
Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Chapter 17:

Linked Lists

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

17.1

Introduction to the Linked List

ADT

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Introduction to the Linked List ADT

• Linked list: set of data structures (nodes)
that contain references to other data
structures

NULL

list
head

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Introduction to the Linked List ADT

• References may be addresses or array

indices

• Data structures can be added to or

removed from the linked list during

execution

NULL
list

head

newNode

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Linked Lists vs. Arrays and Vectors

• Linked lists can grow and shrink as

needed, unlike arrays, which have a fixed

size

• Linked lists can insert a node between

other nodes easily

NULL

list
head

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Node Organization

• A node contains:

– data: one or more data fields – may be

organized as structure, object, etc.

– a pointer that can point to another node

data

pointer

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Linked List Organization

• Linked list contains 0 or more nodes:

• Has a list head to point to first node

• Last node points to NULL

NULL

list
head

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Empty List

• If a list currently contains 0 nodes, it is

the empty list

• In this case the list head points to NULL

NULL

list
head

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Declaring a Node

• Declare a node:

 struct ListNode

 {

 int data;

 ListNode *next;

 };

• No memory is allocated at this time

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Defining a Linked List

• Define a pointer for the head of the list:

 ListNode *head = NULL;

• Head pointer initialized to NULL to indicate

an empty list

NULL

head

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

NULL Pointer

• Is used to indicate end-of-list

• Should always be tested for before using a
pointer:
 ListNode *p;

 while (p != NULL) ...

• Can also test the pointer itself:
 while (!p) ... // same meaning

 // as above

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

17.2

Linked List Operations

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Linked List Operations

• Basic operations:

– append a node to the end of the list

– insert a node within the list

– traverse the linked list

– delete a node

– delete/destroy the list

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Contents of NumberList.h
 1 // Specification file for the NumberList class

 2 #ifndef NUMBERLIST_H

 3 #define NUMBERLIST_H

 4

 5 class NumberList

 6 {

 7 private:

 8 // Declare a structure for the list

 9 struct ListNode

10 {

11 double value; // The value in this node

12 struct ListNode *next; // To point to the next node

13 };

14

15 ListNode *head; // List head pointer

16

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

17 public:

18 // Constructor

19 NumberList()

20 { head = NULL; }

21

22 // Destructor

23 ~NumberList();

24

25 // Linked list operations

26 void appendNode(double);

27 void insertNode(double);

28 void deleteNode(double);

29 void displayList() const;

30 };

31 #endif

Contents of NumberList.h

(Continued)

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Create a New Node

• Allocate memory for the new node:

 newNode = new ListNode;

• Initialize the contents of the node:

 newNode->value = num;

• Set the pointer field to NULL:

 newNode->next = NULL;

newNode

newNode

23

NULL

newNode

23

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Appending a Node

• Add a node to the end of the list

• Basic process:

– Create the new node (as already described)

– Add node to the end of the list:
• If list is empty, set head pointer to this node

• Else,

– traverse the list to the end

– set pointer of last node to point to new node

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Appending a Node

NULL

list
head

5 13 19

newNode

23 NULL

nodePtr

New node created, end of list located

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Appending a Node

list
head

5 13 19

newNode

23 NULL

nodePtr

New node added to end of list

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

 11 void NumberList::appendNode(double num)

 12 {

 13 ListNode *newNode; // To point to a new node

 14 ListNode *nodePtr; // To move through the list

 15

 16 // Allocate a new node and store num there.

 17 newNode = new ListNode;

 18 newNode->value = num;

 19 newNode->next = NULL;

 20

 21 // If there are no nodes in the list

 22 // make newNode the first node.

 23 if (!head)

C++ code for Appending a Node

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

 24 head = newNode;

 25 else // Otherwise, insert newNode at end.

 26 {

 27 // Initialize nodePtr to head of list.

 28 nodePtr = head;

 29

 30 // Find the last node in the list.

 31 while (nodePtr->next)

 32 nodePtr = nodePtr->next;

 33

 34 // Insert newNode as the last node.

 35 nodePtr->next = newNode;

 36 }

 37 }

C++ code for Appending a Node (Continued)

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Inserting a Node into a Linked List

• Used to maintain a linked list in order

• Requires two pointers to traverse the list:

– pointer to locate the node with data value
greater than that of node to be inserted

– pointer to 'trail behind' one node, to point to
node before point of insertion

• New node is inserted between the nodes
pointed at by these pointers

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Inserting a Node into a Linked List

NULL

list
head

5 13 19

newNode

17 NULL

nodePtr previousNode

New node created, correct position located

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Inserting a Node into a Linked List

NULL

list
head

5 13 19

newNode

17

nodePtr previousNode

New node inserted in order in the linked list

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Traversing a Linked List

• Visit each node in a linked list: display
contents, validate data, etc.

• Basic process:
– set a pointer to the contents of the head

pointer

– while pointer is not NULL
• process data

• go to the next node by setting the pointer to the
pointer field of the current node in the list

– end while

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Traversing a Linked List

NULL

list
head

5 13 19

nodePtr

nodePtr points to the node containing 5, then the

node containing 13, then the node containing 19,

then points to NULL, and the list traversal stops

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Deleting a Node

• Used to remove a node from a linked list

• If list uses dynamic memory, then delete

node from memory

• Requires two pointers: one to locate the

node to be deleted, one to point to the

node before the node to be deleted

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Deleting a Node

NULL

list
head

5 13 19

nodePtr previousNode

Locating the node containing 13

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Deleting a Node

Adjusting pointer around the node to be deleted

NULL

list
head

5 13 19

nodePtr previousNode

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Deleting a Node

NULL

list
head

5 19

nodePtr previousNode

Linked list after deleting the node containing 13

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Destroying a Linked List

• Must remove all nodes used in the list

• To do this, use list traversal to visit each node

• For each node,

– Unlink the node from the list

– If the list uses dynamic memory, then free the node’s

memory

• Set the list head to NULL

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

17.3

A Linked List Template

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

A Linked List Template

• When declaring a linked list, must specify

the type of data to be held in each node

• Using templates, can declare a linked list

that can hold data type determined at list

definition time

• See LinkedList.h (versions 1 and 2)

and Program 17-5

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

17.4

Variations of the

 Linked List

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Variations of the Linked List

• Other linked list organizations:

– doubly-linked list: each node contains two

pointers: one to the next node in the list, one

to the previous node in the list

NULL

list
head

5 13 19

NULL

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Variations of the Linked List

• Other linked list organizations:

– circular linked list: the last node in the list

points back to the first node in the list, not to
NULL

list
head

5 13 19

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

17.5

The STL list Container

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

The STL list Container

• Template for a doubly linked list

• Member functions for

– locating beginning, end of list: front, back,

end

– adding elements to the list: insert, merge,

push_back, push_front

– removing elements from the list: erase,

pop_back, pop_front, unique

• See Table 17-1 for a list of member functions

