Sectorial Stieltjes functions and their realizations by L-systems with a Schrödinger operator

Sergey Belyi*

Department of Mathematics, Troy State University, Troy, AL 36082, USA

Received 29 August 2011, accepted 23 January 2012 Published online 19 April 2012

Key words L-system, transfer function, impedance function, Herglotz-Nevanlinna function, Stieltjes function, sectorial operators, Schrödinger operator

MSC (2010) Primary: 47A10; Secondary: 47N50, 81Q10

Dedicated to Eduard Tsekanovskii, my mentor, co-author, and friend, on the occasion of his 75th birthday

We consider classes of sectorial Stieltjes functions. It is shown that a function belonging to these classes can be realized as the impedance function of a singular L-system with a sectorial state-space operator. We provide an additional condition on a given function from this class so that the state-space operator of the realizing L-system is α -sectorial with the exact angle of sectoriality α . Then these results are applied to L-systems based upon a non-self-adjoint Schrödinger operator.

© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

An operator-valued function V(z) acting on a finite-dimensional Hilbert space E belongs to the class of operatorvalued Herglotz-Nevanlinna functions if it is holomorphic on $\mathbb{C} \setminus \mathbb{R}$, if it is symmetric with respect to the real axis, i.e., $V(z)^* = V(\bar{z}), z \in \mathbb{C} \setminus \mathbb{R}$, and if it satisfies the positivity condition

$$\operatorname{Im} V(z) \ge 0, \quad z \in \mathbb{C}_+.$$

It is well-known (see e.g. [7], [8]) that operator-valued Herglotz-Nevanlinna functions admit the following integral representation:

$$V(z) = Q + Lz + \int_{\mathbb{R}} \left(\frac{1}{t - z} - \frac{t}{1 + t^2} \right) dG(t), \quad z \in \mathbb{C} \setminus \mathbb{R},$$
(1.1)

where $Q = Q^*$, $L \ge 0$, and G(t) is a nondecreasing operator-valued function on \mathbb{R} with values in the class of nonnegative operators in E such that

$$\int_{\mathbb{R}} \frac{(dG(t)f, f)_E}{1 + t^2} < \infty, \quad \forall f \in E.$$

The realization of a selected class of Herglotz-Nevanlinna functions is provided by an L-system Θ of the form

$$\begin{cases} (\mathbb{A} - zI)x = KJ\varphi_{-}, \\ \varphi_{+} = \varphi_{-} - 2iK^{*}x \end{cases}$$
(1.2)

or

$$\Theta = \begin{pmatrix} \mathbb{A} & K & J \\ \mathcal{H}_+ \subset \mathcal{H} \subset \mathcal{H}_- & E \end{pmatrix}.$$
(1.3)

^{*} e-mail: sbelyi@troy.edu, Phone: +1(334) 670-3467, Fax: +1(334) 670-3796

In this system A, the *state-space operator* of the system, is a so-called (*)-extension, which is a bounded linear operator from \mathcal{H}_+ into \mathcal{H}_- extending a symmetric operator A in \mathcal{H} , where $\mathcal{H}_+ \subset \mathcal{H} \subset \mathcal{H}_-$ is a rigged Hilbert space. Moreover, K is a bounded linear operator from the finite-dimensional Hilbert space E into \mathcal{H}_- , while $J = J^* = J^{-1}$ is acting on E, are such that $\text{Im } \mathbb{A} = KJK^*$. Also, $\varphi_- \in E$ is an input vector, $\varphi_+ \in E$ is an output vector, and $x \in \mathcal{H}_+$ is a vector of the state space of the system Θ . The system described by (1.2)–(1.3) is called an *L-system*. An unbounded generalization of Brodskiĭ–Livšic operator colligations [10], [16], the L-systems have been introduced by Eduard Tsekanovskiĭ, and studied by himself, his students, and co-authors for the last four decades. The detailed description of L-systems including historical aspects can be found in [4]. An operator-valued function

$$W_{\Theta}(z) = I - 2iK^*(\mathbb{A} - zI)^{-1}KJ$$

is the transfer function of the L-system Θ . It was shown in [7] that an operator-valued function V(z) acting on a Hilbert space E of the form (1.1) can be represented and realized in the form

$$V(z) = i[W_{\Theta}(z) + I]^{-1}[W_{\Theta}(z) - I] = K^*(\operatorname{Re} \mathbb{A} - zI)^{-1}K,$$

where $W_{\Theta}(z)$ is a transfer function of some scattering (J = I) L-system Θ , if and only if the function V(z) in (1.1) satisfies the following two conditions:

$$\begin{cases} L = 0, \\ Qf = \int_{\mathbb{R}} \frac{t}{1+t^2} \, dG(t)f, \quad \text{when} \quad \int_{\mathbb{R}} (dG(t)f, f)_E < \infty. \end{cases}$$
(1.4)

The class of all realizable Herglotz-Nevanlinna functions with conditions (1.4) is denoted by N(R) (see [7]).

In the current paper we are going to focus on an important subclass of Herglotz-Nevanlinna functions, the Stieltjes functions. A Herglotz-Nevanlinna function V(z) belongs to the Stieltjes functions subclass if it is holomorphic in $\text{Ext}[0, +\infty)$ and is such that $\text{Im}[zV(z)]/\text{Im} z \ge 0$, i.e., zV(z) is also a Herglotz-Nevanlinna function. The formal definition, integral representation for Stieltjes functions as well as the basic realization results are given in Section 3. In particular, we specify a subclass of realizable Stieltjes operator-functions and show that any member of this subclass can be realized by an L-system of the form (1.3) whose state-space operator \mathbb{A} is accretive.

In Section 4 we introduce the so-called *sectorial* classes S^{α} and S^{α_1,α_2} of Stieltjes functions. The class S^{α} was first introduced and treated by Alpay and Tsekanovskii in [2] while the description of the class S^{α_1,α_2} can only be found in [4]. The realization results presented in Section 4 for these sectorial classes allow us to observe the properties of the realizing L-systems whose impedance functions belong to either S^{α} or S^{α_1,α_2} .

Section 5 is devoted to L-systems of the form (1.3) containing the Schrödinger operator in $L_2[a, +\infty)$ (see [18]) with non-self-adjoint boundary conditions

$$\begin{cases} T_h y = -y'' + q(x)y, \\ y'(a) = hy(a), \end{cases} \quad (q(x) = \overline{q(x)}, \, \operatorname{Im} h \neq 0). \end{cases}$$
(1.5)

A complete description of such L-systems as well as the formulas for their transfer and impedance functions are presented. Moreover, Theorem 5.1 provides us with the formula giving the exact parametrization of all state-space operators of L-systems based upon the Schrödinger operator (1.5).

Section 6 contains the main results of the present paper. Utilizing the general realization theorems for the class S^{α_1,α_2} covered in Section 4, we obtain some interesting properties of L-systems with Schrödinger operator whose impedance function fall into the class S^{α_1,α_2} . Most of the results are given in terms of the real parameter μ that appears in the construction of the elements of the realizing system.

2 Preliminaries

For a pair of Hilbert spaces $\mathcal{H}_1, \mathcal{H}_2$ we denote by $[\mathcal{H}_1, \mathcal{H}_2]$ the set of all bounded linear operators from \mathcal{H}_1 to \mathcal{H}_2 . Let \dot{A} be a closed, densely defined, symmetric operator in a Hilbert space \mathcal{H} with inner product $(f, g), f, g \in \mathcal{H}$. Any operator T in \mathcal{H} such that

 $\dot{A} \subset T \subset \dot{A}^*$

is called a *quasi-self-adjoint extension* of A.

Consider the rigged Hilbert space (see [7]) $\mathcal{H}_+ \subset \mathcal{H} \subset \mathcal{H}_-$, where $\mathcal{H}_+ = \text{Dom}(\dot{A}^*)$ and

$$(f,g)_{+} = (f,g) + (\dot{A}^*f, \dot{A}^*g), f,g \in \text{Dom}(A^*).$$

Let \mathcal{R} be the *Riesz-Berezansky operator* \mathcal{R} (see [7]) which maps \mathcal{H}_- onto \mathcal{H}_+ such that $(f,g) = (f,\mathcal{R}g)_+$ ($\forall f \in \mathcal{H}_+$, $g \in \mathcal{H}_-$) and $\|\mathcal{R}g\|_+ = \|g\|_-$. Note that identifying the space conjugate to \mathcal{H}_\pm with \mathcal{H}_\pm , we get that if $\mathbb{A} \in [\mathcal{H}_+, \mathcal{H}_-]$, then $\mathbb{A}^* \in [\mathcal{H}_+, \mathcal{H}_-]$.

Definition 2.1 An operator $\mathbb{A} \in [\mathcal{H}_+, \mathcal{H}_-]$ is called a *self-adjoint bi-extension* of a symmetric operator \dot{A} if $\mathbb{A} = \mathbb{A}^*$ and $\mathbb{A} \supset \dot{A}$.

Let A be a self-adjoint bi-extension of \dot{A} and let the operator \hat{A} in \mathcal{H} be defined as follows:

$$\operatorname{Dom}(\widehat{A}) = \{ f \in \mathcal{H}_+ : \widehat{A}f \in \mathcal{H} \}, \quad \widehat{A} = \mathbb{A} \restriction \operatorname{Dom}(\widehat{A}).$$

The operator \widehat{A} is called a *quasi-kernel* of a self-adjoint bi-extension \mathbb{A} (see [21]).

Definition 2.2 Let T be a quasi-self-adjoint extension of \dot{A} with nonempty resolvent set $\rho(T)$. An operator $\mathbb{A} \in [\mathcal{H}_+, \mathcal{H}_-]$ is called a (*)-*extension* of an operator T if

(1) $\mathbb{A} \supset T \supset \dot{A}, \quad \mathbb{A}^* \supset T^* \supset \dot{A},$

(2) the quasi-kernel of self-adjoint bi-extension $\operatorname{Re} \mathbb{A} = \frac{1}{2}(\mathbb{A} + \mathbb{A}^*)$ is a self-adjoint extension of \dot{A} .

A definition of (*)-extension in an equivalent form was first introduced by Eduard Tsekanovskii in [17]. The existence, description, and analog of von Neumann's formulas for self-adjoint bi-extensions and (*)-extensions were discussed in [21] (see also [3]–[5], [7]). In what follows we suppose that \dot{A} has equal deficiency indices and will say that a quasi-self-adjoint extension T of \dot{A} belongs to the class $\Lambda(\dot{A})$ if $\rho(T) \neq \emptyset$, $Dom(\dot{A}) = Dom(T) \cap Dom(T^*)$, and T admits (*)-extensions.

Recall that a linear operator T in a Hilbert space \mathfrak{H} is called *accretive* [15] if $\operatorname{Re}(Tf, f) \ge 0$ for all $f \in \operatorname{Dom}(T)$. We call an accretive operator T α -sectorial [15] if there exists a value of $\alpha \in (0, \pi/2)$ such that

$$|\operatorname{Im}(Tf, f)| \le (\tan \alpha) \operatorname{Re}(Tf, f), \quad f \in \operatorname{Dom}(T).$$

We say that the angle of sectoriality α is *exact* for an α -sectorial operator T if

$$\tan \alpha = \sup_{f \in \text{Dom}(T)} \frac{|\operatorname{Im}(Tf, f)|}{\operatorname{Re}(Tf, f)}.$$

Let T be a quasi-self-adjoint maximal accretive extension of a nonnegative operator \dot{A} . A (*)-extension \mathbb{A} of T is called *accretive* if $\operatorname{Re}(\mathbb{A}f, f) \geq 0$ for all $f \in \mathcal{H}_+$. This is equivalent to that the real part $\operatorname{Re}\mathbb{A} = (\mathbb{A} + \mathbb{A}^*)/2$ is nonnegative self-adjoint bi-extension of \dot{A} .

Definition 2.3 A system of equations

$$\begin{cases} (\mathbb{A} - zI)x = KJ\varphi_{-} \\ \varphi_{+} = \varphi_{-} - 2iK^{*}x, \end{cases}$$

or an array

$$\Theta = \begin{pmatrix} \mathbb{A} & K & J \\ \mathcal{H}_+ \subset \mathcal{H} \subset \mathcal{H}_- & E \end{pmatrix}$$
(2.1)

is called an *L*-system if:

- (1) \mathbb{A} is a (*)-extension of an operator T of the class $\Lambda(\dot{A})$;
- (2) $J = J^* = J^{-1} \in [E, E], \quad \dim E < \infty;$
- (3) Im $\mathbb{A} = KJK^*$, where $K \in [E, \mathcal{H}_-]$, $K^* \in [\mathcal{H}_+, E]$, and $\operatorname{Ran}(K) = \operatorname{Ran}(\operatorname{Im} \mathbb{A})$.

In the definition above $\varphi_{-} \in E$ stands for an input vector, $\varphi_{+} \in E$ is an output vector, and x is a state space vector in \mathcal{H} . An operator \mathbb{A} is called a *state-space operator* of the system Θ , J is a *direction operator*, and K is a *channel operator*. A system Θ of the form (2.1) is called an *accretive system* [9], [12] if its main operator \mathbb{A} is accretive.

We associate with an L-system Θ the operator-valued function

$$W_{\Theta}(z) = I - 2iK^*(\mathbb{A} - zI)^{-1}KJ, \quad z \in \rho(T),$$
(2.2)

which is called the *transfer function* of the L-system Θ . We also consider the operator-valued function

$$V_{\Theta}(z) = K^* (\operatorname{Re} \mathbb{A} - zI)^{-1} K.$$
(2.3)

It was shown in [7], [4] that both (2.2) and (2.3) are well defined. The transfer operator-function $W_{\Theta}(z)$ of the system Θ and an operator-function $V_{\Theta}(z)$ of the form (2.3) are connected by the following relations valid for $\text{Im } z \neq 0, z \in \rho(T)$,

$$V_{\Theta}(z) = i[W_{\Theta}(z) + I]^{-1}[W_{\Theta}(z) - I]J,$$

$$W_{\Theta}(z) = (I + iV_{\Theta}(z)J)^{-1}(I - iV_{\Theta}(z)J).$$

The function $V_{\Theta}(z)$ defined by (2.3) is called the *impedance function* of an L-system Θ of the form (2.1). It was shown in [7] that the class N(R) of all Herglotz-Nevanlinna functions in a finite-dimensional Hilbert space E, that can be realized as impedance functions of an L-system, is described by conditions (1.4). In particular, the following theorem [4], [7] takes place.

Theorem 2.4 Let Θ be an L-system of the form (2.1). Then the impedance function $V_{\Theta}(z)$ of the form (2.3) belongs to the class N(R).

Conversely, let an operator-valued function V(z) belong to the class N(R). Then V(z) can be realized as the impedance function of an L-system Θ of the form (2.1) with a preassigned direction operator J for which I + iV(-i)J is invertible.

It was shown in [7] that if J = I, then the invertibility condition in the second part of Theorem 2.4 is satisfied automatically.

3 Realization of Stieltjes functions

Let E be a finite-dimensional Hilbert space. The scalar versions of the following definition can be found in [14].

Definition 3.1 We will call an operator-valued Herglotz-Nevanlinna function $V(z) \in [E, E]$ a *Stieltjes function* if V(z) admits the following integral representation

$$V(z) = \gamma + \int_{0}^{\infty} \frac{dG(t)}{t-z},$$
(3.1)

where $\gamma \ge 0$ and G(t) is a non-decreasing on $[0, +\infty)$ operator-valued function such that

$$\int_{0}^{\infty} \frac{(dG(t)f, f)_E}{1+t} < \infty, \quad \forall f \in E.$$

Alternatively (see [14]) an operator-valued function V(z) is Stieltjes if it is holomorphic in $Ext[0, +\infty)$ and

$$\frac{\operatorname{Im}[zV(z)]}{\operatorname{Im} z} \ge 0. \tag{3.2}$$

Theorem 3.2 below was stated in equivalent ways and proved in [4], [11], [12].

Theorem 3.2 Let Θ be an L-system of the form (2.1). Then the impedance operator-valued function $V_{\Theta}(z)$ defined by (2.3) is a Stieltjes function if and only if the main operator \mathbb{A} of the system Θ is accretive.

At this point we need to note that since Stieltjes functions form a subset of Herglotz-Nevanlinna functions then we can utilize the conditions (1.4) to form a *class* S(R) of all *realizable Stieltjes functions* presented in [4], [12]. Clearly, S(R) is a subclass of N(R) of all realizable Herglotz-Nevanlinna functions described in details in [7] and [8]. To see the specifications of the class S(R) we recall that aside of integral representation (3.1), any Stieltjes function admits a representation (1.1). Applying condition (1.4) we obtain

$$Q = \frac{1}{2} \left[V_{\Theta}(-i) + V_{\Theta}^{*}(-i) \right] = \gamma + \int_{0}^{+\infty} \frac{t}{1+t^{2}} \, dG(t).$$
(3.3)

Combining the second part of condition (1.4) and (3.3) we conclude that

$$\gamma f = 0, \tag{3.4}$$

for all $f \in E$ such that

$$\int_{0}^{\infty} (dG(t)f, f)_E < \infty \tag{3.5}$$

holds. Consequently, (3.4)–(3.5) is precisely the condition for $V(z) \in S(R)$.

We are going to focus though on the subclass $S_0(R)$ of S(R) (see [4], [12]), whose definition is the following. **Definition 3.3** An operator-valued Stieltjes function $V(z) \in [E, E]$ is said to be a member of the *class* $S_0(R)$ if in the representation (3.1) we have

$$\int_{0}^{\infty} (dG(t)f, f)_E = \infty$$

for all non-zero $f \in E$.

We note that a function V(z) can belong to the class $S_0(R)$ and have an arbitrary constant $\gamma \ge 0$ in the representation (3.1).

The following statement [12] is the direct realization theorem for the functions of the class $S_0(R)$.

Theorem 3.4 Let Θ be an accretive system of the form (2.1). Then the impedance operator-function $V_{\Theta}(z)$ of the form (2.3) belongs to the class $S_0(R)$.

The inverse realization theorem can be stated and proved (see [12]) for the classes $S_0(R)$ as follows.

Theorem 3.5 Let an operator-valued function V(z) belong to the class $S_0(R)$. Then V(z) admits a realization by an accretive system Θ of the form (2.1) with J = I.

4 Sectorial classes S^{α} and S^{α_1,α_2} and their realizations

Let $\alpha \in (0, \frac{\pi}{2})$. We introduce sectorial subclasses S^{α} of operator-valued Stieltjes functions as follows. An operator-valued Stieltjes function V(z) belongs to S^{α} if

$$K_{\alpha} = \sum_{k,l=1}^{n} \left(\left[\frac{z_k V(z_k) - \bar{z}_l V(\bar{z}_l)}{z_k - \bar{z}_l} - (\cot \alpha) V^*(z_l) V(z_k) \right] h_k, h_l \right)_E \ge 0,$$
(4.1)

for an arbitrary sequence $\{z_k\}$ (k = 1, ..., n) of $(\text{Im } z_k > 0)$ complex numbers and a sequence of vectors $\{h_k\}$ in *E*. For $0 < \alpha_1 < \alpha_2 < \frac{\pi}{2}$, we have

$$S^{\alpha_1} \subset S^{\alpha_2} \subset S,$$

where S denotes the class of all Stieltjes functions (which corresponds to the case $\alpha = \frac{\pi}{2}$), as follows from the inequality

$$K_{\alpha_1} \le K_{\alpha_2} \le K_{\frac{\pi}{2}}$$

The following theorem [2], [4] refines the result of Theorem 3.2 as applied to the class S^{α} .

Theorem 4.1 Let Θ be a scattering L-system of the form (2.1) with a densely defined non-negative symmetric operator \dot{A} . Then the impedance function $V_{\Theta}(z)$ defined by (2.3) belongs to the class S^{α} if and only if the operator A of the L-system Θ is α -sectorial.

Another class that we would like to introduce at this point is a special subclass of scalar Stieltjes functions. Let

$$0 \le \alpha_1 \le \alpha_2 \le \frac{\pi}{2}.$$

We say that a scalar Stieltjes function V(z) belongs to the class S^{α_1,α_2} if

$$\tan \alpha_1 = \lim_{x \to -\infty} V(x), \quad \tan \alpha_2 = \lim_{x \to -0} V(x).$$
(4.2)

The following theorem [4] provides a connection between the classes S^{α} and S^{α_1,α_2} .

Theorem 4.2 Let Θ be a scattering L-system of the form

$$\Theta = \begin{pmatrix} \mathbb{A} & K & 1 \\ \mathcal{H}_{+} \subset \mathcal{H} \subset \mathcal{H}_{-} & \mathbb{C} \end{pmatrix}, \tag{4.3}$$

with a densely defined non-negative symmetric operator A. Let also \mathbb{A} be an α -sectorial (*)-extension of $T \in \Lambda(\dot{A})$. Then the impedance function $V_{\Theta}(z)$ defined by (2.3) belongs to the class S^{α_1,α_2} , $\tan \alpha_2 \leq \tan \alpha$, and T is $(\alpha_2 - \alpha_1)$ -sectorial with the exact angle of sectoriality $(\alpha_2 - \alpha_1)$.

The corollary below treats the case when α in Theorem 4.2 is the exact angle of sectoriality of the operator T. Thus both operators T and \mathbb{A} maintain the same exact angle.

Corollary 4.3 Let Θ of the form (4.3) be an L-system as in the statement of Theorem 4.2 and let α be the exact angle of sectoriality of the operator T of the system Θ . Then $V_{\Theta}(z) \in S^{0,\alpha}$.

Proof. According to Theorem 4.2 the exact angle of sectoriality is given by $\alpha_2 - \alpha_1$, where

$$\tan \alpha_1 = \lim_{x \to -\infty} V_{\Theta}(x), \quad \tan \alpha_2 = \lim_{x \to -0} V_{\Theta}(x).$$

It was also shown that $\tan \alpha \ge \tan \alpha_2$. On the other hand, since in the statement of the current corollary α be the exact angle of sectoriality of T, then $\alpha = \alpha_2 - \alpha_1$ and hence $\tan(\alpha_2 - \alpha_1) \ge \tan \alpha_2$. Therefore, $\alpha_1 = 0$. \Box

Remark 4.4 It follows that under assumptions of Corollary 4.3, the impedance function $V_{\Theta}(z)$ has the form

$$V_{\Theta}(z) = \int_{0}^{\infty} \frac{dG(t)}{t-z}.$$

For the remainder of this paper we will need to rely on the following theorem whose proof can be found in [4].

Theorem 4.5 Let Θ be an L-system of the form (4.3), where \mathbb{A} is a (*)-extension of $T \in \Lambda(A)$ and A is a closed densely defined non-negative symmetric operator with deficiency numbers (1,1). If the impedance function $V_{\Theta}(z)$ belongs to the class S^{α_1,α_2} , then \mathbb{A} is α -sectorial, where

 $\tan \alpha = \tan \alpha_2 + 2\sqrt{\tan \alpha_1(\tan \alpha_2 - \tan \alpha_1)}.$

The next statement gives an explicit description of all the functions from the class S^{α_1,α_2} that are realizable as impedance functions of such L-systems that the exact angles of sectoriality of T and \mathbb{A} coincide. Its proof immediately follows from Theorems 4.2 and 4.5.

Theorem 4.6 Let Θ be an L-system of the form (4.3) with a densely defined non-negative symmetric operator \dot{A} . Then \mathbb{A} is α -sectorial (*)-extension of an α -sectorial operator $T \in \Lambda(\dot{A})$ with the exact angle $\alpha \in (0, \pi/2)$ if and only if

$$V_{\Theta}(z) = \int\limits_{0}^{\infty} rac{dG(t)}{t-z} \in S^{0,lpha}.$$

© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Moreover, the angle α can be found via the formula

$$\tan \alpha = \int_{0}^{\infty} \frac{dG(t)}{t}.$$
(4.4)

5 L-systems with a Schrödinger operator

Let $\mathcal{H} = L_2[a, +\infty)$ and l(y) = -y'' + q(x)y, where q is a real locally summable function. Suppose that the symmetric operator

$$\begin{cases} \dot{A}y = -y'' + q(x)y, \\ y(a) = y'(a) = 0 \end{cases}$$
(5.1)

has deficiency indices (1,1). Let D^* be the set of functions locally absolutely continuous together with their first derivatives such that $l(y) \in L_2[a, +\infty)$. Consider $\mathcal{H}_+ = \text{Dom}(\dot{A}^*) = D^*$ with the scalar product

$$(y,z)_+ = \int_a^\infty \left(y(x)\overline{z(x)} + l(y)\overline{l(z)} \right) dx, \ y, \ z \in D^*.$$

Let

$$\mathcal{H}_+ \subset L_2[a, +\infty) \subset \mathcal{H}_-$$

be the corresponding triplet of Hilbert spaces. Consider the operators

$$\begin{cases} T_h y = l(y) = -y'' + q(x)y, \\ hy(a) - y'(a) = 0, \end{cases} \qquad \begin{cases} T_h^* y = l(y) = -y'' + q(x)y, \\ \overline{h}y(a) - y'(a) = 0. \end{cases}$$
(5.2)

The following theorem was proved in [4], [6].

Theorem 5.1 The set of all (*)-extensions of a non-self-adjoint Schrödinger operator T_h of the form (5.2) in $L_2[a, +\infty)$ can be represented in the form

$$Ay = -y'' + q(x)y - \frac{1}{\mu - h} \left[y'(a) - hy(a) \right] \left[\mu \delta(x - a) + \delta'(x - a) \right],$$

$$A^*y = -y'' + q(x)y - \frac{1}{\mu - \overline{h}} \left[y'(a) - \overline{h}y(a) \right] \left[\mu \delta(x - a) + \delta'(x - a) \right].$$
(5.3)

Moreover, the formulas (5.3) establish a one-to-one correspondence between the set of all (*)-extensions of a Schrödinger operator T_h of the form (5.2) and all real numbers $\mu \in [-\infty, +\infty]$.

Let \dot{A} be a symmetric operator of the form (5.1) with deficiency indices (1,1), generated by the differential operation l(y) = -y'' + q(x)y. Let also $\varphi_k(x, \lambda)$ (k = 1, 2) be the solutions of the following Cauchy problems:

$$\begin{cases} l(\varphi_1) = \lambda \varphi_1, \\ \varphi_1(a, \lambda) = 0, \\ \varphi'_1(a, \lambda) = 1, \end{cases} \begin{cases} l(\varphi_2) = \lambda \varphi_2, \\ \varphi_2(a, \lambda) = -1, \\ \varphi'_2(a, \lambda) = 0, \end{cases}$$

It is well-known [1] that there exists a function $m_{\infty}(\lambda)$ (called the Weyl-Titchmarsh function) for which

$$\varphi(x,\lambda) = \varphi_2(x,\lambda) + m_\infty(\lambda)\varphi_1(x,\lambda)$$

belongs to $L_2[a, +\infty)$.

Suppose that the symmetric operator \dot{A} of the form (5.1) with deficiency indices (1,1) is nonnegative, i.e., $(\dot{A}f, f) \ge 0$ for all $f \in \text{Dom}(\dot{A})$. It was shown in [19], [20] that the Schrödinger operator T_h of the form (5.2) is accretive if and only if

$$\operatorname{Re} h \ge -m_{\infty}(-0). \tag{5.4}$$

The following theorem will be needed in the next section. Its proof can be located in [4].

Theorem 5.2 Let T_h (Im h > 0) be an accretive Schrödinger operator of the form (5.2). Then for all real μ satisfying the following inequality

$$\mu \ge \frac{(\operatorname{Im} h)^2}{m_{\infty}(-0) + \operatorname{Re} h} + \operatorname{Re} h,$$

the operators \mathbb{A} in (5.3) define the set of all accretive (*)-extensions \mathbb{A} of the operator T_h . The operator T_h has a unique accretive (*)-extension \mathbb{A} if and only if

$$\operatorname{Re} h = -m_{\infty}(-0).$$

In this case this unique (*)-extension has the form

$$Ay = -y'' + q(x)y + [hy(a) - y'(a)] \,\delta(x - a),$$

$$A^*y = -y'' + q(x)y + [\overline{h}y(a) - y'(a)] \,\delta(x - a).$$
(5.5)

Now we shall construct an L-system based on a non-self-adjoint Schrödinger operator. One can easily check that the (*)-extension

$$Ay = -y'' + q(x)y - \frac{1}{\mu - h} \left[y'(a) - hy(a) \right] \left[\mu \delta(x - a) + \delta'(x - a) \right], \text{ Im } h > 0,$$

of the non-self-adjoint Schrödinger operator T_h of the form (5.2) satisfies the condition

$$\mathrm{Im}\,\mathbb{A}=\frac{\mathbb{A}-\mathbb{A}^{*}}{2i}=(.,g)g,$$

where

$$g = \frac{(\mathrm{Im}\,h)^{\frac{1}{2}}}{|\mu - h|} \left[\mu \delta(x - a) + \delta'(x - a) \right]$$

and $\delta(x-a), \delta'(x-a)$ are the delta-function and its derivative at the point a, respectively. Moreover,

$$(y,g) = \frac{(\operatorname{Im} h)^{\frac{1}{2}}}{|\mu - h|} [\mu y(a) - y'(a)],$$

where $y \in \mathcal{H}_+$, $g \in \mathcal{H}_-$, $\mathcal{H}_+ \subset L_2(a, +\infty) \subset \mathcal{H}_-$ and the triplet of Hilbert spaces is as discussed in Theorem 5.1. Let $E = \mathbb{C}$, Kc = cg ($c \in \mathbb{C}$). It is clear that

$$K^* y = (y, g), \quad y \in \mathcal{H}_+, \tag{5.6}$$

and $\operatorname{Im} \mathbb{A} = KK^*$. Therefore, the array

$$\Theta = \begin{pmatrix} \mathbb{A} & K & 1 \\ \mathcal{H}_+ \subset L_2[a, +\infty) \subset \mathcal{H}_- & \mathbb{C} \end{pmatrix},$$
(5.7)

is an L-system with the main operator A of the form (5.3), the direction operator J = 1, and the channel operator K of the form (5.6). Our next logical step is finding the transfer function of (5.7). It was shown in [4], [6] that

$$W_{\Theta}(\lambda) = \frac{\mu - h}{\mu - \overline{h}} \frac{m_{\infty}(\lambda) + \overline{h}}{m_{\infty}(\lambda) + h},$$

© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

and

$$V_{\Theta}(\lambda) = \frac{(m_{\infty}(\lambda) + \mu) \operatorname{Im} h}{(\mu - \operatorname{Re} h) m_{\infty}(\lambda) + \mu \operatorname{Re} h - |h|^2}.$$
(5.8)

The following theorem can be found in [4].

Theorem 5.3 Let Θ be an L-system of the form (5.7), where \mathbb{A} is a (*)-extension of the form (5.3) of the accretive Schrödinger operator T_h of the form (5.2). Then its impedance function $V_{\Theta}(z)$ is a Stieltjes function if and only if

$$\operatorname{Re} h \ge -m_{\infty}(-0) \quad and \quad \mu \ge \frac{(\operatorname{Im} h)^2}{m_{\infty}(-0) + \operatorname{Re} h} + \operatorname{Re} h.$$
(5.9)

6 Sectorial Schrödinger L-systems

Let Θ be an L-system of the form (5.7), where \mathbb{A} is a (*)-extension (5.3) of the accretive Schrödinger operator T_h . The following theorem [4] takes place.

Theorem 6.1 If an accretive Schrödinger operator T_h , (Im h > 0) is α -sectorial, then

$$\tan \alpha = \frac{\operatorname{Im} h}{\operatorname{Re} h + m_{\infty}(-0)}.$$
(6.1)

Conversely, if h, (Im h > 0) is such that $\text{Re } h > -m_{\infty}(-0)$, then operator T_h of the form (5.2) is α -sectorial and α is determined by (6.1). Moreover, T_h is accretive but not α -sectorial for any $\alpha \in (0, \pi/2)$ if and only if $\text{Re } h = -m_{\infty}(-0)$.

It follows from Theorems 3.2 and 5.3 (see also [4]) that the operator A of Θ is accretive if and only if (5.9) holds. Using (5.8) we can write the impedance function $V_{\Theta}(z)$ in the form

$$V_{\Theta}(z) = \frac{(m_{\infty}(z) + \mu) \operatorname{Im} h}{(\mu - \operatorname{Re} h) (m_{\infty}(z) + \operatorname{Re} h) - (\operatorname{Im} h)^2}.$$
(6.2)

Consider our system Θ with $\mu = +\infty$. Then in (6.2) we obtain

$$V_{\Theta}(z) = \frac{\operatorname{Im} h}{m_{\infty}(z) + h}.$$

Thus, in this case

$$\lim_{x \to -\infty} V_{\Theta}(x) = \lim_{x \to -\infty} \frac{\operatorname{Im} h}{m_{\infty}(x) + h} = 0,$$
(6.3)

since $m_{\infty}(x) \to +\infty$ as $x \to -\infty$. Moreover,

$$\lim_{x \to -0} V_{\Theta}(x) = \frac{\operatorname{Im} h}{m_{\infty}(-0) + h}$$

Assuming that T_h is α -sectorial and hence $\operatorname{Re} h > -m_{\infty}(-0)$, we use (4.2) and obtain

$$\lim_{x \to -\infty} V_{\Theta}(x) = 0 = \tan 0 = \tan \alpha_1, \quad \lim_{x \to -0} V_{\Theta}(x) = \frac{\operatorname{Im} h}{m_{\infty}(-0) + h} = \tan \alpha_2.$$

On the other hand since T_h is α -sectorial, then via Theorem 6.1 we have that

$$\tan \alpha = \tan \alpha_2 = \frac{\operatorname{Im} h}{m_{\infty}(-0) + h},$$

and hence, by Corollary 4.3, $V_{\Theta}(z)$ belongs to the class $S^{0,\alpha}$.

Let now $\mu \neq +\infty$ and satisfy the second inequality (5.9). Then

$$\lim_{x \to -\infty} V_{\Theta}(x) = \lim_{x \to -\infty} \frac{(m_{\infty}(x) + \mu) \operatorname{Im} h}{(\mu - \operatorname{Re} h) (m_{\infty}(x) + \operatorname{Re} h) - (\operatorname{Im} h)^2} = \frac{\operatorname{Im} h}{\mu - \operatorname{Re} h} = \tan \alpha_1, \qquad (6.4)$$

and

$$\lim_{x \to -0} V_{\Theta}(x) = \frac{(m_{\infty}(-0) + \mu) \operatorname{Im} h}{(\mu - \operatorname{Re} h) (m_{\infty}(-0) + \operatorname{Re} h) - (\operatorname{Im} h)^2} = \tan \alpha_2.$$
(6.5)

Therefore, in this case $V_{\Theta}(z) \in S^{\alpha_1,\alpha_2}$.

Theorem 6.2 Let Θ be an L-system of the form (5.7), where \mathbb{A} is a (*)-extension of an α -sectorial operator T_h with the exact angle of sectoriality $\alpha \in (0, \pi/2)$. Then \mathbb{A} is an α -sectorial (*)-extension of T_h (with the same angle of sectoriality) if and only if $\mu = +\infty$ in (5.3).

Proof. It follows from (6.3)–(6.5) that in this case $V_{\Theta}(z) \in S^{0,\alpha}$ if and only if $\mu = +\infty$. Thus using Corollary 4.3 for the function $V_{\Theta}(z)$ we obtain that \mathbb{A} is α -sectorial (*)-extension of T_h .

We note that if T_h is α -sectorial with the exact angle of sectoriality α , then it admits only one α -sectorial (*)-extension \mathbb{A} with the same angle of sectoriality α . Consequently, $\mu = +\infty$ and \mathbb{A} has the form (5.5).

Theorem 6.3 Let Θ be an L-system of the form (5.7), where \mathbb{A} is a (*)-extension of an α -sectorial operator T_h with the exact angle of sectoriality $\alpha \in (0, \pi/2)$. Then \mathbb{A} is accretive but not α -sectorial for any $\alpha \in (0, \pi/2)$ (*)-extension of T_h if and only if in (5.3)

$$\mu = \mu_0 = \frac{(\operatorname{Im} h)^2}{m_{\infty}(-0) + \operatorname{Re} h} + \operatorname{Re} h.$$
(6.6)

Proof. Let $V_{\Theta}(z)$ be the impedance function of our system Θ . If in (6.4) we set $\mu = \mu_0$ where μ_0 is given by (6.6), then

$$\lim_{x \to -\infty} V_{\Theta}(x) = \frac{\operatorname{Im} h}{\mu_0 - \operatorname{Re} h} = \frac{m_{\infty}(-0) + \operatorname{Re} h}{\operatorname{Im} h} = \frac{1}{\tan \alpha} = \tan\left(\frac{\pi}{2} - \alpha\right) = \tan \alpha_1, \tag{6.7}$$

where $\alpha_1 = \frac{\pi}{2} - \alpha$. On the other hand, using (6.5) with $\mu = \mu_0$ we obtain

$$\lim_{x \to -0} V_{\Theta}(x) = \frac{\operatorname{Im} h\left(m_{\infty}(-0) + \frac{(\operatorname{Im} h)^2}{m_{\infty}(-0) + \operatorname{Re} h}\right)}{\frac{(\operatorname{Im} h)^2}{m_{\infty}(-0) + \operatorname{Re} h}(m_{\infty}(-0) + \operatorname{Re} h) - (\operatorname{Im} h)^2} = \infty = \tan \frac{\pi}{2} = \tan \alpha_2.$$
(6.8)

Hence, (6.7) and (6.8) yield $V_{\Theta}(z) \in S^{\frac{\pi}{2}-\alpha,\frac{\pi}{2}}$. Now, if we assume the α -sectoriality of \mathbb{A} , then then by Theorem 4.2

$$\tan \alpha > \tan \alpha_2 = \infty.$$

Therefore, A is accretive but not α -sectorial for any $\alpha \in (0, \pi/2)$.

Conversely, suppose, that A is an α -sectorial (*)-extension for some $\alpha \in (0, \pi/2)$. Then, according to Theorem 4.5, A is also β -sectorial and

$$\tan\beta = \tan\alpha_2 + 2\sqrt{\tan\alpha_1(\tan\alpha_2 - \tan\alpha_1)} < \infty.$$

Hence, $\tan \alpha_2 \neq \infty$ and it follows from (6.8) that $\mu \neq \mu_0$. The theorem is proved.

Note that it follows from the above theorem that any α -sectorial operator T_h with the exact angle of sectoriality $\alpha \in (0, \pi/2)$ admits only one accretive (*)-extension A. This extension takes the form (5.3) with $\mu = \mu_0$ where μ_0 is given by (6.6).

Fig. 2 Angle of sectoriality β .

Theorem 6.4 Let Θ be an accretive L-system of the form (5.7), where \mathbb{A} is a (*)-extension of a θ -sectorial operator T_h . Let also $\mu_* \in (\mu_0, +\infty)$ be a fixed value that parameterizes \mathbb{A} via (5.3), μ_0 be defined by (6.6), and $V_{\Theta}(z) \in S^{\alpha_1, \alpha_2}$. Then a (*)-extension \mathbb{A}_{μ} of T_h is β -sectorial for any $\mu \in [\mu_*, +\infty)$ with

$$\tan\beta = \tan\alpha_1 + 2\sqrt{\tan\alpha_1}\,\tan\alpha_2. \tag{6.9}$$

Proof. According to Theorems 4.2 and 4.5, a φ -sectorial operator \mathbb{A} of an L-system of the form (5.7) with the impedance function of the class S^{α_1,α_2} is also α -sectorial with

$$\tan \alpha = \tan \alpha_2 + 2\sqrt{\tan \alpha_1}(\tan \alpha_2 - \tan \alpha_1).$$

But then, clearly

$$\tan \alpha < \tan \beta = \tan \alpha_1 + 2\sqrt{\tan \alpha_1} \tan \alpha_2, \tag{6.10}$$

and hence this \mathbb{A} is also β -sectorial.

1

Now suppose $\mu \in (\mu_0, +\infty)$. Then it follows from Theorem 6.3 that the operator \mathbb{A} in L-system Θ of the form (5.7) is φ -sectorial (with some angle φ) for any such μ in parametrization (5.3). Using (6.4) and (6.5) on the impedance function $V_{\Theta}(z)$ of this L-system we can define a function

$$f(\mu) = \tan \alpha_1 + 2\sqrt{\tan \alpha_1 \tan \alpha_2}$$

$$= \frac{(m_{\infty}(x) + \mu) \operatorname{Im} h}{(\mu - \operatorname{Re} h) (m_{\infty}(x) + \operatorname{Re} h) - (\operatorname{Im} h)^2}$$

$$+ 2\sqrt{\frac{\operatorname{Im} h}{\mu - \operatorname{Re} h} \cdot \frac{(m_{\infty}(x) + \mu) \operatorname{Im} h}{(\mu - \operatorname{Re} h) (m_{\infty}(x) + \operatorname{Re} h) - (\operatorname{Im} h)^2}}.$$
(6.11)

By direct check one confirms that $f(\mu)$ is a decreasing function defined on $(\mu_0, +\infty)$ with the range $[\tan \theta, +\infty)$, where θ is the angle of sectoriality of the operator T_h and $\tan \theta$ is given by (6.1). The graph of this functions is schematically given on the Figure 1.

Next we take the (*)-extension A that is parameterized via (5.3) by the fixed value $\mu_* \in (\mu_0, +\infty)$ from the premise of our theorem. According to our derivations above this A is β -sectorial with β given by (6.9). But then for every $\mu \in (\mu_*, +\infty)$ the values of $f(\mu)$ are going to be smaller than $\tan \beta$ (see Figure 2). Consequently, for

a (*)-extension \mathbb{A}_{μ} that is parameterized by the value of $\mu \in [\mu_*, +\infty)$ the following obvious inequalities take place

$$|\operatorname{Im}(\mathbb{A}_{\mu}f, f)| \leq f(\mu) \operatorname{Re}\left(\mathbb{A}_{\mu}f, f\right) \leq (\tan \beta) \operatorname{Re}\left(\mathbb{A}_{\mu}f, f\right), \quad f \in \mathcal{H}_{+}.$$

Hence, any (*)-extension \mathbb{A}_{μ} parameterized by a $\mu \in [\mu_*, +\infty)$ is β -sectorial.

Note that Theorem 6.4 provides us with a value β which serves as a universal angle of sectoriality for the entire family of (*)-extensions A of the form (5.3). The next theorem provides us with the existence of a real number μ^* described in Theorem 6.4.

Theorem 6.5 Let Θ be an L-system of the form (5.7), where \mathbb{A} is an α -sectorial (*)-extension of a θ -sectorial operator T_h and $V_{\Theta}(z) \in S^{\alpha_1,\alpha_2}$. Then there exists a real number μ^* that can be derived from equation (6.9) such that any (*)-extension \mathbb{A} parameterized by a $\mu \in [\mu_*, +\infty)$ is a β -sectorial (*)-extension of T_h .

The proof directly follows from Theorem 6.4.

References

- [1] N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators (Pitman Advanced Publishing Program, 1981).
- [2] D. Alpay and E. R. Tsekanovskii, Interpolation theory in sectorial Stieltjes classes and explicit system solutions, Linear Algebra Appl. 314, 91–136 (2000).
- [3] Yu. M. Arlinskiĭ, On regular (*)-extensions and characteristic matrix valued functions of ordinary differential operators (Boundary value problems for differential operators, Kiev, 1980), pp. 3–13.
- [4] Yu. Arlinskiĭ, S. Belyi, and E. Tsekanovskiĭ, Conservative Realizations of Herglotz-Nevanlinna Functions, Operator Theory: Advances and Applications Vol. 217 (Birkhäuser Verlag, 2011).
- [5] Yu. Arlinskiĭ and E. Tsekanovskiĭ, Regular (*)-extension of unbounded operators, characteristic operator-functions and realization problems of transfer functions of linear systems, Preprint, VINITI, Dep.-2867, 72p., (1979).
- [6] Yu. M. Arlinskiĭ and E. R. Tsekanovskiĭ, Linear systems with Schrödinger operators and their transfer functions, Oper. Theory Adv. Appl. 149, 47–77 (2004).
- [7] S. V. Belyi and E. R. Tsekanovskiĭ, Realization theorems for operator-valued *R*-functions, Oper. Theory Adv. Appl. 98, 55–91 (1997).
- [8] S. V. Belyi and E. R. Tsekanovskiĭ, On classes of realizable operator-valued *R*-functions, Oper. Theory Adv. Appl. 115, 85–112 (2000).
- [9] S. V. Belyi and E. R. Tsekanovskiĭ, Stieltjes like functions and inverse problems for systems with Schrödinger operator, Oper. Matrices 2(2), 265–296 (2008).
- [10] M. S. Brodskiĭ, Triangular and Jordan Representations of Linear Operators (Moscow, Nauka, 1969) (Russian).
- [11] V. A. Derkach and E. R. Tsekanovskii, On characteristic operator-functions of accretive operator colligations Vol. A(8) (Ukrainian Math. Dokl., Ukrainian, 1981), pp. 16–20.
- [12] I. Dovzhenko and E. R. Tsekanovskii, Classes of Stieltjes operator-functions and their conservative realizations, Dokl. Akad. Nauk SSSR 311(1), 18–22 (1990).
- [13] F. Gesztesy and E. R. Tsekanovskii, On matrix-valued Herglotz functions, Math. Nachr. 218, 61–138 (2000).
- [14] I. S. Kac, M. G. Krein, *R*-functions-analytic functions mapping the upper halfplane into itself, Trans. Am. Math. Soc. (2) 103, 1–18 (1974).
- [15] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, 1966 ath. Dokl. 19(5), 1131–1134 (1978).
- [16] M. S. Livšic, Operators, Oscillations, Waves (Moscow, Nauka, 1966) (Russian).
- [17] E. R. Tsekanovskiĭ, Real and imaginary part of an unbounded operator, Sov. Phys., Dokl. 2, 881–885 (1961).
- [18] M. A. Naimark, Linear Differential Operators II, F. Ungar Publ. (New York, 1968).
- [19] E. R. Tsekanovskiĭ, Accretive extensions and problems on Stieltjes operator-valued functions realizations, Oper. Theory Adv. Appl. 59, 328–347 (1992).
- [20] E. R. Tsekanovskii, Characteristic function and sectorial boundary value problems, Investigation on geometry and math. analysis, Novosibirsk, 7, 180–194 (1987).
- [21] E. R. Tsekanovskiĭ and Yu. L. Shmul'yan, The theory of bi-extensions of operators on rigged Hilbert spaces. Unbounded operator colligations and characteristic functions, Russ. Math. Surv. 32, 73–131 (1977).