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Implementing the Lifetime Performance Index of Products with a Two-Parameter Rayleigh
Distribution Under a Progressively type II Right Censored Sample

Danush K. Wijekularathna and Nischal Subedi

ABSTRACT. In manufacturing, quality control is a process that ensures customers receive products
free from defects and meet their needs. Process capability analysis has been widely applied in the
field of quality control to find out how well a given process meets a set of specification limits. The
lifetime performance index CL, a type of process capability index is used to measure the larger-the-
better type quality characteristics. Under the assumption of Two-Parameter Rayleigh Distribution,
this study constructs a maximum likelihood estimator of CL based on the progressively type II
right censored sample. The maximum likelihood estimator of CL is then utilized to develop the
new hypothesis testing procedure. The testing procedure can be employed the testing procedure to
determine whether the lifetime of a product adheres to the required level.

1. Introduction

Process capability indices are widely used in the manufacturing industry to measure process
potential and performance. Process capability indices are utilized to evaluate whether product
quality meets required performance level and customer expectations. Since the lifetime of elec-
tronic components exhibit larger-the-better quality characteristics of time orientation, Montgomery
(2005) and Kane (1986) proposed a process capability index CL (or CPL) for evaluating the life-
time performance of electronic components, where L is the lower specification limit. However, the
normality assumption the often not valid, is common in process capability analysis.

There have been numerous works on statistical inference for the lifetime performance index
based on usual type-II and progressive type-II censoring schemes with various lifetime distribu-
tions. Classical statistical inference for a lifetime performance index based on one and two pa-
rameter exponential lifetimes have been discussed by many authors. Under the assumption of one-
parameter exponential distribution, Tong et al. (2002) developed a uniformity minimum variance
unbiased estimator (UMVUE) of, and testing procedure for a lifetime performance index based on
a complete sample. As an extension of this work, Tong et al. (2002) developed the UMVUE, confi-
dence intervals of and testing procedure for the lifetime performance index based on a type-II right
censored sample. Under the assumption of exponential distribution, Lee et al. (2009) constructed
a maximum likelihood estimator (MLE) of lifetime performance index based on a progressively
type-II right censored sample. They then utilized the MLE of a lifetime performance index to de-
velop a hypothesis testing procedure in the condition of a known Lee et al. (2011b) constructed a
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Bayes estimator under a one-parameter Rayleigh distribution with a progressive type-II right cen-
sored sample. The Bayes estimator of lifetime performance index was then utilized to develop a
credible interval in the condition of a known L. For more examples, some references are Dey et al.
(2016), Lee et al. (2010), Hong et al. (2009), Lee et al. (2009), Lee et al. (2011a), and Gunasekera
and Wijekularathna (2018).

Motivated by these works, in this article, under a two-parameter Rayleigh distributed lifetime,
we implemented a maximum likelihood estimator of a lifetime performance index based on a type
II right-censored sample. The MLE of a lifetime performance index was then utilized to develop a
new hypothesis testing procedure in the conditions of a known L.

In life testing experiments, it can be difficult for experimenters to observe the lifetimes of all
products tested due to time or other resource restrictions. Therefore, censored samples are com-
monly used in practice. In this study, we consider a progressive type-II censoring scheme in
which we only observe the failure times. The m ordered observed failure times are denoted by
X1,n ≤ X2,n ≤ ...,≤ Xm,n, and the number of surviving units removed at each failure time stage
is denoted byR1, R2, ..., Rm. It is clear thatRm = n−

∑m−1
j=1 Rj−m and 0 ≤ Ri ≤ n−

∑i−1
j=1Rj−i

for i = 2, 3, ...,m− 1.
The rest of this paper is organized as follows: In section 2 some properties of a lifetime perfor-

mance index for the lifetime of the product based on a progressively type II censored sample are
discussed. In section 3, we investigate the relationship between a lifetime performance index and
the conforming rate of products. An MLE of the lifetime performance index is proposed in section
4.

2. The Lifetime Performance Index

Suppose that the lifetime of products, X , has a two-parameter Rayleigh distribution. X will
then have the following probability density function (p.d.f):

f(x, λ, µ) = 2λ(x− µ)e−λ(x−µ)
2

; x > µ, µ > 0 (2.1)

and a cumulative distribution function (c.d.f):

F (x, λ, µ) = 1− e−λ(x−µ)2 (2.2)

where λ and µ are scale and location parameters respectively.
Two-parameter Rayleigh distribution can be converted to a one parameter Rayleigh distribution,

by using the transformation Y =
√

2λ
3
2 (x− µ) which has a p.d.f and c.d.f.

fY (y|λ) =
y

λ2
e−

y2

2λ2 , y > 0, λ > 0 (2.3)

and

FY (y|λ) = 1− e−
y2

2λ2 , y > 0, λ > 0 (2.4)

respectively. Clearly, a longer lifetime implies a better product quality. Hence, in this case the
lifetime reflects larger-the-better type quality characteristics. The lifetime is generally required to
exceed the lower specification in L years to be economically profitable to investors.
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Montgomery (2005) developed a capability index CL to measure the larger-the-better quality
characteristic. CL as defined as follows:

CL =
µ− L
σ

(2.5)

where the process mean µ, the process standard deviation σ, and the lower specification limit
is L. CL can be defined as the lifetime performance index to assess the performance of business
systems.

The lifetime performance index CLY can be written as:

CLY =
µy − LY
σY

=

√
π

4− π
−
√

2

4− π
LY
λ
, ∞ < CLY <

√
π

4− π
(2.6)

where the process mean is µY =
√

π
2
λ the process standard deviation is σY =

√
4−π
2
λ and the

LY is the lower specification limit of Y .
The failure rate function r(y) is defined by (see Lee et al., 2009):

r(y) =
fY (y|λ)

(1− FY (y|λ))
=

y

λ2
; y > 0, λ > 0 (2.7)

The data transformation Y =
√

2λ
3
2 (x−µ) ; x > 0, x > µ is one-to-one and strictly increasing.

Therefore, data set of X and the transformed data set of Y have the same effect in assessing the
lifetime performance of products.

By (2.6)-(2.7), it can be seen that the larger the λ, the smaller the failure rate and the larger the
lifetime performance index CLY . Therefore, the lifetime performance index CLY reasonably and
accurately represents the lifetime performance of products.

3. The Conforming Rate

The product is called conforming if the lifetime of the product exceeds the lower specification
limit LY . The ratio of conforming products is known as the conforming rate Pr which can be
defined as (see Lee et al., 2011b):

Pr = P (Y ≥ LY ) = e
− 1

2

(√
π
2
−
√

4−π
2
CLY

)2
; −∞ < CLY <

√
π

4− π
(3.1)

It is obvious that a strictly positive relationship exists between the conforming rate Pr and the
lifetime performance index CLY . The conforming rate can be estimated by dividing the number of
conforming products by the total number of products sampled.

Montgomery (2005) suggested that the sample size must be large to accurately estimate the
conforming rate. However, a large sample size is usually not practical from the perspective of
cost, since collecting the lifetime data of new products involves damaging the products which may
prove cost prohibitive.

A complete sample is also impractical due to several reasons such as time limitation, lack of
funds, and mechanical difficulties. Since a one-to-one mathematical relationship exists between
the conforming rate Pr and CLY , the lifetime performance index will be flexible and can be an
effective tool for estimating the conforming rate, Pr.
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4. MLE Unbiased Estimator of CLY

As mentioned above, due to several reasons such as lack of materials resources, lack of funds,
mechanical or experiment difficulties, the experimenter may not always be in a position to observe
the lifetimes of all test products. Therefore, use of censored samples is recommended. In this
study, we consider the case of two parameter Rayleigh distribution under progressively type II
right censored data.

Consider that Y1:m:n ≤ Y2:m:n ≤ ... ≤ Ym:m:n is the corresponding progressively type II right
censored sample, with a censoring scheme R = (R1, R2, ..., Rm). The joint p.d.f of
Y1:m:n, Y2:m:n, ..., Yi:m:n is given by (see Balakrishnan and Aggarwala, 2000)

L(y, λ) = c
m∏
i=1

fY (yi:m:n) [1− FY (yi:m:n)]Ri (4.1)

where

c = n
m−1∏
i=1

(
n−

i∑
j=1

(Rj + 1)

)
, (4.2)

and fY (yi:m:n) and FY (yi:m:n) are the p.d.f and c.d.f of Y as in (2.3) and (2.4), respectively.
So, the likelihood function for Y1:m:n, Y2:m:n, ..., Yi:m:n is given by

L(λ) = cλ−2m

(
m∏
i=1

yi:m:n

)
e

1
2λ2

∑m
i=1(Ri+1)Y 2

i:m:n (4.3)

where c is given by (4.2).
It is easy to obtain the MLE of λ given by

λ̂MLE =

[
1

2m

m∑
i=1

(Ri + 1)Y 2
i:m:n

] 1
2

where Ri and m given in the above definition.
By the in-variance property of the MLE (Zehna, 1966), the MLE ĈLY of CLY can be written as:

ĈLY =

√
π

4− π
−
√

2

4− π
LY

λ̂MLE

(4.4)

Moreover, we can also show that W
λ2
∼ χ2

(2m), where W =
∑m

i=1(Ri + 1)Y 2
i:m:n.

Hence, the expectation of ĈLY can be derived as follows:

E(ĈLY ) =

√
π

4− π
−
√

2

4− π
LYE

 1√
W
2m

 (4.5)
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⇒ E

 1√
W
2m

 =

√
2m

λ2
E

((
W

λ2

)− 1
2

)

=

√
2m

λ2
2−

1
2 Γ(m− 1

2
)

Γ(m)

=

√
m

λ2
Γ(m− 1

2
)

Γ(m)

⇒ E(ĈLY ) =

√
π

4− π
−
√

2

4− π
LY

√
m

λ2
Γ(m− 1

2
)

Γ(m)

Since E(ĈLY ) 6= CLY , where CLY =
√

π
4−π −

√
2

4−π
LY
λ

, the MLE ĈLY is not an unbiased

estimator of CLY . ĈLY can be modified as below:

Ĉ
′

LY
=

√
π

4− π
−
√

2

4− π
.LY .

(√
W

2
.
Γ(m− 1

2
)

Γ(m)

)−1
(4.6)

Now, Ĉ ′LY is an unbiased estimator of CLY .

5. Testing Procedure for the Lifetime Performance Index

In this section, a statistical testing procedure to assess whether the lifetime performance index
adheres to the required level will be constructed. Assuming that the required lifetime performance
index value, CLY is larger than C∗, where C∗ denotes the target value, the null and alternative
hypothesis can be represented as follows:

H0 : the process is unreliable vs Ha : the process is reliable

i.e.

H0 : CLY ≤ C∗ vs Ha : CLY > C∗

The unbiased estimator Ĉ ′L of CLY is used as the test statistic, so the rejection region can be
expressed as [Ĉ

′
L|Ĉ

′
L > C0], for the given specified significance level α and the critical value C0.

Then the critical value C0 can be calculated as follows:



Implementing the Lifetime Performance Index. 33

P (Ĉ
′

LY
> C0|CLY ≤ C∗) ≤ α

⇒ P

√ π

4− π
−
√

2

4− π
LY

(√
W

2

Γ(m− 1
2
)

Γ(m)

)−1
> C0

∣∣∣∣ CLY ≤ C∗

 ≤ α

⇒ P

 1(√
π

4−π − C0

)√ 2

4− π
√

2LY
Γ(m)

Γ(m− 1
2
)
<
√
W

∣∣∣∣ CLY ≤ C∗

 ≤ α

⇒ P

 1(√
π

4−π − C0

)√ 2

4− π
√

2LY
Γ(m)

Γ(m− 1
2
)

1

λ
<

√
W

λ2

∣∣∣∣ √ π

4− π
−
√

2

4− π
LY
λ
≤ C∗

 ≤ α

⇒ P

 1(√
π

4−π − C0

)√ 2

4− π
√

2LY
Γ(m)

Γ(m− 1
2
)

1

λ
<

√
W

λ2

∣∣∣∣ √ π

4− π
−
√

2

4− π
LY
λ

= C∗

 = α

⇒ P

 1(√
π

4−π − C0

)√ 2

4− π
√

2LY
Γ(m)

Γ(m− 1
2
)

1

λ
<

√
W

λ2

∣∣∣∣ λ =

√
2

4− π
LY(√
π

4−π − C∗
)
 = α

⇒ P

W
λ2
≤

√2
(

π
4−π

)
− C∗)(√

π
4−π − C0

) Γ(m)

Γ(m− 1
2
)

2  = 1− α (5.1)

where W
λ2
∼ χ2

2m.

From (5.1), utilizing function CHIINV (1 − α, 2m) which represents the lower 100(1 − α)th

percentile of χ2
2m.  √

2Γ(m)(
√

π
4−π − C

∗)

Γ(m− 1
2
)
(√

π
4−π − C0

)
2

= CHIINV (1− α, 2m)

is obtained. Thus, the critical value C0 can be derived as:

C0 =

√
π

4− π
− Γ(m)

Γ(m− 1
2
)

(
2

CHIINV (1− α, 2m)

)− 1
2
(√

π

4− π
− C∗

)
(5.2)

where C∗, α and m denote the target value, the specified significance level, and the number of ob-
served failures before termination respectively. Moreover, we also find that C0 is independent of n
and Ri, i = 1, 2, ....,m. Table 5.1 and 5.2 list the critical values C0 for k = 1(1)50 (i.e. 1,2,3,...50)
and C = 0.1(0.1)0.9 (i.e. 0.1, 0.2, 0.3,...0.9) at α = 0.01 and α = 0.05 respectively.

In addition, the level (1 − α) one-sided confidence interval for CL can be derived as follows:
Since W

λ2
∼ χ2

2m and CHIINV (1−α, 2m) which represents the lower 1−α of χ2
2m, we can derive
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the lower bound for CLY as follows:

P

(
W

λ2
≤ CHIINV (1− α, 2m)

)
= 1− α

⇒ P

(
1

λ
≤
(
CHIINV (1− α, 2m)

W

) 1
2

)
= 1− α

⇒ P

(√
π

4− π
−
√

2

4− π
LY
λ
≥
√

π

4− π
−
√

2

4− π
LY

(
CHIINV (1− α, 2m)

W

) 1
2

)
= 1− α

⇒ P

(
CLY ≥

√
π

4− π
−
√

2

4− π
LY

(
CHIINV (1− α, 2m)

W

) 1
2

)
= 1− α

But, from (4.6)

1√
W

=

(√
π

4− π
− Ĉ ′LY

)
Γ(m− 1

2
)

√
2LY

√
2

4−πΓ(m)

Then,

⇒ P

(
CLY ≥

√
π

4− π
−
(

π

4− π
− Ĉ ′LY

)
Γ(m− 1

2
)

Γ(m)

(
CHIINV (1− α, 2m)

2

) 1
2

)
= 1− α

(5.3)
From (5.3), then

CLY >

√
π

4− π
−
(

π

4− π
− Ĉ ′LY

)
Γ(m− 1

2
)

Γ(m)

(
CHIINV (1− α, 2m)

2

) 1
2

is the level (1− α) one-sided confidence interval for CLY .
Thus, the level (1− α) lower confidence bound for CL can be written as:

LB =

√
π

4− π
−
(

π

4− π
− Ĉ ′LY

)
Γ(m− 1

2
)

Γ(m)

(
CHIINV (1− α, 2m)

2

) 1
2

(5.4)

where the Ĉ ′LY , α and m denote the MLE of CLY , the specified significance level and the number
of observed failures before termination respectively.

6. The Monte Carlo Simulation Study

First, we will show the results of a simulation study for confidence level (1 − α) based on a
100(1− α)% one-sided confidence interval of the lifetime performance index CLY . Samples from
a two parameter Rayleigh distribution were generated under progressive type II right censored
sample at α = 0.01.

The Monte Carlo simulation algorithm of confidence level (1−α) is given in the following steps:

Step 1: Given n, m, a, b, L, α and r = (r1, r2, ..., rm), where α > 0, b > 0 and m ≤ n.
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Step 2: (a) Generate data U1, U2, ..., Um by uniform distribution U(0,1).
(b) By the transformation of Zi = −ln(1 − Ui), i = 1, 2, ...,m, (Z1, Z2, ....Zm) is a

random sample from the exponential distribution.
(c) Set

Xi:m:n =
Z1

n
+

Z2

n−R1 − 1
+ ...+

Zi
n−R1 −R2...Ri−1 − i− 1

, for i = 1, 2, ..,m.

(X1:m:nX2:m:n, ..., Xi:m:n) is the progressively type II right censored sample from a
one parameter exponential distribution.

(d) Finally, set

Xi,n = F−1[1− exp(−X ′i,n)], for i = 1, 2, ...,m

where F−1() is the inverse cumulative distribution function of the two-parameter
Rayleigh distribution. Then, X1:m:n, X2:m:n, ..., Xi:m:n is the required progressively
type II right censored sample from two parameter Rayleigh distribution.

Step 3: Now apply the transformation Yi:m:n =
√

2λ
3
2 (Xi:m:n−µ) where Yi:m:n is the progressively

type II right censored sample from a one parameter Rayleigh distribution.
Step 4: (a) Calculate the level 100(1−α)% one-sided confidence interval [LB,∞) forCLY ,where

LB =

√
π

4− π
−
(

π

4− π
− Ĉ ′LY

)
Γ(m− 1

2
)

Γ(m)

(
CHIINV (1− α, 2m)

2

) 1
2

where Ĉ ′LY is given by (4.6).
(b) If CL > LB then Count A = 1, else Count A = 0.

Step 5: (a) Steps 2-4 are repeted 100 times.
(b) The estimation of confidence level (1 − α) is (1 − α̂) = Total Count A

100
for one-sided

confidence interval.
Step 6: (a) Repeat steps 2-5 1000 times, then the 1000 estimations of confidence levels are as

follows: (1− α̂)1, (1− α̂)2, ..., (1− α̂)1000 for one-sided confidence interval.
(b) The average empirical confidence interval is 1− α = 1

1000

∑1000
i=1 (1−α̂)i for one-sided

confidence interval.
(c) The sample mean square error (SMSE) of (1−α̂)1, (1−α̂)2, ..., (1−α̂)1000, SMSE =

(1/1000)
∑1000

i=1 [(1− α̂)i − (1− α)]2 for one-sided confidence inverval.

R statistical software is utilized to calculate the average empirical confidence level and the sam-
ple mean square error (SMSE) based on the above Monte Carlo simulation algorithm. Moreover,
the average empirical confidence level 1− α is used as the Monte Carlo estimate of the confidence
level 1− α.

Simulation results are summarized in Table 6.1 for the different n and m (n > m), censoring
scheme r = (r1, r2, ..., rm) where the prior parameter (a,b), L=1.0 and α = 0.01.
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TABLE 6.1. Average empirical confidence level (1− α) for CLY at α = 0.01(α = 0.05).

n m r = (r1, r2, ...., rm) SMSE AVECL
(0,0,0,0,10)

10 5 (10,0,0,0,0) 9.48e-05 0.98988
(0,5,5,0,0) (0.0004490) (0.95106)
(2,2,2,2,2)

5 (0,4,2,3,1) 9.48e-05 0.98988
(1,1,3,3,2) (0.0004490) (0.95106)

15 (9*0,5)
10 (5,9*0) 9.67e-05 0.98993

(0*8,3,2) (0.0004736) (0.94958)
(3,3,3,3,3)

5 (3,0,2,1,9) 9.48e-05 0.98988
(5,4,3,2,1) (0.0004490) (0.95106)
(3,0,7,7*0)

20 10 (9*0,10) 9.67e-05 0.98993
(10,9*0) ( 0.0004736) (0.94958)
(14*0,5)

15 (5,14*0) 9.3e-05 0.99042
(0,2,3,12*0) (0.0004602) (0.95030)
(20,0,0,0,0)

5 (0,10,5,5,0) 9.48e-05 0.98988
(5,5,5,5,0) (0.0004490) (0.95106)
(15,9*0)

10 (7*0,5,5,5) 9.67e-05 0.98993
25 (9*0,15) (0.0004736) (0.94958)

(10,14*0)
15 (13*0,5,5) 9.3e-05 0.99042

(14*0,10) (0.0004602) (0.95030)
(19*0,5)

20 (18*0,2,3) 9.56e-05 0.99038
(5,19*0) (0.0004517) (0.95003)
(35,0,0,0,0)

5 (0,0,0,0,35) 9.48e-05 0.98988
(10,10,10,5,0) (0.0004490) (0.95106)
(7*0,10,10,10)

10 (9*0,30) 9.67e-05 0.98993
(30,9*0) (0.0004736) (0.94958)
(14*0,25)

15 (25,14*0) 9.3e-05 0.99042
(13*0,15,10) (0.0004602) (0.95030)
(20,19*0)

20 (19*0,20) 9.56e-05 0.99038
(18*0,10,10) (0.0004517) (0.95003)

40 (24*0,15)
25 (15,24*0) 9.13e-05 0.99015

(22*0,5,5,5) (0.0004679) (0.94991)
(10,29*0)

30 (28*0,5,5) 9.01e-05 0.99053
(29*0,10) (0.0004841) (0.95047)
(34*0,5)

35 (5,34*0) 8.54e-05 0.99042
(33*0,2,3) (0.0004280) (0.95096)
(9*0,40)

10 (40,9*0) 9.67e-05 0.98993
(7*0,10,10,20) (0.0004736) (0.94958)
(30,19*0)

20 (19*0,30) 9.56e-05 0.99038
(17*0,10,10,10) (0.0004517) (0.95003)
(25,24*0)

50 25 (24*0,25) 9.13e-05 0.99015
(22*0,10,10,5) (0.0004679) (0.94991)
(29*0,20)

30 (20,29*0) 9.01e-05 0.99053
(10,10,28*0) (0.0004841) (0.95047)
(10,39*0)

40 (39*0,10) 8.96e-05 0.99064
(5,5,38*0) (0.0004444) (0.94976)
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Based on the above results, we can see that all of the average empirical confidence level 1− α
are very close to confidence level (1 − α) for any observed number m. For any fixed observed
number m, then the average empirical confidence level 1− α and the corresponding value of SMSE
will be the same, respectively, for any n.All of the average empirical confidence levels have a small
SMSE.

7. Conclusion

Process capability indices are widely used by manufacturers to measure the potential perfor-
mance of their processes. In general, in life testing experiments, the experimenter may not always
be in a position to observe the lifetimes of all test products because of time limitation and/or re-
strictions on data collection. Therefore, use of censored samples are recommended. In this article,
we consider the lifetime performance index CL of products with two-parameter Rayleigh distri-
bution under a progressively type 11 right censored sample. Two-parameter Rayleigh distribution
was transformed to one-parameter Rayleigh distribution. The MLE of the parameter λ of the one
parameter Rayleigh distribution was estimated. MLE of CL can be calculated by substituting the
MLE of λ to (2.6). Moreover, the MLE of CL is utilized to develop a new hypothesis procedure
for the lifetime performance index. In this hypothesis procedure, we first estimated the critical
value of the test. This critical value was used to estimate the lower confidence bound for CL. In
the simulation study, the results for the average empirical confidence level 1− α are very close to
confidence level (1− α) for any observed number n. For fixed observed number m, the empirical
confidence level 1− α and the corresponding value of SMSE will be the same, respectively, for
any n. This suggest that the proposed testing procedure not only can be easily applied but also can
effectively evaluate whether the lifetime of product adheres to the required level.

Acknowledgement

We would like to recognize Mr. Nikesh Subedi for his contributions to programming and Mr.
Mike Ingram for constructive criticism of the manuscript. The authors are also very much grateful
to the editor and reviewers for their suggestions and helpful comments which led to the improve-
ment of this paper.

References

Balakrishnan, N. and Aggarwala, R. (2000). Progressive censoring: theory, methods, and appli-
cations. Springer Science & Business Media.

Dey, T., Dey, S., and Kundu, D. (2016). On progressively type-II censored two-parameter Rayleigh
distribution. Communications in Statistics - Simulation and Computation, 45(2):438–455.

Gunasekera, S. and Wijekularathna, D. K. (2018). Generalized confidence limits for the perfor-
mance index of the exponentially distributed lifetime. Communications in Statistics - Theory
and Methods, pages 1–19.

Hong, C.-W., Wu, J.-W., and Cheng, C.-H. (2009). Implementing lifetime performance index for
the pareto lifetime businesses of the service industries. Quality and Quantity, 43:291–304.

Kane, V. E. (1986). Process capability indices. Journal of Quality Technology, 18(1):41–52.
Lee, H.-M., Wu, J.-W., Lei, C.-L., and Hung, W.-L. (2011a). Implementing lifetime performance

index of products with two-parameter exponential distribution. International Journal of Systems



38 Danush K. Wijekularathna, Nischal Subedi

Science, 42(8):1305–1321.
Lee, W.-C., Wu, J.-W., and Hong, C.-W. (2009). Assessing the lifetime performance index of

products with the exponential distribution under progressively type II right censored samples.
Journal of Computational and Applied Mathematics, 231:648–656.

Lee, W.-C., Wu, J.-W., Hong, M.-L., Lin, L.-S., and Chan, R.-L. (2011b). Assessing the lifetime
performance index of Rayleigh products based on the Bayesian estimation under progressive
type II right censored samples. Journal of Computational and Applied Mathematics, 235:1676–
1688.

Lee, W.-C., Wu, J.-W., and Lei, C.-L. (2010). Evaluating the lifetime performance index for the
exponential lifetime products. Applied Mathematical Modelling, 34:1217–1224.

Montgomery, D. C. (2005). Introduction to statistical quality control. New York : Wiley, 1985.
Tong, L., Chen, K., and Chen, H. (2002). Statistical testing for assessing the performance of

lifetime index of electronic components with exponential distribution. International Journal of
Quality & Reliability Management, 19(7):812–824.

Zehna, P. W. (1966). Invariance of maximum likelihood estimators. Ann. Math. Statist., 37(3):744.

(Danush K. Wijekularathna) DEPARTMENT OF MATHEMATICS AND STATISTICS, TROY UNIVERSITY, TROY, AL
36082

E-mail address: dwijekularathna@troy.edu

(Nischal Subedi) DEPARTMENT OF MATHEMATICS AND STATISTICS, TROY UNIVERSITY, TROY, AL 36082
E-mail address: nsubedi150578@troy.edu



Implementing the Lifetime Performance Index. 39

TABLE .1. Critical value C0 for m=1(1)40 and c=0.1(0.1)0.9 at α = 0.01

k c=.1 c=.2 c=.3 c=.4 c=.5 c=.6 c=.7 c=.8 c=.9
1 1.3221 1.3547 1.3873 1.4199 1.4524 1.4850 1.5176 1.5502 1.5828
2 0.9738 1.0256 1.0774 1.1292 1.1810 1.2328 1.2846 1.3364 1.3882
3 0.8259 0.8859 0.9459 1.0058 1.0658 1.1257 1.1857 1.2457 1.3056
4 0.7375 0.8024 0.8672 0.932 0.9969 1.0617 1.1265 1.1914 1.2562
5 0.6766 0.7448 0.8130 0.8812 0.9494 1.0176 1.0858 1.1540 1.2222
6 0.6311 0.7018 0.7725 0.8432 0.9139 0.9846 1.0553 1.1261 1.1968
7 0.5954 0.6681 0.7407 0.8134 0.8861 0.9588 1.0315 1.1041 1.1768
8 0.5663 0.6406 0.7149 0.7892 0.8635 0.9377 1.0120 1.0863 1.1606
9 0.5421 0.6177 0.6933 0.7689 0.8445 0.9202 0.9958 1.0714 1.1470
10 0.5214 0.5981 0.6749 0.7517 0.8284 0.9052 0.9819 1.0587 1.1354
11 0.5035 0.5812 0.6589 0.7367 0.8144 0.8922 0.9699 1.0477 1.1254
12 0.4877 0.5663 0.6450 0.7236 0.8022 0.8808 0.9594 1.0380 1.1166
13 0.4738 0.5532 0.6325 0.7119 0.7913 0.8707 0.9501 1.0295 1.1088
14 0.4613 0.5413 0.6214 0.7015 0.7816 0.8616 0.9417 1.0218 1.1019
15 0.4500 0.5307 0.6114 0.6921 0.7728 0.8535 0.9342 1.0149 1.0956
16 0.4397 0.5210 0.6023 0.6835 0.7648 0.8460 0.9273 1.0086 1.0898
17 0.4304 0.5121 0.5939 0.6757 0.7575 0.8393 0.9210 1.0028 1.0846
18 0.4218 0.5040 0.5863 0.6685 0.7508 0.8330 0.9153 0.9975 1.0798
19 0.4138 0.4965 0.5792 0.6619 0.7446 0.8273 0.9100 0.9926 1.0753
20 0.4064 0.4895 0.5726 0.6557 0.7388 0.8219 0.905 0.9881 1.0712
21 0.3996 0.4831 0.5665 0.6500 0.7335 0.8170 0.9004 0.9839 1.0674
22 0.3932 0.4770 0.5608 0.6447 0.7285 0.8123 0.8961 0.9800 1.0638
23 0.3872 0.4713 0.5555 0.6397 0.7238 0.8080 0.8921 0.9763 1.0605
24 0.3815 0.4660 0.5505 0.6349 0.7194 0.8039 0.8884 0.9728 1.0573
25 0.3762 0.4610 0.5458 0.6305 0.7153 0.8000 0.8848 0.9696 1.0543
26 0.3712 0.4563 0.5413 0.6263 0.7114 0.7964 0.8815 0.9665 1.0515
27 0.3665 0.4518 0.5371 0.6224 0.7077 0.7930 0.8783 0.9636 1.0489
28 0.3620 0.4475 0.5331 0.6186 0.7042 0.7897 0.8753 0.9608 1.0464
29 0.3577 0.4435 0.5293 0.6151 0.7009 0.7866 0.8724 0.9582 1.0440
30 0.3537 0.4397 0.5257 0.6117 0.6977 0.7837 0.8697 0.9557 1.0417
31 0.3498 0.4360 0.5222 0.6085 0.6947 0.7809 0.8671 0.9533 1.0396
32 0.3461 0.4325 0.5189 0.6054 0.6918 0.7782 0.8647 0.9511 1.0375
33 0.3426 0.4292 0.5158 0.6024 0.6890 0.7757 0.8623 0.9489 1.0355
34 0.3392 0.4260 0.5128 0.5996 0.6864 0.7732 0.8600 0.9468 1.0336
35 0.3359 0.4229 0.5099 0.5969 0.6839 0.7709 0.8579 0.9448 1.0318
36 0.3328 0.4200 0.5072 0.5943 0.6815 0.7686 0.8558 0.9429 1.0301
37 0.3299 0.4172 0.5045 0.5918 0.6791 0.7665 0.8538 0.9411 1.0284
38 0.3270 0.4145 0.5019 0.5894 0.6769 0.7644 0.8519 0.9393 1.0268
39 0.3242 0.4119 0.4995 0.5871 0.6747 0.7624 0.8500 0.9376 1.0253
40 0.3216 0.4093 0.4971 0.5849 0.6727 0.7605 0.8482 0.9360 1.0238
41 0.3190 0.4069 0.4948 0.5828 0.6707 0.7586 0.8465 0.9344 1.0224
42 0.3165 0.4046 0.4926 0.5807 0.6687 0.7568 0.8449 0.9329 1.0210
43 0.3141 0.4023 0.4905 0.5787 0.6669 0.7551 0.8433 0.9314 1.0196
44 0.3118 0.4001 0.4884 0.5768 0.6651 0.7534 0.8417 0.9300 1.0183
45 0.3096 0.3980 0.4864 0.5749 0.6633 0.7518 0.8402 0.9287 1.0171
46 0.3074 0.3960 0.4845 0.5731 0.6616 0.7502 0.8388 0.9273 1.0159
47 0.3053 0.3940 0.4826 0.5713 0.6600 0.7487 0.8374 0.9260 1.0147
48 0.3033 0.3920 0.4808 0.5696 0.6584 0.7472 0.8360 0.9248 1.0136
49 0.3013 0.3902 0.4791 0.5680 0.6569 0.7458 0.8347 0.9236 1.0125
50 0.2994 0.3884 0.4774 0.5664 0.6554 0.7444 0.8334 0.9224 1.0114
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TABLE .2. Critical value C0 for m=1(1)40 and c=0.1(0.1)0.9 at α = 0.05

k c=.1 c=.2 c=.3 c=.4 c=.5 c=.6 c=.7 c=.8 c=.9
1 1.4364 1.4627 1.489 1.5153 1.5416 1.5678 1.5941 1.6204 1.6467
2 1.1190 1.1628 1.2066 1.2504 1.2942 1.338 1.3818 1.4256 1.4694
3 0.9722 1.0241 1.076 1.1279 1.1798 1.2317 1.2836 1.3355 1.3874
4 0.8803 0.9372 0.9942 1.0512 1.1081 1.1651 1.2221 1.2790 1.336
5 0.8149 0.8755 0.936 0.9966 1.0572 1.1178 1.1783 1.2389 1.2995
6 0.765 0.8283 0.8917 0.955 1.0183 1.0816 1.1449 1.2083 1.2716
7 0.7251 0.7907 0.8562 0.9217 0.9872 1.0527 1.1183 1.1838 1.2493
8 0.6922 0.7596 0.8269 0.8942 0.9616 1.0289 1.0963 1.1636 1.2309
9 0.6644 0.7333 0.8022 0.8710 0.9399 1.0088 1.0776 1.1465 1.2154
10 0.6405 0.7107 0.7809 0.8511 0.9213 0.9914 1.0616 1.1318 1.2020
11 0.6196 0.6909 0.7623 0.8336 0.9050 0.9763 1.0476 1.1190 1.1903
12 0.6011 0.6734 0.7458 0.8182 0.8905 0.9629 1.0353 1.1076 1.1800
13 0.5846 0.6578 0.7311 0.8044 0.8777 0.9509 1.0242 1.0975 1.1708
14 0.5697 0.6438 0.7179 0.7920 0.8661 0.9402 1.0142 1.0883 1.1624
15 0.5562 0.6310 0.7059 0.7807 0.8555 0.9304 1.0052 1.0801 1.1549
16 0.5438 0.6194 0.6949 0.7704 0.8459 0.9214 0.9970 1.0725 1.1480
17 0.5325 0.6087 0.6848 0.7610 0.8371 0.9132 0.9894 1.0655 1.1417
18 0.5221 0.5988 0.6755 0.7522 0.8290 0.9057 0.9824 1.0591 1.1358
19 0.5124 0.5896 0.6669 0.7441 0.8214 0.8987 0.9759 1.0532 1.1304
20 0.5034 0.5811 0.6589 0.7366 0.8144 0.8921 0.9699 1.0476 1.1254
21 0.4950 0.5732 0.6514 0.7296 0.8078 0.8860 0.9643 1.0425 1.1207
22 0.4871 0.5657 0.6444 0.7230 0.8017 0.8803 0.9590 1.0376 1.1163
23 0.4797 0.5587 0.6378 0.7169 0.7959 0.8750 0.9540 1.0331 1.1121
24 0.4727 0.5522 0.6316 0.7110 0.7905 0.8699 0.9494 1.0288 1.1083
25 0.4661 0.5459 0.6257 0.7055 0.7854 0.8652 0.9450 1.0248 1.1046
26 0.4599 0.5400 0.6202 0.7003 0.7805 0.8606 0.9408 1.0209 1.1011
27 0.4540 0.5345 0.6149 0.6954 0.7759 0.8564 0.9368 1.0173 1.0978
28 0.4484 0.5292 0.6100 0.6907 0.7715 0.8523 0.9331 1.0139 1.0947
29 0.4430 0.5241 0.6052 0.6863 0.7674 0.8484 0.9295 1.0106 1.0917
30 0.4380 0.5193 0.6007 0.6820 0.7634 0.8448 0.9261 1.0075 1.0888
31 0.4331 0.5147 0.5964 0.6780 0.7596 0.8412 0.9229 1.0045 1.0861
32 0.4285 0.5103 0.5922 0.6741 0.7560 0.8379 0.9198 1.0016 1.0835
33 0.4240 0.5061 0.5883 0.6704 0.7525 0.8347 0.9168 0.9989 1.0810
34 0.4197 0.5021 0.5845 0.6668 0.7492 0.8316 0.9139 0.9963 1.0787
35 0.4156 0.4982 0.5808 0.6634 0.7460 0.8286 0.9112 0.9938 1.0764
36 0.4117 0.4945 0.5773 0.6601 0.7429 0.8257 0.9086 0.9914 1.0742
37 0.4079 0.4909 0.5740 0.6570 0.7400 0.8230 0.9060 0.9890 1.0721
38 0.4043 0.4875 0.5707 0.6539 0.7372 0.8204 0.9036 0.9868 1.0700
39 0.4008 0.4842 0.5676 0.6510 0.7344 0.8178 0.9012 0.9846 1.0681
40 0.3974 0.4810 0.5646 0.6482 0.7318 0.8154 0.8990 0.9826 1.0662
41 0.3941 0.4779 0.5617 0.6454 0.7292 0.813 0.8968 0.9806 1.0643
42 0.3910 0.4749 0.5589 0.6428 0.7268 0.8107 0.8947 0.9786 1.0626
43 0.3879 0.4720 0.5561 0.6403 0.7244 0.8085 0.8926 0.9767 1.0609
44 0.3849 0.4692 0.5535 0.6378 0.7221 0.8064 0.8906 0.9749 1.0592
45 0.3821 0.4665 0.5510 0.6354 0.7198 0.8043 0.8887 0.9732 1.0576
46 0.3793 0.4639 0.5485 0.6331 0.7177 0.8023 0.8869 0.9715 1.0561
47 0.3766 0.4613 0.5461 0.6308 0.7156 0.8003 0.8851 0.9698 1.0545
48 0.3740 0.4589 0.5438 0.6286 0.7135 0.7984 0.8833 0.9682 1.0531
49 0.3714 0.4565 0.5415 0.6265 0.7116 0.7966 0.8816 0.9666 1.0517
50 0.3690 0.4541 0.5393 0.6245 0.7096 0.7948 0.8800 0.9651 1.0503


	1. Introduction
	2. The Lifetime Performance Index
	3. The Conforming Rate
	4. MLE Unbiased Estimator of CLY
	5. Testing Procedure for the Lifetime Performance Index
	6. The Monte Carlo Simulation Study
	7. Conclusion
	Acknowledgement
	References

