Chapter 9:

Pointers

Addison-Wesley
is an imprint of

HFVSTOLN M Copyright © 2012 Pearson Education, Inc.
B

STARTING OUT WITH

C++

From Control Structures
through Objects

seventh edition

TONY GADDIS

C++

From Control Structures

through Objects
-
9 n 1 TONY GADDIS

Getting the Address of a Variable

Copyright © 2012 Pearson Education, Inc.

Getting the Address of a

Variable

 Each variable in program Is stored at a
unigue address

* Use address operator & to get address of
a variable:

int num = -99;
cout << # // prints address

// 1in hexadecimal

Copyright © 2012 Pearson Education, Inc.

From Control Structures

through Objects
9 [2 TONY GADDIS

Pointer Variables

seventh edition

Copyright © 2012 Pearson Education, Inc.

Pointer Variables

« Pointer variable : Often just called a
pointer, it's a variable that holds an

address

* Because a pointer variable holds the
address of another piece of data, it "points”
to the data

Copyright © 2012 Pearson Education, Inc.

Something Like Pointers: Arrays

* We have already worked with something similar

to pointers, when we learned to pass arrays as
arguments to functions.

« For example, suppose we use this statement to
pass the array numbers to the showvalues
function:

showValues (numbers, SIZE);

Copyright © 2012 Pearson Education, Inc.

Something Like Pointers : Arrays

The values parameter, in the showValues

function, points to the numbers array.
numbers array

1 213|465

Y

showValues (numbers, SIZE);

‘ I
address 5

|

Y
C++ automatica”y stores void showValues(int values[], int size)

: {
the address of numbers in for (int count = 0; count < size; count++)
the values parameter. cout << values[count] << endl;

Copyright © 2012 Pearson Education, Inc.

Something Like Pointers:
Reference Variables

* We have also worked with something like pointers
when we learned to use reference variables.
Suppose we have this function:

vold getOrder (int &donuts)
{

cout << "How many doughnuts do you want? ";
cin >> donuts;

}

* And we call it with this code:
int jellyDonuts;
getOrder (JellyDonuts) ;

Copyright © 2012 Pearson Education, Inc.

Something Like Pointers:
Reference Variables

The donuts parameter, in the getOrder function,
jellybenutsvariable points to the jellyDonuts variable.

getOrder(jellyDonuts);
I

address
|

C++ automatica”y stores void getOrder(int &donuts)
{

the address of cout << "How many doughnuts do you want? ";
jellyDonuts inthe e
donuts parameter.

Copyright © 2012 Pearson Education, Inc.

Pointer Variables

* Pointer variables are yet another way using a
memory address to work with a piece of data.

* Pointers are more "low-level" than arrays and
reference variables.

* This means you are responsible for finding the
address you want to store in the pointer and
correctly using It.

Copyright © 2012 Pearson Education, Inc.

Pointer Variables

* Definition:
int *intptr;
 Read as:
“Intptr can hold the address of an Int”

« Spacing in definition does not matter:
int * intptr; // same as above

int* intptr; // same as above

Copyright © 2012 Pearson Education, Inc.

Pointer Variables

« Assigning an address to a pointer variable:
int *intptr;
intptr = #

 Memory layout:

num intptr
25 O0x4a00

A

address of num: 0x4a00

Copyright © 2012 Pearson Education, Inc.

Program 9-2

// This program stores the address of a variable in a pointer.
tinclude <icstream>
using namespace std;

int main()

1

int x = 25: /4 int wariable
int *ptr; // Pointer wvariable, can point to an int
ptr = &X; // Store the address of ¥ in ptr

cout << "The value in x is " =< x =< endl;
cout << "The address of X is " << ptr << endl;
return 0;

Program Output

The walue in x is 25
The address of x is 0x7e00

Copyright © 2012 Pearson Education, Inc.

The Indirection Operator

* The Indirection operator (*) dereferences
a pointer.

* |t allows you to access the item that the
pointer points to.

int x = 25;

int *intptr = &x;
cout << *1lntptr << endl;
N

This prints 25.

Copyright © 2012 Pearson Education, Inc.

Program 9-3

/f This program demonstrates the use of the indirection operator.
¢include <iostream>
using namespace std;

int main{)

{
int x = 25; // int wariable
int *ptr; // Pointer variable, can point to an int
ptr = &X; {7/ Store the address of x in ptr

/f Use both = and ptr to display the wvalue in =.
cout << "Here is the value in x, printed twice:\n";
cout << ¥ =< endl; /¢ Displays the contents of x
cout << *ptr << endl; /S Displays the contents of x

/f Rssign 100 to the location pointed to by ptr. This
Jf will actually assign 100 to x.
*ptr = 100;

/{ Use both = and ptr to display the wvalue in =.
cout << "Once again, here is the wvalue in =:'\n";
cout =< x =< endl; // Displays the contents of x
cout << *ptr << endl; /S Displays the contents of x
return 0;

Copyright © 2012 Pearson Education, Inc.

Program 9-3 (continued)

Program Output

Here is the wvalue in X, printed twice:
25

25

Once again, here is the walue in x:
100

100

9-16
Copyright © 2012 Pearson Education, Inc.

val
|
9 | 3 TONY GADDIS

The Relationship Between Arrays
and Pointers

Copyright © 2012 Pearson Education, Inc.

The Relationship Between
Arrays and Pointers

« Array name Is starting address of array
int vals[] = {4, 7, 11};

4 '/ 11
starting address of vals: 0x4a00
cout << vals; // displays
// 0x4a00

cout << vals[0]; // displays 4

Copyright © 2012 Pearson Education, Inc.

The Relationship Between
Arrays and Pointers

« Array name can be used as a pointer
constant:

int vals[] = {4, 7, 11};
cout << *vals; // displays 4
* Pointer can be used as an array name:
int *valptr = vals;
cout << valptr[l]; // displays 7

Copyright © 2012 Pearson Education, Inc.

Program 9-5

// This program shows an array name being dereferenced with the *

// operator.
tinclude <iostreams>
using namespace std;

int main{()

{
short numbers|[] = {10, 20, 20, 40, 50};
cout << "The first element of the array is ";
cout =< *numbers << endl:
return 0;
'

Program Output
The first element of the array is 10

9-20
Copyright © 2012 Pearson Education, Inc.

Pointers In Expressions

Given:
int vals[]={4,7,11}, *valptr;

valptr = vals;

What Is valptr + 17 It means (address In
valptr) + (1 * size of an int)
cout << *(valptr+l); //displays 7
cout << * (valptr+2); //displays 11

Must use () as shown in the expressions

Copyright © 2012 Pearson Education, Inc.

Array Access

* Array elements can be accessed in many ways:

subscript arithmetic

Array access method Example
array name and [] vals([2] = 17;
pointer to array and [] valptr([2] = 17;
array name and subscript *(vals + 2) = 17;
arithmetic
pointer to array and * (valptr + 2) = 17;

Copyright © 2012 Pearson Education, Inc.

Array Access

« Conversion: vals[i] IS equivalent to
*(vals + 1)

* No bounds checking performed on array
access, whether using array name or a
pointer

Copyright © 2012 Pearson Education, Inc.

From Program 9-7

const int NUM COINS = 5;

double coins[WUM COINS] = {0.05, 0.1, 0.25, 0.5, 1.0};
double *doulblePtr; /f Pointer to a double
int count; // Array index

ff Assiagn the address of the colins array to doublePtr.
doublePtr = colins;

f{ Display the contents of the coins array. Use subscripts
f{ with the pointer!
cout =< "Here are the walues in the colins array:\n";
for (count = 0; count < NUM COINS; count++)

cout << doublePtr[count] << " ":
/{ Display the contents of the array again, but this time
// use pointer notation with the array name!
cout << "\n&And here they are again:‘\n";
for (count = 0; count < NUM COINS; count++)

cout << *({coins + count) << " ";
cout =< endl:

Program Output

Here are the walues in the coins array:
0.05 0.1 0.25 0.5 1

And here they are again:

0.05 0.1 0.25 Q.5 1

Copyright © 2012 Pearson Education, Inc.

From Control Structures

through Objects
9 | I TONY GADDIS

Pointer Arithmetic

seventh edition

Copyright © 2012 Pearson Education, Inc.

Pointer Arithmetic

» Operations on pointer variables:

Operation Example
int vals[]={4,7,11};
int *valptr = vals;

++, —- valptr++; // points at 7
valptr--; // now points at 4

+, - (pointer and int) cout << *(valptr + 2); // 11

+=, -= (pointer valptr = vals; // points at 4

and int) valptr += 2; // points at 11

- (pointer from pointer) cout << valptr-val; // difference
// (number of ints) between valptr
// and val

9-26
Copyright © 2012 Pearson Education, Inc.

From Program 9-9

const int SIEE = 8;

int set[SIZE] = {5, 10, 15, 20, 25, 20, 35, 40}:
int *numPtr: // Polnter
int count; /¢ Counter variable for loops

// Make numPtr point to the set array.
numFtr = set;

/f Use the pointer to display the array contents.
cout << "The numbers in set are:\n";
for (count = 0; count < SIZE; count++)

{

colt << *numPtr << " "
numPtr++;

// Display the array contents in reverse order.
cout =< "\nThe numbers in set backward are:\n";
for (count = 0; count < SIZE; count++)

{

numPtr--:
coult << F*numPtr << " ":

r

b
Program Output

The numbers in set are:
5 10 15 20 25 20 35 40
The numbers in set backward are:
40 35 30 25 20 15 10 5

Copyright © 2012 Pearson Education, Inc.

From Control Structures

through Objects
9 [| 5 TONY GADDIS

Initializing Pointers

seventh edition

Copyright © 2012 Pearson Education, Inc.

Initializing Pointers

« Can initialize at definition time:
int num, *numptr = #
int val[3], *valptr = val;
« Cannot mix data types:
double cost;
int *ptr = &cost; // won't work
« Can test for an invalid address for pt r with:
1f (!ptr)

Copyright © 2012 Pearson Education, Inc.

From Control Structures

through Objects
9 [| 6 TONY GADDIS

Comparing Pointers

seventh edition

Copyright © 2012 Pearson Education, Inc.

Comparing Pointers

« Relational operators (<, >=, etc.) can be
used to compare addresses in pointers

« Comparing addresses In pointers Is not
the same as comparing contents pointed

at by pointers:
if (ptrl == ptr2) // compares
// addresses
if (*ptrl == *ptr2) // compares

// contents

9-31
Copyright © 2012 Pearson Education, Inc.

From Control Structures

through Objects
9 H] TONY GADDIS

Pointers as Function Parameters

seventh edition

Copyright © 2012 Pearson Education, Inc.

Pointers as Function
Parameters

A pointer can be a parameter

Works like reference variable to allow change to
argument from within function

Requires:
1) asterisk * on parameter in prototype and heading
void getNum (int *ptr); // ptr is pointer to an int

2) asterisk * in body to dereference the pointer
cin >> *ptr;
3) address as argument to the function
getNum (&num) ; // pass address of num to getNum

Copyright © 2012 Pearson Education, Inc.

Example

vold swap (int *x, 1nt *vy)

{ int temp;
temp = *Xx;
*X — *y;
*y = temp;
}
int numl = 2, numZ2 = -3;

swap (&numl, &num?2) ;

Copyright © 2012 Pearson Education, Inc.

Program 9-11

// This program uses two functions that accept addresses of
// wvariables as arguments.

tinclude <iostream>

using namespace std;

// Function prototypes
void getMumber|int *);

void doubleValue(int *);

int main()

1
int number;
// Call getHumber and pass the address of number.
getNumber (tnumber) ;
// Call doubleValue and pass the address of number.
doubleValue (tnumber);
/4 Display the value in number.
cout << "That value doubled is " << number =< endl:
return 0O

t

(Program Continues)

Copyright © 2012 Pearson Education, Inc.

Program 9-11 {continued)

.-"._-"'***
// Definition of getWumber. The parameter, input, is a pointer. *
/{ This functicn asks the user for a number. The value entered *

/f is stored in the wvariable pointed to Ly input. *
l,-"_.."***

vold getNumber|int *input)
1

cout << "Enter an integer number: ";
cin => *input;

l,-"_,.-'***
// Definition of doubleValue. The parameter, val, is a pointer. *
// This function multiplies the wvariable pointed to by wval by *
£ two. "
l,-"_,.-'***

volid doubleValue|int *wval)

{

*ygl *= 2;

Program Output with Example Input Shown in Bold

Enter an integer number: 10 [Enter]
That value doubled is 20

Copyright © 2012 Pearson Education, Inc.

Pointers to Constants

* |f we want to store the address of a
constant in a pointer, then we need to
store it In a pointer-to-const.

Copyright © 2012 Pearson Education, Inc.

Pointers to Constants

« Example: Suppose we have the following
definitions:

const 1nt SIZE = 6;
const double payRates[SIzZE] =
{ 18.55, 17.45, 12.85,
14.97, 10.35, 18.89 };

* In this code, payRates IS an array of
constant doubles.

9-38
Copyright © 2012 Pearson Education, Inc.

Pointers to Constants

« Suppose we wish to pass the payRates array to
a function? Here's an example of how we can do
It.

vold displayPayRates (const double *rates, int size)

{

for (int count = 0; count < size; count++)

{
cout << "Pay rate for employee " << (count + 1)

<< " is $" << *(rates + count) << endl;

The parameter, rates, is a pointer to const double.

Copyright © 2012 Pearson Education, Inc.

Declaration of a Pointer to
Constant

The asterisk indicates that
rates is a pointer.

|

const doublel*rates

This is what rates points to.

Copyright © 2012 Pearson Education, Inc.

Constant Pointers

* A constant pointer Is a pointer that Is
Initialized with an address, and cannot
point to anything else.

* Example

int value = 22;
int * const ptr = &value;

Copyright © 2012 Pearson Education, Inc.

Constant Pointers

* const indicates that
ptr is a constant pointer.

: I
I1ntll* const ptr

This is what ptr points to.

Copyright © 2012 Pearson Education, Inc.

Constant Pointers to Constants

* A constant pointer to a constant Is:
— a pointer that points to a constant

— a pointer that cannot point to anything except
what it Is pointing to

« Example:

int value = 22;
const i1nt * const ptr = &value;

Copyright © 2012 Pearson Education, Inc.

Constant Pointers to Constants

* const indicates that
ptr is a constant pointer.

. l
const 1nt”* const ptr

This is what ptr points to.

Copyright © 2012 Pearson Education, Inc.

STARTING OUT WITH ‘ e

From Control Structures

through Objects
9 [| 8 TONY GADDIS

Dynamic Memory Allocation

seventh edition

Copyright © 2012 Pearson Education, Inc.

Dynamic Memory Allocation

« Can allocate storage for a variable while
program IS running

« Computer returns address of newly
allocated variable

« Uses new operator to allocate memory:
double *dptr;
dptr = new double;

e new returns address of memory location

Copyright © 2012 Pearson Education, Inc.

Dynamic Memory Allocation

« Can also use new to allocate array:
const 1nt SIZE = 25;
arrayPtr = new double[SIZE];

« Canthen use [] or pointer arithmetic to access array:.
for(i = 0, 1 < SIZE; i++)
*arrayptr[i] = 1 * 1i;
or
for(i = 0, 1 < SIZE; i++)
* (arrayptr + i) = 1 * 1i;
* Program will terminate if not enough memory available to
allocate

Copyright © 2012 Pearson Education, Inc.

Releasing Dynamic Memory

 Use delete to free dynamic memory:.
delete fptr;

* Use [] to free dynamic array:
delete [] arrayptr;

* Only use delete with dynamic memory!

Copyright © 2012 Pearson Education, Inc.

Program 9-14

// This program totals and averages the sales figures for any
// number of days. The figures are stored in a dynamically

// allocated array.

tinclude <icstream=

$include <iocmanip=
using namespace std;

int main()

1
double *zales, // To dynamically allocate an array
total = 0.0, // Accumulator
averadge; {// To hold average sales

Copyright © 2012 Pearson Education, Inc.

Program 9-14 (continued)

int numbDays, // To hold the number of days of sales
count ; // Counter wvariable

// Get the number of days of sales.
cout =< "How many days of sales figures do you wish ";

cout =< "to process? ";
cin >> numDays;

// Dynamically allocate an array large enough to hold
/4 that many days of sales amounts.
sales = new double[numDays];

// Get the sales figures for each day.
cout =< "Enter the sales figures below.\n";
for (count = 0; count < numDays; count++)

{

cout << "Day " << (count + 1) << ": "
cin »> sales[count];

Copyright © 2012 Pearson Education, Inc.

Program 9-14 (Continued)

ff Calculate the total sales
for (count = 0; count < numDays; count++)

1

total += sales[count];

/4 Calculate the average sales per day
average = total / numbDays;

/¢ Display the results

cout << fixed << showpoint << getprecision(2);
cout << "\n'\nTotal Sales: 5" << total << endl;
cout << "Average Sales: 5" << average << endl;

// Free dynamically allocated memory
delete [] sales;

sales = 0: // Make sales point to null.

return 0;

Copyright © 2012 Pearson Education, Inc.

Program Output with Example Input Shown in Bold

How many days of sales figures do you wish to process? 5 [Enter]
Enter the sales figures below.

Day 1: 898.63 [Enter]

Day 2: 652.32 [Enter]

Day 3: 741.85 [Enter]

Day 4: 852.96 [Enter]

Day 5: 921.37 [Enter]

Total Sales: 54067.13
Average Sales: $813.43

Notice that in line 49 the value O is assigned to the sales pointer. Itis a
good practice to store O in a pointer variable after using delete on it. First,
It prevents code from inadvertently using the pointer to access the area of

memory that was freed. Second, it prevents errors from occurring if
delete is accidentally called on the pointer again. The delete operator

IS designed to have no effect when used on a null pointer.

Copyright © 2012 Pearson Education, Inc.

From Control Structures

through Objects
9 H 9 TONY GADDIS

Returning Pointers from Functions

seventh edition

Copyright © 2012 Pearson Education, Inc.

Returning Pointers from
Functions

* Pointer can be the return type of a function:
int* newNum() ;

* The function must not return a pointer to a local
variable in the function.

A function should only return a pointer:

— to data that was passed to the function as an
argument, or

— to dynamically allocated memory

Copyright © 2012 Pearson Education, Inc.

From Program 9-15

int *getRandomlumbers(|int num)

{

int *array; {// Arrav to hold the numbers

/4 Return null if num is zero or negative.
if (num == 0)
return MULL:

// Dynamically allocate the array.
array = new int[num];

// Seed the random number generator by passing
// the return value of time(0) to srand.
srand{ time(0));

// Populate the array with random numbers.
for (int count = 0; count < num; count++)
array[count] = rand{);

// Return a pointer to the array.
return array;

Copyright © 2012 Pearson Education, Inc.

