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Abstract

In this paper, we first transform a multivariate normal random vector into a ran-
dom vector with elements that are approximately independent standard normal random
variables. Then we propose the multivariate version generalized from the univariate nor-
mality test based on kurtosis from the literature. Power is investigated through the Monte
Carlo Simulation with different significance level, dimension, and sample size. To assess
the validity and accuracy of the new tests, we carry a comparative study with several
other existing tests by selecting certain types of symmetric and asymmetric alternative
distributions.
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1. Introduction

Testing multivariate normality is a key premise in modern statistical inference. This is due
to the fact that parametric statistical techniques have been developed based on normal dis-
tribution theory. As a result, testing the normality assumption is more important before we
start any analysis. A considerable number of tests procedures can be found in the literature.
Some references are Kim (2015), Kim (2016), Enomoto (2013), Koizumi, Okamoto, and and
(2009), Székely and Rizzo (2005), Thode (2002), Doornik and Hansen (1994), Royston (1983),
Mardia (1970) and Olive (2017).

Even though numerous multivariate tests have been proposed, there is not a single test that
can be used for all the situations. As an example, some tests are better for long tailed
distributions but not for short tailed distributions. Some references for comparative power
studies are Joenssen and Vogel (2014), Romeu and Ozturk (1993), Mecklin and Mundfrom
(2005) and Alpu and Yuksek (2016).

Most of multivariate normality tests are extensions of univariate normality tests. Kim (2016)
recently proposed a robustified Jarque-Bera test for multivariate and univariate normality.
He investigates the multivariate versions of the Jarque-Bera test and its modifications using
orthogonalization or an empirical standardization of data. Alva and Estrada (2009) has
proposed a goodness-of-fit test for multivariate normality which is based on Shapiro-Wilk’s
statistics, one of the best omnibus tests for the univariate normality. Both these articles
proposed a multivariate version of univariate tests.

Hanusz and Tarasinska (2014) proposed two new tests for multivariate normality based on
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Mardia’s and Srivastava’s more accurate moments of multivariate sample skewness and kurto-
sis. The proposed two tests have an asymptotic Student’s t-distribution with 1

6p(p+ 1)(p+ 2)
and p degrees of freedom, respectively. In their simulation studies, sample significance level
and power against chosen alternative distributions of both tests were calculated. Their pro-
posed tests were compared with the two improved Jarque-Bera’s tests and the Henze-Zirkler
test. The proposed tests do not recognize the mixture of two multivariate normal variates
with different means and covariance matrices.

Looney (1995) presented how to use tests for univariate normality to assess multivariate
normality. He described several techniques for assessing multivariate normality based on well-
known tests for univariate normality and offered suggestions for their practical application.
In his simulation study, one of the examples is shown that simply testing each of the marginal
distributions for univariate normality can lead to a mistaken conclusion. Shapiro and Wilk’s
test is a powerful procedure for detecting departures from univariate normality. Royston
(1983) the application of Shapiro-Wilk-W to testing multivariate normality.

Koizumi, Sumikawa, and Pavlenko (2014) proposed new definitions for multivariate skewness
and kurtosis as natural extensions of Mardia’s measures when the covariance matrix has
a block diagonal structure. Expectations and the variances for new multivariate sample
measures of skewness and kurtosis were presented. They also derived asymptotic distributions
of the statistics under multivariate normality. In their simulation study, they investigated
accuracies of upper percentage points of the proposed statistics based on new multivariate
skewness and kurtosis.

In this paper, we propose some multivariate tests that are an extension of univariate tests
proposed by Bonett and Seier (2002) based on transformation proposed by Anscombe and
Glynn (1983).

The article is organized as follows: in section 2 the univariate tests proposed by Anscombe
and Glynn (1983), and Bonett and Seier (2002) are reviewed. The proposed multivariate tests
are presented in section 3. In section 4, we studied a Monte Carlo comparative study of the
power comparison of the proposed tests against the Mardia (1970) tests Skewness (MS) and
Kurtosis (MK), Henze and Zirkler (1990) test (HZ), and Shapiro-Wilk’s test (SW ) Alva and
Estrada (2009) and two modified tests denoted by (C∗β) and (C∗∗β ) based on Kim (2016).

2. Review of the univariate tests

Bonett and Seier (2002) used the modified Geary measure and the Pearson measure to define
a joint test of kurtosis that has high uniform power across a very wide range of symmetric
non-normal distributions.

The population value of Pearson’s measure of kurtosis can be defined as

β2 =
E(X − µ)4

{E(X − µ)2}2
.

The estimator of β2 is

β̂2 =
n
∑

(Xi − µ̂)4

{
∑

(Xi − µ̂)2}2
(1)

where µ̂ =
∑
Xi/n and n is the sample size.

Anscombe and Glynn (1983) proposed the following transformation of β̂2,

Zβ =

[
(1− 2

9A
)− [

1− 2/A

1 + C
√

2/(A− 4)
]1/3
]

1√
2/(9A)

(2)

where
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C =
β̂2 − E(β̂2)√
V ar(β̂2)

and

A = 6 +
8√
β1(β̂2)

[
2√
β1(β̂2)

+

√
1 +

4

β1(β̂2)

]
with √

β1(β̂2) =
E{β̂2 − E(β̂2)}3

{var(β̂2)}3/2
=

6(n2 − 5n+ 2)

(n+ 7)(n+ 9)

√
6(n+ 3)(n+ 5)

n(n− 2)(n− 3)
.

It is known that

E(β̂2) =
3(n− 1)

n+ 1

and

V ar(β̂2) =
24n(n− 2)(n− 3)

(n+ 1)2(n+ 3)(n+ 5)
.

Zβ in equation (2) has an approximate standard normal distribution.

The next univariate test statistic we consider is the test proposed by Bonett and Seier (2002).
It is denoted by Zw,

Zw =
(n+ 2)1/2(ŵ − 3)

3.54
(3)

where, ŵ = 13.29(ln(σ̂)− ln(τ̂)), τ̂ =
∑
|Xi−µ̂|
n , σ̂2 =

∑
(Xi−µ̂)2
n and µ̂ = n−1

∑n
i=1Xi.

The test Zw in equation (3) has an approximate standard normal distribution under the null
hypothesis of normality.

3. Proposed tests for multivariate normality

Let X1,X2, ...,Xn be independent identically distributed (i.i.d) p-dimensional random vectors
with sample mean and covariance matrix X̄ = n−1

∑n
i=1 Xi and S = 1

n

∑n
i=1 (Xi − X̄)(Xi − X̄)

′

respectively and let Np(µ,Σ) be the p−variate multivariate normal distribution with mean µ
and covariance matrix Σ.

We want to test the null hypothesis

Ho : X1, ...Xn is a sample from Np(µ,Σ) for some µ and Σ.

First we use the transformation proposed by Doornik and Hansen (1994) to transform X1, ...Xn

as

Zi = HΛ−1/2H′V−1/2(Xi − X̄) = A(Xi − X̄) (4)

where A = HΛ−1/2H′V−1/2 ”′” denotes a transpose, Λ = diag(λ1, λ2, ..., λp), is the matrix
with the eigenvalues of C = V−1/2SV−1/2, on the diagonal, V−1/2 is a matrix with the

reciprocals of the standard deviation on the diagonal, V−1/2 = diag(S
−1/2
11 , S

−1/2
22 , ..., S

−1/2
pp ),

the columns of H are the corresponding eigenvectors, such that H
′
H = Ip, identity matrix of

order p× p, and Λ = H
′
CH. If X1,X2, ...,Xn are a sample from the p−variate multivariate

normal Np(µ,Σ) with mean vector µ and covariance matrix Σ, then Z = (Z1i,Z2i, ...,Zpi) is
standard normals.
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Now we transform X1,X2, ...,Xn using the equation (3) as discussed above. Now, we can
think of test statistics that calculate Z∗w by the equation (2) for each coordinate of Z such as
Z∗w = (Zw1, Zw2, ..., Zwp)

′, that has an approximate standard normal distribution under the
null hypothesis of normality. Then the proposed test statistic can be stated as

D∗w = Z∗w
′
Z∗w (5)

has an asymptotic χ2 distribution with degrees of freedom p.

The following test statistic can also be used to check normality.

D∗∗w = max
1≤k≤p

Z2
wk. (6)

Under the null hypothesis of normality, Zwk is approximately standard normal distribution.
Therefore the limit distribution of D∗∗w has the becomes

D∗∗w
d−→ max

1≤k≤p
Uk

where U1, U2, ..., Up follow i.i.d. chi-squared distribution with 1 degree of freedom, χ2
1, and we

have
lim
n→∞

p(D∗∗w ≤ x) = (P (U1 ≤ χ2
1))

p

Now, we can also calculate the Zβ = (Zβ1 , Zβ2 , ..., Zβp)
′

by (1) from each coordinate, which
yields the following two statistics that can be used to check the multivariate normality:

D∗β = ZβZ
′
β ∼ χ2

p (7)

and
D∗∗β = max

1≤k≤p
Z2
βk

(8)

Similarly the test based on D∗β rejects H0 at a test size α, if D∗β > χ2
p,1−α, where P (X ≤

χ2
p,1−α) = 1− α if X ∼ χ2

p and D∗∗β has max1≤k≤p Uk.

Kim (2015) proposed two tests for multivariate normality based on the the transformation

Zi = S∗
′
(Xi − X̄) (3.7)

where S∗ is defined by S∗
′
SS∗ = I. In this paper, according to Kim (2015)’s transformation

above, we calculate the Zβ = (Zβ1 , Zβ2 , ..., Zβp)
′

by (2) from each coordinate, which yields
the following similar multivariate normality statistics given by

C∗β = ZβZ
′
β ∼ χ2

p and C∗∗β = max
1≤k≤p

Z2
βk
.

4. Simulation study

4.1. Application

We consider the famous multivariate data set first introduced by Rao (1948) that consists of
weights of cork borings from the north (N), east (E), west (W), and south (S) (in centigrams)
for 28 trees. He considered the following three constraints

y1 = N − E −W + S, y2 = S −W, y3 = N − S.

After applying the transformation β̂ in (1), values of Pearson’s measure of kurtosis are

(β̂2(1), β̂2(2), β̂2(3)) = (3.1474, 2.6182, 1.9266).
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Then applying the transformations Zβ in (2) yields

(Zβ(1), Zβ(2), Zβ(3)) = (0.7057,−0.0579, 1.6755).

And applying the transformations Zw in (2.4) yields

(Zw(1), Zw(2), Zw(3)) = (0.1304584,−0.6599033,−1.6101341).

Table 1 provides the values of the proposed test statistics in (5), (6), (7), (8) and p values
of them. According to our result, the null hypothesis, constraints coming from multivariate
normal distribution could not be rejected, that confirms Rao’s test for contrasts as valid.

Table 1: Statistics and p-values for the Rao’s bark deposit data

Tests D∗w D∗∗w D∗β D∗∗β
Statistic 3.0450 2.5925 3.309 2.8072
p-value 0.3847 0.2888 0.3465 0.2559

4.2. Simulation

A simulation was performed to compute the power of the proposed new test statistics de-
noted by D∗w, D∗∗w and D∗β, D∗∗β respectively according to different measure of kurtosis. We
also compute the power of C∗β, C∗∗β according to Kim (2015)’s transformation and four other
existing tests: Mardia’s Skewness (MS), Mardia’s Kurtosis (MK), Henze-Zirkler’s (HZ) and
Shapiro-Wilk (Sw). The choices of simulation parameters are: p = 2, 5; n = 20, 50 and
significance level α = 0.05, 0.1. The alternatives included in the comparison study are stan-
dard normal (N(0, 1)), tk distribution with k degrees of freedom (t2, t5), Cauchy, logistic and
Laplace as opposed to asymmetric distributions χ2

k distribution with k degrees of freedom
(χ2

2, χ
2
5), Gamma distribution (Γ (2, 0.5)) and exp(1). In the simulation, 10,000 Monte Carlo

replications are carried out. The results of power computation are displayed in Tables 2 to 9.

Table 2: Power comparison of test statistics for α = 0.05, n = 20, p = 2 under several
alternatives

Tests D∗w D∗∗w D∗β D∗∗β C∗β C∗∗β MS MK HZ SW
N(0, 1) 0.0487 0.0469 0.0421 0.0443 0.0441 0.0441 0.0261 0.0052 0.0443 0.0484
t2 0.6021 0.5964 0.5992 0.5750 0.6102 0.5930 0.6605 0.5931 0.5931 0.6182
t5 0.2062 0.2070 0.2180 0.2113 0.2221 0.2214 0.2539 0.1580 0.1580 0.2205
Logistic 0.1079 0.1031 0.1518 0.1493 0.1831 0.1819 0.2566 0.1080 0.1080 0.2852
Laplace 0.2310 0.2276 0.2045 0.1981 0.2089 0.1985 0.2348 0.1467 0.1467 0.2203
Cauchy 0.9168 0.9076 0.9005 0.8799 0.9069 0.8909 0.9186 0.9154 0.9154 0.9259
χ2
2 0.2923 0.2870 0.5048 0.4879 0.4954 0.4785 0.6935 0.2960 0.2960 0.9535
χ2
5 0.1492 0.1419 0.2706 0.2600 0.2663 0.2554 0.3390 0.1058 0.1058 0.6036

Γ(2, 0.5) 0.1741 0.1688 0.3191 0.3071 0.3122 0.2976 0.4239 0.1395 0.5211 0.7126
exp(1) 0.2967 0.2911 0.5122 0.4906 0.5039 0.4812 0.7018 0.3042 0.8538 0.9563

4.3. Simulation results

The first line of each table shows Type 1 error of the considered tests for different p, n and
nominal α values. It is expected that the empirical rejection rates generated from multivariate
normal distributions are close to the significance level α. However, it is observed that the tests
MS , MK shows severe deviations from α when n = 20, especially the test MK .

Tables 2-5 report the mean power at significance level α = 0.05 when n = 20, 50 and
p = 2, 5. Certain reasonable patterns emerge from these tables. It is observed that all four
proposed tests D∗w, D

∗∗
w , D

∗
β and D∗∗β are sensitive to the sample size. The powers are seen
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Table 3: Power comparison of test statistics for α = 0.05, n = 50, p = 2 under several
alternatives

Tests D∗w D∗∗w D∗β D∗∗β C∗β C∗∗β MS MK HZ SW
N(0, 1) 0.0465 0.0447 0.0474 0.0479 0.0477 0.0477 0.0419 0.0153 0.0447 0.0496
t2 0.9645 0.9586 0.9541 0.9398 0.9536 0.9378 0.9203 0.9756 0.9686 0.9537
t5 0.4834 0.4749 0.4930 0.4738 0.4941 0.4760 0.4987 0.5705 0.4146 0.1894
Cauchy 1.0000 1.0000 1.0000 1.000 1.0000 0.9999 1.0000 1.0000 1.0000 1.0000
Logistic 0.2083 0.2059 0.3479 0.3348 0.3824 0.3697 0.7368 0.4250 0.6678 0.7265
Laplace 0.5714 0.5512 0.4685 0.4328 0.4675 0.4300 0.4464 0.5795 0.5409 0.4695
χ2
2 0.5531 0.5440 0.8452 0.8180 0.8422 0.8160 0.9984 0.7937 0.9996 1.0000
χ2
5 0.2601 0.2542 0.5206 0.4951 0.5130 0.4905 0.9065 0.4328 0.8630 0.9869

Γ(2, 0.5) 0.3103 0.3045 0.5976 0.5760 0.5965 0.5734 0.9515 0.5202 0.9382 0.9964
exp(1) 0.5612 0.5560 0.8539 0.8278 0.8514 0.8252 0.9988 0.8065 0.9993 1.0000

Table 4: Power comparison of test statistics for α = 0.05, n = 20, p = 5 under several
alternatives

Tests D∗w D∗∗w D∗β D∗∗β C∗β C∗∗β MS MK HZ SW
N(0, 1) 0.0525 0.0459 0.0383 0.0400 0.0387 0.0368 0.0088 0.0064 0.0456 0.0467
t2 0.4792 0.4579 0.4326 0.3606 0.6381 0.5893 0.8637 0.6426 0.8312 0.5449
t5 0.1687 0.1694 0.1637 0.1498 0.2154 0.2130 0.3460 0.0769 0.2776 0.1894
Cauchy 0.8352 0.7976 0.7388 0.5946 0.9304 0.8886 0.9906 0.9673 0.9931 0.8958
Logistic 0.1525 0.1472 0.2141 0.2056 0.2319 0.2252 0.1798 0.0127 0.2170 0.4150
Laplace 0.1208 0.1198 0.1016 0.0962 0.1132 0.1056 0.1508 0.0171 0.1594 0.1152
χ2
2 0.4785 0.4577 0.7206 0.6441 0.6801 0.6073 0.6222 0.1180 0.8024 0.9967
χ2
5 0.2247 0.2128 0.3839 0.3423 0.3507 0.3106 0.1992 0.0122 0.3360 0.8197

Γ(2, 0.5) 0.2741 0.2600 0.4704 0.4102 0.4279 0.3787 0.2827 0.0228 0.4287 0.9072
exp(1) 0.4811 0.4508 0.7185 0.6422 0.6815 0.6071 0.6244 0.1198 0.8072 0.9962

Table 5: Power comparison of test statistics for α = 0.05, n = 50, p = 5 under several
alternatives

Tests D∗w D∗∗w D∗β D∗∗β C∗β C∗∗β MS MK HZ SW
N(0, 1) 0.0496 0.0502 0.0555 0.0577 0.0523 0.0595 0.0391 0.0262 0.0559 0.0504
t2 0.9938 0.9872 0.9904 0.9714 0.9919 0.9757 0.9991 0.9999 0.9990 0.9899
t5 0.6062 0.5688 0.6288 0.5457 0.6428 0.5663 0.8673 0.8610 0.7107 0.6020
Cauchy 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 1.0000 1.0000 1.0000 1.0000
Logistic 0.3047 0.2965 0.5214 0.4732 0.5395 0.4918 0.8687 .4612 0.6341 0.9349
Laplace 0.3270 0.3086 0.2948 0.2447 0.3011 0.2498 0.5745 0.5342 0.4511 0.2918
χ2
2 0.8230 0.7918 0.9859 0.9558 0.9812 0.9480 1.000 0.8959 1.0000 1.0000
χ2
5 0.4302 0.4111 0.7699 0.6908 0.7565 0.6737 0.9476 0.4449 0.8715 0.9999

Γ(2, 0.5) 0.5124 0.4772 0.8520 0.7703 0.8359 0.7521 0.9836 0.5554 0.9486 1.0000
exp(1) 0.8270 0.7943 0.9868 0.9586 0.9842 0.9514 1.0000 0.8969 0.9999 1.0000

to rise as the sample size increases. Due to different kurtosis measure, it is noticed that the
pair of tests D∗β and D∗∗β has better power than the pair of tests D∗w and D∗∗w in most cases.
In addition, we can see that D∗w is slightly superior to D∗∗w . This pattern occurs in the pairs
of D∗β, D

∗∗
β and C∗β, C

∗∗
β . Considering same Pearson kurtosis measure β̂2, Tests D∗β and D∗∗β

perform similarly as C∗β and C∗∗β . This fact indicates that the multivariate standard normal
transformation stated in (4) is competitive to the transformation proposed by Kim (2015).

For multivariate t(2) distribution and Cauchy distribution, when n = 50, all tests display high
power. When n = 20, these two distributions still have better power than other distributions.
Among the skewed alternative distributions, exp(1) has higher power, but is sensitive to
sample size, and the power decreases when n = 20. When n = 20, the test Mk shows lowest
power, which is related to its Type 1 error’s deviation from the significance level α. When
samples are from symmetric distributions (t2, t5, logistic, Laplace), all four proposed tests
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Table 6: Power comparison of test statistics for α = 0.1, n = 20, p = 2 under several alterna-
tives

Tests D∗w D∗∗w D∗β D∗∗β C∗β C∗∗β MS MK HZ SW
N(0, 1) 0.0972 0.0971 0.0887 0.0878 0.0860 0.0897 0.0512 0.0126 0.1016 0.0959
t2 0.6686 0.6626 0.6814 0.6633 0.6917 0.6753 0.7196 0.6438 0.7558 0.6902
t5 0.2756 0.2707 0.3047 0.2963 0.3083 0.3068 0.3277 0.2010 0.3069 0.3060
Cauchy 0.9369 0.9319 0.9298 0.9195 0.9346 0.9255 0.9391 0.9329 0.9736 0.9458
Logistic 0.1647 0.1597 0.2288 0.2269 0.2629 0.2604 0.3460 0.1401 0.4312 0.3903
Laplace 0.4267 0.4268 0.3964 0.3865 0.3979 0.3886 0.4278 0.3072 0.5031 0.4172
χ2
2 0.3684 0.3601 0.5988 0.5876 0.5906 0.5790 0.7862 0.3517 0.9048 0.9777
χ2
5 0.2208 0.2121 0.3659 0.3542 0.3575 0.3472 0.4453 0.1415 0.5612 0.7195

Γ(2, 0.5) 0.2474 0.2420 0.4186 0.4060 0.4087 0.3980 0.5333 0.1802 0.6576 0.8107
exp(1) 0.3797 0.3665 0.6037 0.5897 0.5971 0.5812 0.7915 0.3616 0.9159 0.9787

Table 7: Power comparison of test statistics for α = 0.1, n = 20, p = 5 under several alterna-
tives

Tests D∗w D∗∗w D∗β D∗∗β C∗β C∗∗β MS MK HZ SW
N(0, 1) 0.1014 0.0845 0.0837 0.823 0.0826 0.0843 0.0207 0.0619 0.0994 0.0950
t2 0.5634 0.5414 0.5425 0.4826 0.7198 0.6854 0.9032 0.7163 0.8786 .6361
t5 0.2389 0.2396 0.2529 0.2405 0.3101 0.3024 0.4357 0.1234 0.3814 0.2732
Cauchy 0.8762 0.8515 0.8198 0.7213 0.9553 0.9346 0.9946 0.9776 0.9951 0.9268
Logistic 0.2197 0.2116 0.3007 0.2926 0.3239 0.3111 0.2585 0.0343 0.3325 0.5326
Laplace 0.4478 0.4366 0.3897 0.3438 0.4367 0.3938 0.7120 0.4038 0.7828 0.4428
χ2
2 0.5575 0.5352 0.7952 0.7422 0.7606 0.7105 0.7173 0.1722 0.8824 0.9985
χ2
5 0.3060 0.2849 0.4936 0.4576 0.4521 0.4218 0.2883 0.0350 0.4755 0.8864

Γ(2, 0.5) 0.3628 0.3364 0.5764 0.5312 0.5338 0.4910 0.3797 0.0482 0.5681 0.9455
exp(1) 0.5555 0.5315 0.7985 0.7443 0.7649 0.7115 0.7219 0.1732 0.8838 0.9989

Table 8: Power comparison of test statistics for α = 0.1, n = 50, p = 2 under several alterna-
tives

Tests D∗w D∗∗w D∗β D∗∗β C∗β C∗∗β MS MK HZ SW
N(0, 1) 0.0923 0.0929 0.0936 0.0958 0.0960 0.0989 0.0823 0.0405 0.1008 0.1034
t2 0.9740 0.9711 0.9702 0.9632 0.9697 0.9621 0.9380 0.9823 0.9790 0.9677
t5 0.5603 0.5534 0.5854 0.5715 0.5872 0.5725 0.5732 0.6250 0.5171 0.5548
Cauchy 1.0000 0.9999 0.9997 0.9992 0.9997 0.9994 0.9970 1.0000 1.0000 0.9998
Logistic 0.2820 0.2778 0.4370 0.4284 0.4716 0.4610 0.8154 0.4769 0.7664 0.8084
Laplace 0.8621 0.8448 0.7612 0.7203 0.7640 0.7275 0.6733 0.8363 0.8758 0.7788
χ2
2 0.6285 0.6214 0.8926 0.8796 0.8910 0.8781 0.9995 0.8312 1.0000 1.0000
χ2
5 0.3378 0.3329 0.6107 0.5950 0.6107 0.5930 0.9475 0.4891 0.9222 0.9946

Γ(2, 0.5) 0.3951 0.3884 0.6865 0.6656 0.6816 0.6658 0.9753 0.5783 0.9707 0.9984
exp(1) 0.6316 0.6236 0.9003 0.8857 0.8983 0.8844 0.9997 0.8438 0.9999 1.0000

display similar power results as other existing tests under the this study.

Tables 6-9 report the mean power at significance level α = 0.1 when n = 20, 50 and p = 2, 5.
Noticeably the tests are more powerful compared with significance level α = 0.05. The detailed
power analysis is paralleled to the above comparison for α = 0.05, which has confirmed the
validity of the proposed test statistics.

5. Concluding remarks

In general, all four proposed tests (D∗w, D
∗∗
w , D

∗
β and D∗∗β ) had power close to α when the data

distribution was multivariate normal, and the tests D∗β and D∗∗β had power competitive with
some of the existing tests when the data distribution was not multivariate normal. When
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Table 9: Power comparison of test statistics for α = 0.1, n = 50, p = 5 under several alterna-
tives

Tests D∗w D∗∗w D∗β D∗∗β C∗β C∗∗β MS MK HZ SW
N(0, 1) 0.0960 0.0920 0.0978 0.1028 0.1001 0.1053 0.0675 0.0810 0.0998 0.0969
t2 0.9958 0.9927 0.9943 0.9869 0.9945 0.9875 0.9991 1.0000 0.9995 0.9940
t5 0.6881 0.6547 0.7162 0.6555 0.7283 0.6770 0.9045 0.8953 0.7790 0.6833
Cauchy 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Logistic 0.3928 0.3791 0.6195 0.5798 0.6376 0.5930 0.9168 0.5316 0.7339 0.9614
Laplace 0.9607 0.9333 0.9030 0.8104 0.9094 0.8216 0.9825 0.9961 0.9979 0.9101
χ2
2 0.8669 0.8468 0.9934 0.9797 0.9894 0.9729 1.0000 0.9250 1.0000 1.0000
χ2
5 0.5162 0.4919 0.8392 0.7821 0.8216 0.7709 0.9708 0.5217 0.9232 1.0000

Γ(2, 0.5) 0.5933 0.5677 0.9019 0.8531 0.8886 0.8386 0.9930 0.6224 0.9717 1.0000
exp(1) 0.8701 0.8513 0.9934 0.9812 0.9911 0.9779 1.0000 0.9221 1.0000 1.0000

sample size n = 20, noticeably D∗w, D
∗∗
w , D

∗
β and D∗∗β perform better than the test Mk for

most cases. In the study, there is no situation where one test reaches the best power under
all combinations of n, p, and α. But overall tests HZ and SW are well known as the powerful
tests. For the skewed alternative distributions, when sample size tends to moderately large,
the new tests D∗β and D∗∗β usually had better power than some of the existing tests. But the
new proposed tests D∗w and D∗∗w particularly possesses inferior performance. It is of a future
problem, when we form a new p−dimensional multivariate test by combining chi-squared
distributions based on kurtosis measures, it may be noted that we investigate a weighted chi-
squared distribution test. For further numerical summaries, we also recommend the graphical
methods as aids to detect the departures from multivariate normality.
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