePtr->value != num)

{
previouslode = nodePtr;
nodePtr = nodePtr->=next;

// If nodePtr is not at the end of the list,
// 1link the previcus node to the node after
// nodePtr, then delete nodePtr.

if (nodePtr)

previouslode->next = nodePtr->next;
delete nodePtr:

i

Copyright © 2012 Pearson Education, Inc.

Program 17-4

{/ This program demonstrates the deletelode member function.
tinclude <iostream:

tinclude "NumberList.h"”

using namespace std;

int main{()

{
// Define a NumberList object.
NumberList list;

// Build the list with scme wvalues.
list.appendilode{2.5);
list.appendiode(7.9);
list.appendilode({12.6);

// Display the list.

cout << "Here are the initial wvalues:\n":
list.displayList();

cout << endl:

Copyright © 2012 Pearson Education, Inc.

/{ Delete the middle node.
cout << "Now deleting the node in the middle.‘\n";
list.deletelNode(7.9);

// Display the list.

cout << "Here are the nodes left.\n";
list.displavyList();

cout << endl:

// Delete the last node.
cout << "Now deleting the last node.\n";
list.deleteNode(l2.6);

// Display the list.

cout << "Here are the nodes left.\n";
list.displavyList();

cout << endl:

Copyright © 2012 Pearson Education, Inc.

// Delete the only node left in the list.
cout << "Now deleting the only remaining node.\n";
list.deletelode(2.5);

// Display the list.

cout << "Here are the nodes left.'n":
list.displayList();

return 0

Program 17-4 {(continued)

Program Output

Here are the initial walues:
2.5

7.9

12.86

How deleting the node in the middle.
Here are the nodes left.

2.5

12.6

Now deleting the last node.
Here are the nodes left.

2.5

Now deleting the only remaining node.
Here are the ncdes left.

Copyright © 2012 Pearson Education, Inc.

Destroying a Linked List

« Must remove all nodes used In the list

 To do this, use list traversal to visit each node

 For each node,
— Unlink the node from the list

— If the list uses dynamic memory, then free the node’s
memory

Set the list head to NULL

Copyright © 2012 Pearson Education, Inc.

HumberList : :~HNumberList ()

{
ListNode *nodePtr; /{ To traverse the list
ListNode *nextlNode; // To point to the next node
// Position nodePtr at the head of the list.
nodePtr = head;
/f While nodePtr is not at the end of the list...
while (nodePtr != NULL)
1
// Save a pointer to the next node.
nexthlode = nodePtr->next:
// Delete the current node.
delete nodePtr;
// Position nodePtr at the next node.
nodePtr = nextlode:
t
¥

Copyright © 2012 Pearson Education, Inc.

From Control Structures

through Objects
1 ; [3 TONY GADDIS

A Linked List Template

seventh edition

Copyright © 2012 Pearson Education, Inc.

A Linked List Template

* When declaring a linked list, must specify
the type of data to be held in each node

* Using templates, can declare a linked list
that can hold data type determined at list
definition time

 See LinkedList.h (versions 1 and 2)
and Program 17-5

Copyright © 2012 Pearson Education, Inc.

From Control Structures

through Objects
1 ; [| I TONY GADDIS

seventh edition

Variations of the
Linked List

Copyright © 2012 Pearson Education, Inc.

Variatio

e Other lin
— doubly-

ns of the Linked List

Ked list organizations:

Inked list: each node contains two

pointers: one to the next node in the list, one
to the previous node in the list

13 19

T [> o © > ® .——PNULL

list
head

NULL

Copyright © 2012 Pearson Education, Inc.

Variations of the Linked List

* Other linked list organizations:

— circular linked list: the last node In the list

points back to the first node in the list, not to
NULL

list
head

Copyright © 2012 Pearson Education, Inc.

STARTING OUT WITH ‘ e

From Control Structures
through Objects

seventh edition

TONY GADDIS

The STL 1ist Container

Copyright © 2012 Pearson Education, Inc.

The STL 1ist Container

 Template for a doubly linked list

« Member functions for

— locating beginning, end of list: front, back,
end

— adding elements to the list: insert, merge,
push back, push front

— removing elements from the list: erase,
pop back, pop front, unique

e See Table 17-1 for a list of member functions

Copyright © 2012 Pearson Education, Inc.

