
Copyright © 2012 Pearson Education, Inc.

Chapter 4:

Making

Decisions

Copyright © 2012 Pearson Education, Inc.

4.1

Relational Operators

Copyright © 2012 Pearson Education, Inc.

Relational Operators

• Used to compare numbers to determine

relative order

• Operators:

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

== Equal to

!= Not equal to

Copyright © 2012 Pearson Education, Inc.

Relational Expressions

• Boolean expressions – true or false

• Examples:

 12 > 5 is true

 7 <= 5 is false

 if x is 10, then

 x == 10 is true,

 x != 8 is true, and

 x == 8 is false

Copyright © 2012 Pearson Education, Inc.

Relational Expressions

• Can be assigned to a variable:

 result = x <= y;

• Assigns 0 for false, 1 for true

• Do not confuse = and ==

Copyright © 2012 Pearson Education, Inc.

4.2

The if Statement

Copyright © 2012 Pearson Education, Inc.

The if Statement

• Allows statements to be conditionally

executed or skipped over

• Models the way we mentally evaluate

situations:

– "If it is raining, take an umbrella."

– "If it is cold outside, wear a coat."

Copyright © 2012 Pearson Education, Inc.

Flowchart for Evaluating a Decision

Copyright © 2012 Pearson Education, Inc.

Flowchart for Evaluating a Decision

Copyright © 2012 Pearson Education, Inc.

The if Statement

• General Format:

 if (expression)

 statement;

Copyright © 2012 Pearson Education, Inc.

The if Statement-What Happens

To evaluate:

if (expression)

 statement;

• If the expression is true, then

statement is executed.

• If the expression is false, then

statement is skipped.

Copyright © 2012 Pearson Education, Inc.

if Statement in Program 4-2

Continued…

Copyright © 2012 Pearson Education, Inc.

if Statement in Program 4-2

Copyright © 2012 Pearson Education, Inc.

Flowchart for Program 4-2 Lines 21

and 22

Copyright © 2012 Pearson Education, Inc.

if Statement Notes

• Do not place ; after (expression)

• Place statement; on a separate line
after (expression), indented:

 if (score > 90)

 grade = 'A';

• Be careful testing floats and doubles
for equality

• 0 is false; any other value is true

Copyright © 2012 Pearson Education, Inc.

4.3

Expanding the if Statement

Copyright © 2012 Pearson Education, Inc.

Expanding the if Statement

• To execute more than one statement as part of
an if statement, enclose them in { }:

 if (score > 90)

 {

 grade = 'A';

 cout << "Good Job!\n";

 }

• { } creates a block of code

Copyright © 2012 Pearson Education, Inc.

4.4

The if/else Statement

Copyright © 2012 Pearson Education, Inc.

The if/else statement

• Provides two possible paths of execution

• Performs one statement or block if the
expression is true, otherwise performs

another statement or block.

Copyright © 2012 Pearson Education, Inc.

The if/else statement

• General Format:

 if (expression)

 statement1; // or block

 else

 statement2; // or block

Copyright © 2012 Pearson Education, Inc.

if/else-What Happens

To evaluate:
 if (expression)

 statement1;

 else

 statement2;

• If the expression is true, then statement1 is
executed and statement2 is skipped.

• If the expression is false, then statement1 is
skipped and statement2 is executed.

Copyright © 2012 Pearson Education, Inc.

The if/else statement and

Modulus Operator in Program 4-8

Copyright © 2012 Pearson Education, Inc.

Flowchart for Program 4-8 Lines 14

through 18

Copyright © 2012 Pearson Education, Inc.

Testing the Divisor in Program 4-9

Continued…

Copyright © 2012 Pearson Education, Inc.

Testing the Divisor in Program 4-9

Copyright © 2012 Pearson Education, Inc.

4.5

Nested if Statements

Copyright © 2012 Pearson Education, Inc.

Nested if Statements

• An if statement that is nested inside

another if statement

• Nested if statements can be used to test

more than one condition

Copyright © 2012 Pearson Education, Inc.

Flowchart for a Nested if

Statement

Copyright © 2012 Pearson Education, Inc.

Nested if Statements

• From Program 4-10

Copyright © 2012 Pearson Education, Inc.

Nested if Statements

• Another example, from Program 4-1

Copyright © 2012 Pearson Education, Inc.

Use Proper Indentation!

Copyright © 2012 Pearson Education, Inc.

4.6

The if/else if Statement

Copyright © 2012 Pearson Education, Inc.

The if/else if Statement

• Tests a series of conditions until one is
found to be true

• Often simpler than using nested if/else
statements

• Can be used to model thought processes
such as:

"If it is raining, take an umbrella,
else, if it is windy, take a hat,
else, take sunglasses”

Copyright © 2012 Pearson Education, Inc.

if/else if Format

if (expression)

 statement1; // or block

else if (expression)

 statement2; // or block

 .

 . // other else ifs

 .

else if (expression)

 statementn; // or block

Copyright © 2012 Pearson Education, Inc.

The if/else if Statement in

Program 4-13

Copyright © 2012 Pearson Education, Inc.

Using a Trailing else to Catch

Errors in Program 4-14

• The trailing else clause is optional, but it

is best used to catch errors.

This trailing
else

catches

invalid test

scores

Copyright © 2012 Pearson Education, Inc.

4.7

Flags

Copyright © 2012 Pearson Education, Inc.

Flags

• Variable that signals a condition

• Usually implemented as a bool variable

• Can also be an integer

– The value 0 is considered false

– Any nonzero value is considered true

• As with other variables in functions, must

be assigned an initial value before it is

used

Copyright © 2012 Pearson Education, Inc.

4.8

Logical Operators

Copyright © 2012 Pearson Education, Inc.

Logical Operators

• Used to create relational expressions from

other relational expressions

• Operators, meaning, and explanation:

&& AND New relational expression is true if both

expressions are true

|| OR New relational expression is true if either
expression is true

! NOT Reverses the value of an expression – true
expression becomes false, and false becomes
true

Copyright © 2012 Pearson Education, Inc.

Logical Operators-Examples

 int x = 12, y = 5, z = -4;

(x > y) && (y > z) true

(x > y) && (z > y) false

(x <= z) || (y == z) false

(x <= z) || (y != z) true

!(x >= z) false

Copyright © 2012 Pearson Education, Inc.

The logical && operator in Program

4-15

Copyright © 2012 Pearson Education, Inc.

The logical || Operator in Program

4-16

Copyright © 2012 Pearson Education, Inc.

The logical ! Operator in Program

4-17

Copyright © 2012 Pearson Education, Inc.

Logical Operator-Notes

• ! has highest precedence, followed by &&,

then ||

• If the value of an expression can be

determined by evaluating just the sub-

expression on left side of a logical

operator, then the sub-expression on the

right side will not be evaluated (short

circuit evaluation)

Copyright © 2012 Pearson Education, Inc.

4.9

Checking Numeric Ranges with

Logical Operators

Copyright © 2012 Pearson Education, Inc.

Checking Numeric Ranges with

Logical Operators
• Used to test to see if a value falls inside a range:

 if (grade >= 0 && grade <= 100)

 cout << "Valid grade";

• Can also test to see if value falls outside of range:
 if (grade <= 0 || grade >= 100)

 cout << "Invalid grade";

• Cannot use mathematical notation:
 if (0 <= grade <= 100) //doesn’t work!

Copyright © 2012 Pearson Education, Inc.

4.10

Menus

Copyright © 2012 Pearson Education, Inc.

Menus

• Menu-driven program: program execution

controlled by user selecting from a list of

actions

• Menu: list of choices on the screen

• Menus can be implemented using
if/else if statements

Copyright © 2012 Pearson Education, Inc.

Menu-Driven Program Organization

• Display list of numbered or lettered

choices for actions

• Prompt user to make selection

• Test user selection in expression

– if a match, then execute code for action

– if not, then go on to next expression

Copyright © 2012 Pearson Education, Inc.

4.11

Validating User Input

Copyright © 2012 Pearson Education, Inc.

Validating User Input

• Input validation: inspecting input data to
determine whether it is acceptable

• Bad output will be produced from bad
input

• Can perform various tests:
– Range

– Reasonableness

– Valid menu choice

– Divide by zero

Copyright © 2012 Pearson Education, Inc.

Input Validation in Program 4-19

Copyright © 2012 Pearson Education, Inc.

4.12

Comparing Characters and

Strings

Copyright © 2012 Pearson Education, Inc.

Comparing Characters

• Characters are compared using their ASCII
values

• 'A' < 'B'

– The ASCII value of 'A' (65) is less than the ASCII
value of 'B'(66)

• '1' < '2'

– The ASCII value of '1' (49) is less than the ASCI
value of '2' (50)

• Lowercase letters have higher ASCII codes
than uppercase letters, so 'a' > 'Z'

Copyright © 2012 Pearson Education, Inc.

Relational Operators Compare

Characters in Program 4-20

Copyright © 2012 Pearson Education, Inc.

Comparing string Objects

• Like characters, strings are compared

using their ASCII values

 string name1 = "Mary";

string name2 = "Mark";

name1 > name2 // true

name1 <= name2 // false

name1 != name2 // true

name1 < "Mary Jane" // true

The characters in each

string must match before

they are equal

Copyright © 2012 Pearson Education, Inc.

Relational Operators Compare

Strings in Program 4-21

Copyright © 2012 Pearson Education, Inc.

4.13

The Conditional Operator

Copyright © 2012 Pearson Education, Inc.

The Conditional Operator

• Can use to create short if/else

statements

• Format: expr ? expr : expr;

x<0 ? y=10 : z=20;

First Expression:
Expression to be
tested

2nd Expression:
Executes if first
expression is true

3rd Expression:
Executes if the first
expression is false

Copyright © 2012 Pearson Education, Inc.

The Conditional Operator

• The value of a conditional expression is

– The value of the second expression if the first

expression is true

– The value of the third expression if the first

expression is false

• Parentheses () may be needed in an

expression due to precedence of

conditional operator

Copyright © 2012 Pearson Education, Inc.

The Conditional Operator in

Program 4-22

Copyright © 2012 Pearson Education, Inc.

4.14

The switch Statement

Copyright © 2012 Pearson Education, Inc.

The switch Statement

• Used to select among statements from

several alternatives

• In some cases, can be used instead of
if/else if statements

Copyright © 2012 Pearson Education, Inc.

switch Statement Format

switch (expression) //integer

{

 case exp1: statement1;

 case exp2: statement2;

 ...

 case expn: statementn;

 default: statementn+1;

}

Copyright © 2012 Pearson Education, Inc.

The switch Statement in Program

4-23

Copyright © 2012 Pearson Education, Inc.

switch Statement Requirements

1) expression must be an integer variable

or an expression that evaluates to an
integer value

2) exp1 through expn must be constant

integer expressions or literals, and must
be unique in the switch statement

3) default is optional but recommended

Copyright © 2012 Pearson Education, Inc.

switch Statement-How it Works

1) expression is evaluated

2) The value of expression is compared
against exp1 through expn.

3) If expression matches value expi, the
program branches to the statement
following expi and continues to the end
of the switch

4) If no matching value is found, the
program branches to the statement after
default:

Copyright © 2012 Pearson Education, Inc.

break Statement

• Used to exit a switch statement

• If it is left out, the program "falls through"
the remaining statements in the switch

statement

Copyright © 2012 Pearson Education, Inc.

break and default statements in

Program 4-25

Continued…

Copyright © 2012 Pearson Education, Inc.

break and default statements in

Program 4-25

Copyright © 2012 Pearson Education, Inc.

Using switch in Menu Systems

• switch statement is a natural choice for

menu-driven program:

– display the menu

– then, get the user's menu selection

– use user input as expression in switch

statement

– use menu choices as expr in case

statements

Copyright © 2012 Pearson Education, Inc.

4.15

More About Blocks and Scope

Copyright © 2012 Pearson Education, Inc.

More About Blocks and Scope

• Scope of a variable is the block in which it

is defined, from the point of definition to

the end of the block

• Usually defined at beginning of function

• May be defined close to first use

Copyright © 2012 Pearson Education, Inc.

Inner Block Variable Definition in

Program 4-29

Copyright © 2012 Pearson Education, Inc.

Variables with the Same Name

• Variables defined inside { } have local or
block scope

• When inside a block within another block,
can define variables with the same name
as in the outer block.

– When in inner block, outer definition is not
available

– Not a good idea

Copyright © 2012 Pearson Education, Inc.

Two Variables with the Same

Name in Program 4-30

