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Abstract. Using methods developed in [5]–[8] we define classes of J-
contractive in the half-plane operator-valued functions. A member of
each class is shown to be realizable as a transfer mappings of systems θ
with, generally speaking, unbounded main operator. A problem when
the product of J-contractive operator-valued functions from selected
class belongs to the same (or another) class is investigated.

1 Introduction

In this paper we continue the investigation of various problems that arise in
the study of linear stationary conservative dynamic systems (operator colligations).
Relying on the results and technique developed in [6],[7] we keep dealing with linear
stationary conservative dynamic systems (l.s.c.d.s) θ of the form

{ (A− zI) = KJϕ−
ϕ+ = ϕ− − 2iK∗x

(Im A = KJK∗)

or

θ =
(

A K J
H+ ⊂ H ⊂ H− E

)
.

In the system θ above A is a bounded linear operator acting from H+ into H−,
where H+ ⊂ H ⊂ H− is a rigged Hilbert space, A ⊃ T ⊃ A, A∗ ⊃ T ∗ ⊃ A, A is a
Hermitian operator in H, T is a non-Hermitian operator in H, K is a linear bounded
operator from E into H−, J = J∗ = J−1 is acting in E, ϕ± ∈ E, ϕ− is an input
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vector, ϕ+ is an output vector, and x ∈ H+ is a vector of the inner state of the
system θ. The operator-valued function

Wθ(z) = I − 2iK∗(A− zI)−1KJ (ϕ+ = Wθ(z)ϕ−),

is the transfer operator-valued function of the system θ.
We consider class Ω of J-contractive in the lower half-plane operator-valued

functions that can be realized directly as transfer fucntions of some systems θ de-
scribed above (see also [1],[35]). A class Ω is partitioned into subclasses depending
on the properties of operators in corresponding realizing systems. Three subclasses
are described:

(1) a subclass for which D(A) = H, D(T ) 6= D(T ∗)
(2) a subclass for which D(A) 6= H, D(T ) = D(T ∗)
(3) a subclass for which D(A) 6= H, D(T ) 6= D(T ∗)

A problem when the product of two operator-valued functions from selected
subclass belongs to the same (or another) subclass is investigated. To prove the
multiplication theorems in each subclass we generalize the concept of a product
of two systems which generally speaking is an unbounded version of the Brodskĭi-
Livs̆ic operator colligations product described in [11] (see also [2]). This approach
allows us to constructively derive the realization of the product of two transfer
operator-valued functions from the classes considered.

Theorem 5.3 is a version of the well-known Potapov-Ginzburg transformation.
It establishes the relationship between contractive and J-contractive in the lower
half-plane operator-valued functions from above mentioned subclasses.

Note that theorems 6.3 – 6.9 offer a further development and complement of
the results by D.R. Arov, M.A. Nudelman [4], M.S. Brodskĭi [11], A.V. Kuzhel
[21], M.S. Livs̆ic [22],[23], V.P. Potapov [24], A.V. Shtraus [26],[27], H. Bart,
I. Gohberg, M. Kaashoek [9] (see also the survey [13]).

2 Preliminary Results

Let H denote a Hilbert space with inner product (x, y) and let A be a closed
linear Hermitian operator, i.e. (Ax, y) = (x, Ay) (∀x, y ∈ D(A)), acting on a Hilbert
space H with generally speaking, non-dense domain D(A). Let H0 = D(A) and A∗

be the adjoint to the operator A (we consider A as acting from H0 into H).
We denote H+ = D(A∗) ((D(A∗) = H) with inner product

(f, g)+ = (f, g) + (A∗f, A∗g) (f, g ∈ H+) (2.1)

and then construct the rigged Hilbert space H+ ⊂ H ⊂ H− [10], [8]. Here H− is the
space of all linear functionals over H+ that are continuous with respect to ‖ · ‖+.
The norms of these spaces are connected by the relations ‖x‖ ≤ ‖x‖+ (x ∈ H+),
‖x‖− ≤ ‖x‖ (x ∈ H). The Riesz-Berezanskii operator (see [8]) R maps H− onto
H+ such that

(x, y)− = (x,Ry) = (Rx, y) = (Rx,Ry)+ (x, y ∈ H−)

(u, v)+ = (u,R−1v) = (R−1u, v) = (R−1x,R−1y)− (u, v ∈ H+)
(2.2)

In what follows we use symbols (+), (·), and (−) to indicate the norms ‖ · ‖+, ‖ · ‖,
and ‖ · ‖− by which geometrical and topological concepts are defined in H+, H, and
H−, respectively.
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In the above settings D(A) ⊂ D(A∗)(= H+) and A∗y = PAy (∀y ∈ D(A)),
where P is an orthogonal projection of H onto H0. Let

L := Hª H0 Mλ := (A− λI)D(A) Nλ := (Mλ̄)⊥. (2.3)

The subspace Nλ is called a defect subspace of A for the point λ̄. The cardinal
number dimNλ remains constant when λ is in the upper half-plane. Similarly, the
number dimNλ remains constant when λ is in the lower half-plane. The numbers
dimNλ and dimNλ̄ (Imλ < 0) are called the defect numbers or deficiency indices
of operator A [1]. The subspace Nλ which lies in H+ is the set of solutions of the
equation A∗g = λPg.

Let now Pλ be the orthogonal projection onto Nλ, set

Bλ = PλL, N′
λ = Nλ ªBλ (2.4)

It is easy to see that N′
λ = Nλ ∩ H0 and N′

λ is the set of solutions of the equation
A∗g = λg (see [36]).

The subspace N′
λ is the defect subspace of the densely defined Hermitian op-

erator PA on H0 (see [33]). The numbers dimN′
λ and dimN′̄

λ
(Imλ < 0) are called

semi-defect numbers or the semi-deficiency indices of the operator A [22]. The von
Neumann formula

H+ = D(A∗) = D(A) + Nλ + Nλ̄, (Imλ 6= 0), (2.5)

holds, but this decomposition is not direct for a non-densely defined operator A.
There exists a generalization of von Neumann’s formula [1],[35] to the case of a non-
densely defined Hermitian operator (direct decomposition). We call an operator A
regular, if PA is a closed operator in H0. For a regular operator A we have

H+ = D(A) + N′
λ + N′̄

λ + N, (Imλ 6= 0) (2.6)

where N := RL, R is the Riesz-Berezanskii operator. This is a generalization of
von Neumann’s formula. For λ = ±i we obtain the (+)-orthogonal decomposition

H+ = D(A)⊕N′
i ⊕N′

−i ⊕N. (2.7)

Let Ã be a closed Hermitian extension of the operator A. Then D(Ã) ⊂ H+ and
PÃx = A∗x (∀x ∈ D(Ã)). According to [36] a closed Hermitian extension Ã is said
to be regular if PÃ is closed. This implies that D(Ã) is (+)-closed. According to
the theory of extensions of closed Hermitian operators A with non-dense domain
[20], an operator U (D(U) ⊆ Ni, R(U) ⊆ N−i) is called an admissible operator
if (U − I)fi ∈ D(A) (fi ∈ D(U)) only for fi = 0. Then (see [3]) any symmetric
extension Ã of the non-densely defined closed Hermitian operator A, is defined by
an isometric admissible operator U , D(U) ⊆ Ni, R(U) ⊆ N−i by the formula

ÃfÃ = AfA + (−ifi − iUfi), fA ∈ D(A) (2.8)

where D(Ã) = D(A) u (U − I)D(U). The operator Ã is self-adjoint if and only if
D(U) = Ni and R(U) = N−i.

A regular operator A is called O-operator if its semidefect numbers (defect
numbers of an operator PA) are equal to zero.

Denote by [H1, H2] the set of all linear bounded operators acting from Hilbert
space H1 into a Hilbert space H2.

Definition 2.1 An operator A ∈ [H+, H−] is a bi-extension of A if both A ⊃ A
and A∗ ⊃ A hold.
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If A = A∗, then A is called self-adjoint bi-extension of the operator A. We write
S(A) for the class of bi-extensions of A. This class is closed in the weak topology
and is invariant under taking adjoints (see [5], [36]).

Let A be a bi-extension of Hermitian operator A. The operator Âf = Af ,
D(Â) = {f ∈ H,Af ∈ H} is called the quasikernel of A. If A = A∗ and Â is a quasi-
kernel of A such that A 6= Â, Â∗ = Â then A is said to be a strong self-adjoint
bi-extension of A.

Definition 2.2 We say that a closed densely defined linear operator T acting
on a Hilbert space H belongs to the class ΩA if:

(1) T ⊃ A, T ∗ ⊃ A where A is a closed Hermitian operator;
(2) (−i) is a regular point of T . 1

It was mentioned in [5] that lineals D(T ) and D(T ∗) are (+)-closed, the oper-
ators T and T ∗ are (+, ·)-bounded.

Definition 2.3 An operator A in [H+,H−] is called a (∗)-extension of an op-
erator T of the class ΩA if both A ⊃ T and A∗ ⊃ T ∗.

This (∗)-extension is called correct, if an operator AR = 1
2 (A+ A∗) is a strong

self-adjoint bi-extension of an operator A. It is easy to show that if A is a (∗)-
extension of T , the T and T ∗ are quasi-kernels of A and A∗, respectively.

Definition 2.4 We say the operator T of the class ΩA belongs to the class ΛA

if
(1) T admits a correct (∗)-extension;
(2) A is a maximal common Hermitian part of T and T ∗.

It is known [3],[36] that if an operator T belongs to the class ΩA and operator
A is a maximal common Hermitian part of T and T ∗ that has finite and equal
defect indices then T belongs to the class ΛA.

The following theorem is referred to [1].

Theorem 2.5 Let A be a self-adjoint bi-extension of Hermitian operator A.
The necessary and sufficient condition for operator (A− λI)−1 to be (−,−)-conti-
nuous is to be (−, ·)-continuous.

Corollary 2.6 Let A be self-adjoint bi-extension of Hermitian operator A with
finite and equal semi-deficiency indices. If for some λ operator (A−λI)−1 is (−,−)-
continuous then A is a strong bi-extension of operator A.

3 Linear Stationary Conservative Dynamic Systems

In this section we consider linear stationary conservative dynamic systems (l.
s. c. d. s.) θ of the form





(A− zI) = KJϕ−

ϕ+ = ϕ− − 2iK∗x
(Im A = KJK∗) . (3.1)

In a system θ of the form (3.1) A, K and J are bounded linear operators in Hilbert
spaces, ϕ− is an input vector, ϕ+ is an output vector,x is an inner state vector of
the system θ. For our purposes we need the following more precise definition:

1The condition, that (−i) is a regular point in the definition of the class ΩA is not essential.
It is sufficient to require the existence of some regular point for T .
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Definition 3.1 The array

θ =
(

A K J
H+ ⊂ H ⊂ H− E

)
(3.2)

is called a linear stationary conservative dynamic system (l.s.c.d.s.) or Brodskĭi-
Livs̆ic rigged operator colligation if

(1) A is a correct (∗)-extension of an operator T of the class ΛA.
(2) J = J∗ = J−1 ∈ [E, E], dim E < ∞
(3) A− A∗ = 2iKJK∗, where K ∈ [E, H−] (K∗ ∈ [H+, E])

In this case, the operator K is called a channel operator and J is called a direc-
tion operator [11], [23]. A system θ of the form (3.2) is called a scattering system
(dissipative operator colligation) if J = I. It can be shown [11] that if operator A of
the system (3.2) has finite and equal deficiency indices then for any bi-extension A
the direction operator K of the system θ can be chosen invertible. Therefore with-
out loss of generality we will consider systems with invertible direction operators
only.

We associate with the system θ an operator-valued function

Wθ(z) = I − 2iK∗(A− zI)−1KJ (3.3)

which is called a transfer operator-valued function of the system θ or a characteristic
operator-valued function of Brodskĭi-Livs̆ic rigged operator colligations. It may be
shown [11], that the transfer operator-function of the system θ of the form (3.2)
has the following properties:

W ∗
θ (z)JWθ(z)− J ≥ 0 (Im z > 0, z ∈ ρ(T ))

W ∗
θ (z)JWθ(z)− J = 0 (Im z = 0, z ∈ ρ(T ))

W ∗
θ (z)JWθ(z)− J ≤ 0 (Im z < 0, z ∈ ρ(T ))

(3.4)

where ρ(T ) is the set of regular points of an operator T . Similar relations take place
if we change Wθ(z) to W ∗

θ (z) in (3.4). Thus, a transfer operator-valued function of
the system θ of the form (3.2) is J-contractive in the lower half-plane on the set of
regular points of an operator T and J-unitary on real regular points of an operator
T .

Let θ be a l.s.c.d.s. of the form (3.2). We consider an operator-valued function

Vθ(z) = K∗(AR − zI)−1K. (3.5)

The transfer operator-function Wθ(z) of the system θ and an operator-function
Vθ(z) of the form (3.5) are connected by the relation

Vθ(z) = i[Wθ(z) + I]−1[Wθ(z)− I]J (3.6)

4 Classes of Realizable Operator-Valued R-functions

As it is known [29] an operator-function V (z) ∈ [E,E] is called an operator-
valued R-function if it is holomorphic in the upper half-plane and Im V (z) ≥ 0
when Im z > 0.

An operator-valued R-function, acting in Hilbert space E(dim E < ∞) has, as
it is known [19],[29], integral representation

V (z) = Q + F · z +
∫ +∞

−∞

(
1

t− z
− t

1 + t2

)
dG(t) (4.1)
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where Q = Q∗, F ≥ 0 in the Hilbert space E, G(t) is non-decreasing operator-
function on (−∞, +∞) for which

∫ +∞

−∞

(dG(t)e, e)E

1 + t2
< ∞.

Definition 4.1 We call an operator-valued R-function acting in Hilbert space
E (dimE < ∞) realizable if in some neighborhood of point (−i) V (z) can be
represented in the form

V (z) = i[Wθ(z) + I]−1[Wθ(z)− I]J (4.2)

where Wθ(z) is a transfer operator-function of some l.s.c.d.s. θ with the direction
operator J (J = J∗ = J−1 ∈ [E, E]).

Definition 4.2 An operator-valued R-function V (z) ∈ [E, E] (dim E < ∞)
will be said to be a member of the class N(R) if in the representation 4.1 we have

i) F = 0,

ii) Qe =
∫ +∞

−∞

t

1 + t2
dG(t)e

for all e ∈ E such that ∫ +∞

−∞
(dG(t)e, e)E < ∞

The following result is found in [7]. Its proof is based on the relations (2.6)–
(2.8).

Theorem 4.3 Let θ be a l.s.c.d.s. of the form (3.2), dim E < ∞. Then
operator-function Vθ(z) of the form 3.5, 3.6 belongs to the class N(R).

Conversely, suppose that the operator-valued function V (z) is acting on a finite-
dimensional Hilbert space E and belong to the class N(R). Then V (z) admits a
realization by the system θ of the form (3.2) with a preassigned direction operator
J for which I + iV (−i)J is invertible.

Remark 4.4 It was mentioned in [7] that when J = I the invertibility condi-
tion for I + iV (λ)J is satisfied automatically.

Now we are going to introduce three distinct subclasses of the class of realizable
operator-valued functions N(R).

Definition 4.5 An operator-valued R-function V (z) ∈ [E, E] (dim E < ∞)
of the class N(R) is said to be a member of the subclass N0(R) if in the represen-
tation (4.1) ∫ +∞

−∞
(dG(t)e, e)E = ∞, (e ∈ E, e 6= 0).

Consequently, the operator-function V (z) of the class N0(R) has a representation

V (z) = Q +
∫ +∞

−∞

(
1

t− z
− t

1 + t2

)
dG(t), (Q = Q∗). (4.3)

Note, that the operator Q can be an arbitrary self-adjoint operator on the Hilbert
space E.
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Definition 4.6 An operator-valued R-function V (z) ∈ [E, E] (dim E < ∞)
of the class N(R) is said to be a member of the subclass N1(R) if in the represen-
tation (4.1)

∫ +∞

−∞
(dG(t)e, e)E < ∞, (e ∈ E). (4.4)

It is easy to see that operator-function V (z) of the class N1(R) has a represen-
tation

V (z) =
∫ +∞

−∞

1
t− z

dG(t). (4.5)

Definition 4.7 An operator-valued R-function V (z) ∈ [E, E], (dimE <
∞) of the class N(R) is said to be a member of the subclass N01(R) if the subspace

E∞ =
{

e ∈ E :
∫ +∞

−∞
(dG(t)e, e)E < ∞

}

possesses a property: E∞ 6= ∅, E∞ 6= E.

One may notice that N(R) is a union of three distinct subclasses N0(R), N1(R)
and N01(R). The following theorem is an analogue of the Theorem 4.3 for the class
N0(R).

Theorem 4.8 Let θ be a l. s. c. d. s. of the form (3.2), dim E < ∞ where A
is a linear closed Hermitian operator with dense domain and D(T ) 6= D(T ∗). Then
operator-valued function Vθ(z) of the form (3.5), (3.6) belongs to the class N0(R).

Conversely, let an operator-valued function V (z) acting on a finite-dimensional
Hilbert space E belong to the class N0(R). Then it admits a realization by the system
θ of the form (3.2) with a preassigned directional operator J for which I + iV (−i)J
is invertible, densely defined closed Hermitian operator A, and D(T ) 6= D(T ∗).

Analogous result for the class N1(R) is the contents of the following theorem
[8].

Theorem 4.9 Let θ be a l.s.c.d. s. of the form (3.2), dim E < ∞ where A
is a linear closed Hermitian O-operator and D(T ) = D(T ∗). Then operator-valued
function Vθ(λ) of the form (3.5), (3.6) belongs to the class N1(R).

Conversely, suppose that an operator-valued function V (z) is acting on a finite-
dimensional Hilbert space E and belongs to the class N1(R). Then it admits a
realization by the system θ of the form (3.2) with a preassigned directional operator
J for which I + iV (−i)J is invertible, a linear closed regular Hermitian O-operator
A with a non-dense domain, and D(T ) = D(T ∗).

The following theorem [8] completes the section by establishing direct and
inverse realization results for the remaining subclass of realizable operator-valued
R-functions N01(R).

Theorem 4.10 Let θ be a l. s. c. d. s. of the form (3.2), dim E < ∞ where A
is a linear closed Hermitian operator with non-dense domain and D(T ) 6= D(T ∗).
Then operator-valued function Vθ(z) of the form (3.5), (3.6) belongs to the class
N01(R).

Conversely, suppose that an operator-valued function V (z) is acting on a finite-
dimensional Hilbert space E and belongs to the class N01(R). Then it admits a
realization by the system θ of the form (3.2) with a preassigned directional operator
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J for which I + iV (−i)J is invertible, a linear closed regular Hermitian operator A
with a non-dense domain, and D(T ) 6= D(T ∗).

5 Classes Ω(R, J). Potapov-Ginzburg Transformation

In this section we introduce a class of J-contractive in a half-plane operator-
valued functions Ω(R, J).

Definition 5.1 An operator-valued function W (z) acting in finite-dimensional
Hilbert space E is said to be a member of the class Ω(R, J) (J = J∗ = J−1) if
there exists a l.s.c.d.s.

θ =
(

A K J
H+ ⊂ H ⊂ H− E

)

such that
W (z) = Wθ(z) = I − 2iK∗(A− zI)−1KJ

in some neighborhood of (−i).

The relations
W ∗(z)JW (z)− J ≥ 0 (Im z > 0, z ∈ ρ(T ))

W ∗(z)JW (z)− J = 0 (Im z = 0, z ∈ ρ(T ))

W ∗(z)JW (z)− J ≤ 0 (Im z < 0, z ∈ ρ(T ))

therefore hold true for all the functions of Ω(R, J) class. Thus, Ω(R, J) consists of
J-contractive in a lower half-plane functions. The definition also implies that W (z)
belongs to Ω(R, J) if and only if it is holomorphic in some neighborhood of (−i)
and operator-valued function

V (z) = i[W (z) + I]−1[W (z)− I]J (5.1)

belongs to the class N(R) defined in the previous section. Taking this into account
we introduce the following definition.

Definition 5.2 An operator-valued function W (z) of the class Ω(R, J) belongs
to the class Ω0(R, J) (resp. Ω1(R, J), Ω01(R, J)) if it is holomorphic in some
neighborhood of (−i) and operator-valued function V (z) defined by (5.1) belongs
to the class N0(R) (resp. N1(R, J), N01(R, J)).

The theorem below is a version of Potapov-Ginzburg transformation. To-
gether with the corollary 5.4 it establishes the relation between contractive and
J-contractive in the half-plane operator-valued functions from the classes Ω(R, J),
Ω0(R, J), Ω1(R, J), and Ω01(R, J).

Theorem 5.3 Let operator-valued function W (z) belong to the class Ω(R, J).
Let also P+ and P− be a pair of orthoprojections of the form

P+ =
1
2
(I + J) and P− =

1
2
(I − J)

Then there exists an operator-function Σ(z) of Ω(R, I) class such that

W (z) = (P+Σ(z)− P−)(P+ − P−Σ(z))−1.

Proof Let
V (z) = i[W (z) + I]−1[W (z)− I]J.
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Since W (z) belongs to Ω(R, J) we have that V (z) belongs to the class N(R) and
by the Theorem 4.3 can be realized by the scattering system

θ′ =
(

A′ K ′ I
H′+ ⊂ H′ ⊂ H′− E

)
.

Latter implies that

V (z) = Vθ′(z) = K ′∗(A′R − zI)−1K ′

= i[Wθ′(z) + I]−1[Wθ′(z)− I]

in some neighborhood of the point (−i) where

Wθ′(z) = I − 2iK ′∗(A′ − zI)−1K ′.

It is clear that Wθ′(z) belongs to the Ω(R, I) class. Therefore

i[W (z) + I]−1[W (z)− I]J = i[Wθ′(z) + I]−1[Wθ′(z)− I]

where W (z) ∈ Ω(R, J) and Wθ′(z) ∈ Ω(R, I). The above statement takes place in
some neighborhood of (−i).

Now let Σ(z) ≡ Wθ′(z). Then

(W (z) + I)−1(W (z)− I)J = [Σ(z) + I]−1[Σ(z)− I]

= [Σ(z)− I][Σ(z) + I]−1,

Multiplication by [W (z) + I] from the left and by [Σ(z) + I]−1 produces

[W (z)− I]J [Σ(z) + I] = [W (z) + I][Σ(z)− I].

Taking into account that P+ − P− = J and P+ + P− = I we obtain

[W (z)− I](P+ − P−)[Σ(z) + I] = [W (z) + I]J [Σ(z)− I],

or
W (z)P+Σ(z)−W (z)P−Σ(z)− P+Σ(z) + P−Σ(z)

+ W (z)P+ −W (z)P− − P+ + P−

= W (z)Σ(z)−W (z) + Σ(z)− I,

W (z)[P+Σ(z)− P−Σ(z) + 2P+ − Σ(z)] = [P+Σ(z)− P−Σ(z) + Σ(z)− 2P−],

or
W (z)[2P+ − 2P−Σ(z)] = [2P+Σ(z)− 2P−].

Cancelling yields

W (z)[P+ − P−Σ(z)] = [P+Σ(z)− P−]. (5.2)

Let us show that operator [P+−P−Σ(z)] is invertible. We choose x ∈ E such that

[P+ − P−Σ(z)]x = 0. (5.3)

Then (5.2) implies

[P+Σ(z)− P−]x = 0. (5.4)

We apply P+ to both sides of (5.3) and obtain

P+[P+ − P−Σ(z)]x = 0,

or P+x = 0. Similarly, we apply P− to both sides of (5.4) and get that P−x = 0.
Thus x = 0 and operator [P+ − P−Σ(z)] is invertible. Using this we obtain

W (z) = [P+Σ(z)− P−][P+ − P−Σ(z)]−1, (5.5)
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that proves the theorem.

Corollary 5.4 Let operator valued function W (z) belong to the class Ω0(R, J)
(resp. Ω1(R, J), Ω01(R, J)), P+ = 1/2(I +J), P− = 1/2(I − J). Then there exists
an operator-valued function Σ(z) from Ω0(R, J) (resp. Ω1(R, J), Ω01(R, J)) class
such that

W (z) = [P+Σ(z)− P−][P+ − P−Σ(z)]−1.

The Corollary 5.4 is proved in exactly the same way the Theorem 5.3 is.

6 Multiplication Theorems for Ω(R, J) classes

In this section we state and prove multiplication theorems for the operator-
valued functions of Ω(R, J) class.

Definition 6.1 Two systems

θ1 =
(

A1 K1 J1

H+1 ⊂ H1 ⊂ H−1 E1

)
and θ2 =

(
A2 K2 J2

H+2 ⊂ H2 ⊂ H−2 E2

)

are equal if and only if H+1 = H+2, H1 = H2, H−1 = H−2, A1 = A2, K1 = K2,
J1 = J2, E1 = E2.

Let θ1 and θ2 be two systems defined as above. Let

H+ = H+1 ⊕ H+2, H = H1 ⊕ H2, H− = H−1 ⊕ H−2,

and Pk : H → Hk, P+
k : H+ → H+k, and P−k : H− → H−k (k = 1, 2) denote the set

of orthoprojections.
In the space H we introduce an operator

Ã = A1 ⊕A2, (6.1)

where A1 ⊂ T1 ⊂ A1, A2 ⊂ T2 ⊂ A2 are correspondent elements of θ1 and θ2,
respectively. Moreover, H+1 = D(A∗1) and H+2 = D(A∗2). Consequently,

Ã∗ = A∗1 ⊕A∗2, (6.2)

and H+ = D(Ã∗) = D(A∗1)⊕D(A∗2).
The formulas below define operators Ã : H+ → H− and Ã∗ : H+ → H− as

Ã = A1P
+
1 + A2P

+
2 + 2iK1JK∗

2P+
2 ,

Ã∗ = A∗1P
+
1 + A∗2P

+
2 + 2iK1JK∗

2P+
2 ,

(6.3)

Let also

D(T ) =
{
x ∈ H+ : Ãx ∈ H

}
,

D(T ∗) =
{
x ∈ H+ : Ã∗x ∈ H

}
.

(6.4)

We define operators T and T ∗ on these sets:

Tx = Ãx, x ∈ D(T ),

T ∗x = Ã∗x, x ∈ D(T ∗),
(6.5)

Operators K̃ : E → H− and K̃∗ : H+ → E are defined in the following way

K̃ = K1 + K2, (6.6)

K̃∗ = K∗
1P+

1 + K∗
2P+

2 . (6.7)
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We can show now that T ⊃ Ã and T ∗ ⊃ Ã. Indeed, let x = x1 + x2 is an
element of D(Ã) = D(A1)⊕D(A2). Then

Ãx = A1x1 + A2x2 + 2iK1JK∗
2x2 = A1x1 + A2x2.

Right hand side of the latter expression belongs to the space H since K1JK∗
2x2 = 0

due to the invertability of K2 and the fact that

K2JK∗
2x2 = ImA2x2 = 0, x ∈ D(A2).

Hence, T ⊃ Ã. Similarly, one can show that T ∗ ⊃ Ã.
Let us set

D(A) = {x ∈ H+ : Tx = T ∗x}
and define an operator A on D(A)

Ax = Ãx, x ∈ D(A). (6.8)

We show that A ⊃ Ã. Let us pick an element xA from D(A) such that x1 = P+
1 xA

and x2 = P+
2 xA. Then the following holds

A1x1 + A2x2 + 2iK1JK∗
2 = A∗1x1 + A∗2x2 − 2iK2JK∗

1x1 ∈ H.

Taking into account H = H1 ⊕ H2 we make a projection of the last equality onto
H1 and H2 we obtain

A1x1 + 2iK1JK∗
2x2 = A∗1x1 ∈ H1, (6.9)

and

A2x2 = A∗2x2 − 2iK2JK∗
1x1 ∈ H2. (6.10)

This immediately implies that x1 ∈ D(T ∗1 ) and x2 ∈ D(T2). Moreover, first equa-
tion yields

A1x1 + 2iK1JK∗
2x2 = A∗1x1,

A1x1 − A∗1x1 = −2iK1JK∗
2x2,

1
2i

(A1 − A∗1)x1 = −K1JK∗
2x2,

K1JK∗
1x1 = −K1JK∗

2x2,

K1JK∗
1x1 + K1JK∗

2x2 = 0,

K1J(K∗
1x1 + K∗

2x2) = 0.

Since operator K1 is invertible

K∗
1x1 + K∗

2x2 = 0, (6.11)

or
K∗

1x1 = −K∗
2x2.

Let us show now that if x1 ∈ D(T ∗1 ), x2 ∈ D(T2) and K∗
1x1 + K∗

2x2 = 0 then
x = x1 + x2 belongs to D(A).

Ãx = A1x1 + A2x2 + 2iK1JK∗
2x2

= A1x1 + T2x2 − 2iK1JK∗
1x1

= A1x1 + T2x2 − A1x1 + A∗1x1

= T2x2 + T ∗x1 ∈ H.

Therefore, Ãx = Ã∗x belongs to H or

Tx = T ∗x,



12 Sergey Belyi and Eduard Tsekanovskii

that implies that x ∈ D(A). It is easy to see now that

D(A) = {x ∈ H+ : x = x1 + x2, x1 ∈ D(T ∗1 ), x2 ∈ D(T2) and K∗
1x1 + K∗

2x2 = 0}.
The inclusion D(Ã) ⊂ D(A) takes place. Indeed, if x ∈ D(Ã) then x1 ∈ D(A1),
x2 ∈ D(A2) and K∗

1x1 = 0, K∗
2x2 = 0. Since D(A1) ⊂ D(T ∗1 ), D(A2) ⊂ D(T2) and

K∗
1x1 + K∗

2x2 = 0 we have D(Ã) ⊂ D(A).
From above we can conclude that Ã ⊂ A ⊂ T and Ã ⊂ A ⊂ T ∗. Moreover,

A is a maximal Hermitian part of T and T ∗ operators. Let A∗ be an adjoint to A
operator. Then D(A∗) ⊂ D(Ã∗) = H+. Let

H+ = D(A∗)

and construct new rigged space

H+ ⊂ H ⊂ H−. (6.12)

It is easy to see that the following inclusions take place

H+ ↪→ H+ ⊂H ⊂ H− ↪→ H−
∩
H−

(6.13)

Let us denote by γ an embedding operator acting from H+ into H+:

γ : H+ ↪→ H+, γx = x, ∀x ∈ H+. (6.14)

Let us define an adjoint operator γ∗ as γ∗ : H− ↪→ H− and operator A ∈ [H+,H−]
as

A = γ∗Ã
∣∣∣
H+

. (6.15)

Obviously, A ⊃ T and A∗ ⊃ T ∗ where A∗ ∈ [H+,H−],

A∗ = γ∗Ã∗
∣∣∣
H+

, (6.16)

is adjoint to A operator. The last statement holds since for all x, y ∈ H+

(Ax, y) = (γ∗Ãx, y) = (Ãx, γy)

= (Ãx, y) = (x, Ã∗y) = (x, γ∗Ã∗y)

= (x,A∗y).

Indeed, let x ∈ D(T ). Then Ã belongs to the H space and

Ax = γ∗Ãx = γ∗Tx = Tx ∈ H.

Thus, A ⊃ T . Similarly, A∗ ⊃ T ∗. Here we explore the fact that γ∗g = g for all
g ∈ H. Indeed, for all x ∈ H+, g ∈ H

(x, g) = (γx, g) = (x, γ∗g).

Let us show now that operator A defined by (6.14) can be included in l.s.c.d.s. θ.

1
2i

(A− A∗) =
1
2i

(γ∗Ã− γ∗Ã∗)

=
1
2i

γ∗(Ã− Ã∗) = γ∗K̃JK̃∗

= KJK∗,
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where K̃ = K1 + K2, K̃∗ = K∗
1 + K∗

2 and

K = γ∗K̃, K∗ = K̃∗
∣∣∣
H+

. (6.17)

For all e ∈ E and x ∈ H+ we have

(Ke, x) = (γ∗K̃e, x) = (K̃e, γx) = (K̃e, x)

= (e, x̃∗) = (e,K∗x).

and so K∗ = K̃∗
∣∣∣
H+

.

Thus, A ⊃ T ⊃ A, A∗ ⊃ T ∗ ⊃ A, ImA = KJK∗, where K is defined by (6.17)
and we can include operator A in a system

θ =
(

A K J
H+ ⊂ H ⊂ H− E

)
. (6.18)

Let now
Wθ1(z) = I − 2iK∗

1 (A1 − zI)−1K1J,

Wθ2(z) = I − 2iK∗
2 (A2 − zI)−1K2J,

(6.19)

be transfer operator-valued functions of the systems θ1 and θ2 respectively.
We introduce a new auxiliary system

θ̃ =
(

Ã K̃ J
H+ ⊂ H ⊂ H− E

)
(6.20)

where all its components are described above. Let us note that θ̃ does not exactly
satisfy the definition 3.1 of l.s.c.d.s. because operator Ã is not the maximal Her-
mitian part of T and T ∗ and thus T /∈ ΛÃ. System θ̃ will, however, suffice our
purposes.

Let

Wθ̃(z) = I − 2iK̃∗(Ã− zI)−1K̃J, (6.21)

be the transfer operator-valued function of the system θ̃. According to the first
equality (6.3) we have

Ã− zI = (A1 − zI)P+
1 + (A2 − zI)P+

2 + 2iK1JK+
2 P+

2 .

Direct check shows that

(Ã− zI)−1 =(A1 − zI)−1P−1 + (A2 − zI)−1P−2
− 2i(A1 − zI)−1K1JK2(A2 − zI)−1P−2 .

(6.22)

This implies

Wθ̃(z) =I − 2iK∗(Ã− zI)−1KJ

=I − 2iK∗P−1 (A1 − zI)−1P−1 KJ − 2iK∗P−2 (A2 − zI)−1P−2 KJ

+ (2i)2K∗P−1 (A1 − zI)−1K1JK∗
2 (A2 − zI)−1P−2 KJ

=I + 2iK∗
1 (A1 − zI)−1K1J − 2iK∗

2 (A2 − zI)−1K2J

+ (2i)2K∗
1 (A1 − zI)−1K1JK∗

2 (A2 − zI)−1K2J

=(I − 2iK∗
1 (A1 − zI)−1K1J)(I − 2iK∗

2 (A2 − zI)−1K2J)

=Wθ1(z) ·Wθ2(z).
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In other words we have just shown that

Wθ̃(z) = Wθ1(z) ·Wθ2(z). (6.23)

Let now

Wθ(z) = I − 2iK∗(A− zI)−1KJ, (6.24)

be a transfer operator-valued function of the system θ defined by (6.18). We will
show now that

Wθ(z) = Wθ̃(z) = Wθ1(z) ·Wθ2(z). (6.25)

It is enough to show that

K∗(A− zI)−1K = K̃∗(Ã− zI)−1K̃, (6.26)

and the rest will follow from above. Consider the difference

K∗(A− zI)−1K − K̃∗(Ã− zI)−1K̃

= K̃∗(γ∗Ã− zI)−1γ∗K̃ − K̃∗(Ã− zI)−1K̃

= K̃∗[(γ∗Ã− zI)−1γ∗ − (Ã− zI)−1]K̃.

Let e ∈ E. We choose a sequence of elements gn from H such that gn → K̃e. Then

K̃∗[(γ∗Ã− zI)−1γ∗ − (Ã− zI)−1]gn = 0,

since γ∗gn = gn and T is a common quasi-kernel of operators Ã and A. Now let
gn → K̃e as n →∞ we have as a limit case

K̃∗((γ∗Ã− zI)−1γ∗ − (Ã− zI)−1
)
K̃e = 0. (6.27)

Since H is dense in H− we can repeat that procedure for any e ∈ E. Hence

K∗(A− zI)−1K = K̃∗(Ã− zI)−1K̃

and (6.25) yields
Wθ(z) = Wθ1(z) ·Wθ2(z).

Let us show now that A is a correct (∗)-extension of operator T . In order to
prove we show that real part of A has a self-adjoint quasi-kernel. Let

A1R =
A1 + A∗1

2
and A2R =

A2 + A∗2
2

,

be the real parts of operators A1 and A2 respectively. From (6.3) we obtain

ÃR = A1RP+
1 + A2RP+

2 + 2iK1JK∗
2P+

2 . (6.28)

Since both A1R and A2R are strong self-adjoint bi-extensions of operator A1 and
A2 then (A1R−zI)−1 and (A2R−zI)−1 are (−, ·) and hence (−,−)-continuous (see
Theorem 2.5). We note that operator Ã = A1 ⊕A2 has finite and equal deficiency
indices. If we use (6.28) and write formula (6.22) for the operator ÃR we get

(ÃR − zI)−1 =(A1R − zI)−1P−1 + (A2R − zI)−1P−2
− 2i(A1R − zI)−1K1JK2(A2R − zI)−1P−2 .

Next according to the Corollary 2.6 we conclude that ÃR is a strong self-adjoint bi-
extension of the operator Ã. Therefore, ÃR has a self-adjoint quasi-kernel B = B∗

and the following inclusion takes place

ÃR ⊃ B = B∗ ⊃ Ã.
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Our objective is to show that

AR ⊃ B = B∗ ⊃ A. (6.29)

Let us note that D(A∗) = H+ ⊂ H+ = D(Ã∗). Hence to prove (6.29) it is sufficient
to show that

ÃR ⊃ B = B∗ ⊃ A ⊃ Ã.

First we show that D(B) ⊃ D(A). Let assume that

D(B) ∩D(A) 6= D(A),

which means that there exists an element x0 ∈ D(A) such that x0 /∈ D(B). Suppose

F = {λx0, λ ∈ C},
and D(B̃) = D(B) + F . We define new operator B̃ on D(B̃) by the formula

B̃x = BxB + AxF ,

where x ∈ D(B̃), x = xB + xF , xB ∈ D(B), xF ∈ F . Then the form (B̃x, x) =
(ÃRx, x) is real for all x ∈ D(B̃). This means that self-adjoint operator B admits
a symmetric extension B̃ which is impossible. Hence, we get a contradiction and
D(B) ⊃ D(A). This would imply D(B) = D(B∗) ⊂ D(A∗) = H+ or B ⊂ AR.
Putting all this together we conclude that formula (6.29) holds and AR is indeed
a strong self-adjoint bi-extension of the operator A. We can conclude now that
system θ defined by (6.18) is l.s.c.d.s.

Definition 6.2 The system

θ =
(

A K J
H+ ⊂ H ⊂ H− E

)
(6.30)

is called a product of two systems

θ1 =
(

A1 K1 J1

H+1 ⊂ H1 ⊂ H−1 E1

)
and θ2 =

(
A2 K2 J2

H+2 ⊂ H2 ⊂ H−2 E2

)

(6.31)

if operators A, K and rigged space H+ ⊂ H ⊂ H− are defined by the formulas
(6.15), (6.17) and (6.12), respectively.

Theorem 6.3 Let system θ be the product of two systems θ1 and θ2. Then if
λ is a regular point for operators A1 and A2 then

Wθ(λ) = Wθ1(λ) ·Wθ2(λ).

The proof of the Theorem 6.3 was constructively obtained above.

Theorem 6.4 Let operator-valued functions W1(z) and W2(z) belong to the
class Ω(R, J). Then operator-valued function

W (z) = W1(z) ·W2(z)

also belongs to the class Ω(R, J).

Proof Since operator-valued functions W1(z) and W2(z) belong to the class
Ω(R, J) then there exist two l.s.c.d.s. θ1 and θ2 of the form (6.27) such that
W1(z) = Wθ1(z) and W2(z) = Wθ2(z) in some neighborhood of the point (−i). Let
l.s.c.d.s. θ be the product of θ1 and θ2. Then according to the Theorem 6.3

Wθ(z) = Wθ1(z) ·Wθ2(z) = W1(z) ·W2(z) = W (z).
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This means that for the functions W (z) there exists a system θ such that W (z) =
Wθ(z) in some neighborhood of (−i). Therefore, W (z) = W1(z) ·W2(z) belongs to
Ω(R, J).

The next theorem establishes similar result for the class Ω0(R, J).

Theorem 6.5 Let operator-valued functions W1(z) and W2(z) belong to the
class Ω0(R, J). Then operator-valued function

W (z) = W1(z) ·W2(z)

is also a member of the class Ω0(R, J). 2

Proof According to the Theorem 6.4 we have W (z) belongs to Ω(R, J). There-
fore, there exists a system

θ =
(

A K J
H+ ⊂ H ⊂ H− E

)
(6.32)

such that W (z) = Wθ(z) in some neighborhood of (−i). So, it would be enough
to show that if A ⊃ T ⊃ A, A∗ ⊃ T ∗ ⊃ A are correspondent elements of θ then
D(A) = H and D(T ) 6= D(T ∗).

Since W1(z) and W2(z) both belong to the class Ω0(R, J) then correspondent
systems θ1 and θ2 have a property that D(A1) = H1 and D(A2) = H2. Let operator
Ã be defined by (4.3) and

D(Ã) = D(A1)⊕D(A2). (6.33)

Considering the closure of the equality (6.33) yields D(Ã) = H1 ⊕ H2 = H. As it
was shown above Ã ⊂ A or D(Ã) ⊂ D(A) ⊂ H. Hence, D(A) = H.

It was shown in the proof of Theorem 4.8 (see [8]) that D(A) = H already
implies that D(T ) 6= D(T ∗). Thus, Wθ(z) = Wθ1(z) ·Wθ2(z) belongs to the class
Ω0(R, J).

Theorem 6.6 Let operator-valued functions W1(z) and W2(z) belong to the
class Ω1(R, J). Then their product

W (z) = W1(z) ·W2(z)

also belongs to the class Ω1(R, J).

Proof Using the same argument as in the theorem above we conclude that
W (z) is a member of Ω(R, J) class and is realizable by the system θ of the type
(6.32) such that W (z) = Wθ(z) in a neighborhood of the point (−i). What remain
is to show that system θ has a property D(A) 6= H and D(T ) = D(T ∗).

Since both W1(z) and W2(z) belong to the class Ω1(R, J) then correspondent
systems θ1 and θ2 posses properties D(A1) 6= H, D(T1) = D(T ∗1 ) and D(A2) 6= H,
D(T2) = D(T ∗2 ). Due to the Theorem 6.4 θ = θ1 · θ2. In the proof of the Theorem
4.9 (see [8]) we have shown that systems with above condition have reduced form.
Namely,

θ1 =
(

T1 K1 J1

H+1 ⊂ H1 ⊂ H−1 E1

)
and θ2 =

(
T2 K2 J2

H+2 ⊂ H2 ⊂ H−2 E2

)

2Based on a theorem by Yu.M. Arlinskĭi and one of the autors (see [2]), it can be shown that
under the conditions of the theorem 6.5 not only W1(z)W2(z) but also UW1(z)W2(z)V belongs
to the class Ω0(R, J). Here U and V are arbitrary J-unitary operators acting on E.
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where

ImTm =
Tm − T ∗m

2i
= KmJK∗

m, (m = 1, 2).

Consequently, the main operator of system θ = θ1 · θ2 is determined by formulas

T = T1P1 + T2P2 + 2iK1JK∗
2P2,

T ∗ = T ∗1 P1 + T ∗2 P2 + 2iK1JK∗
2P2,

and K = K1 + K2. Using the fact that D(T1) = D(T ∗1 ) and D(T2) = D(T ∗2 ) we
conclude that D(T ) = D(T ∗). This implies (see [8]) that D(A) 6= H. Therefore,
W (z) belongs to the class Ω1(R, J).

The following correspondent result for the class Ω01(R, J) is not that straightfor-
ward and additional condition is required.

Theorem 6.7 Let operator-valued functions W1(z) and W2(z) belong to the
class Ω01(R, J). Then their product

W (z) = W1(z) ·W2(z)

belongs to the class Ω01(R, J) if and only if the set

D =
{
x = x1 + x2 ∈ H1 ⊕ H2

∣∣ x1 ∈ D(T ∗1 ), x2 ∈ D(T2),K∗
1x1 + K∗

2x2 = 0
}
,

(6.34)

is not dense in H = H1 ⊕ H2. Here T1, T2, K1, K2, H1 and H2 are correspondent
elements of the systems θ1 and θ2 related to the functions W1(z) and W2(z).

Proof Since Ω(R, J) is a union of three distinct classes Ω0(R, J), Ω1(R, J)
and Ω01(R, J), Theorem 6.4 guarantees that W (z) belongs to one of the indicated
subclasses. The set D defined by (6.34) actually coincides with the domain of
operator A defined in (6.8). Therefore, since D is not dense in H = H1 ⊕ H2 then
D(A) 6= H and W (z) is certainly not in the Ω0(R, J) class.

Let us assume that W (z) belongs to Ω1(R, J). Then the system θ = θ1 · θ2 has
a property H+ = D(T ) = D(T ∗). The operator T here is actually a quasi-kernel of
the main operator A of the system θ. That means that for all x ∈ H+, x = x1 +x2,
x1 ∈ H+1, x2 ∈ H+2

A1x1 + A2x2 − 2iK1JK∗
2x2 ∈ H,

A∗2x2 + A∗2x2 − 2iK2JK∗
1x2 ∈ H,

(6.35)

where H = H1 ⊕ H2 and all operators belong to the correspondent systems θ1 and
θ2. Since x2 is an arbitrary element of H+2 then we can choose it equal to 0. Then
first relation yields x1 ∈ D(T1) for all x1 ∈ H+1. Because x1 is arbitrary we have
that

D(T1) = H+1 = D(A∗1).
Considering the fact that W1(z) is a member of Ω01(R, J) class we get a contradic-
tion. Hence, the product of W1(z) and W2(z) under the assumption of the theorem
belongs to the class Ω01(R, J).

Remark 6.8 It is not hard to show that if the set D in the statement of the
Theorem 6.7 is dense in H1 ⊕ H2 then W (z) = W1(z) ·W2(z) belongs to the class
Ω0(R, J).

The theorem below describes properties of the mixed products of two operator-
valued functions of Ω(R, J) class.
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Theorem 6.9 Let operator-valued functions W1(z) and W2(z) belong to the
classes Ω0(R, J) and Ω1(R, J), respectively. Then their product

W (z) = W1(z) ·W2(z)

belongs to the class Ω01(R, J) if and only if the set D of the form (6.34) is not dense
in H = H1 ⊕ H2.

We omit the proof of this theorem because it is similar to the one of the Theorem
6.7. As before we should note that if the set D in the statement of the Theorem 6.9
is not dense in H1 ⊕ H2 then W (z) = W1(z) ·W2(z) belongs to the class Ω0(R, J).
Furthermore, Theorem 6.9 holds even if we consider product W (z) = W2(z)·W1(z).

Theorem 6.10 Let operator-valued functions W1(z) and W2(z) belong to the
classes Ω0(R, J) and Ω1(R, J), respectively. Let also

W1(z) ·W2(z) = W2(z) ·W1(z) = W (z). (6.36)

Then operator-valued function W (z) belongs to the class Ω01(R, J).

Proof Condition (6.36) implies that

Ã = A1P
+
1 + A2P

+
2 + 2iK1JK∗

2P+
2 = A2P

+
2 + A1P

+
1 + 2iK2JK∗

1P+
1 .

Canceling yields
K1JK∗

2P+
2 = K2JK∗

1P+
1 .

Left and right hand sides of this equality belong to H−1 and H−2, respectively.
Hence the equality may hold only if

K1JK∗
2P+

2 = K2JK∗
1P+

1 = 0.

Thus,

Ã = A1P
+
1 + A2P

+
2 , (6.37)

and we are actually dealing with operator Ã of block-diagonal structure.
Now let xT = x1 + x2 be an element of D(T ), then

TxT = ÃxT = A1x1 + A2x2 ∈ H,

but A2x2 ∈ H, and therefore, A1x1 ∈ H, or

TxT = T1x1 + T2x2, (6.38)

Similarly,

T ∗xT∗ = T ∗1 x1 + T ∗2 x2, (6.39)

where xT∗ = x1+x2 is an element of D(T ∗). In other words we have just shown that
xT ∈ D(T ) implies x1 ∈ D(T1) and x2 ∈ D(T2), where xT = x1 + x2. Conversely,
if x1 ∈ D(T1) and x2 ∈ D(T2), then xT = x1 + x2 ∈ D(T ), i.e.

D(T ) = D(T1)⊕D(T2). (6.40)

Similarly shown,

D(T ∗) = D(T ∗1 )⊕D(T ∗2 ). (6.41)

But since D(T1) 6= D(T ∗1 ) and D(T2) = D(T ∗2 ) then D(T ) 6= D(T ∗).
It is also not hard to see that under this circumstances

D(A) = D(A1)⊕D(A2). (6.42)

Hence, if D(A2) 6= H2 then D(A) 6= H. It follows then that W (z) belongs to the
class Ω01(R, J).
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7 Example

In this section we present an example of two l.s.c.d. systems with the transfer
functions that fall into classes Ω1(R, J) and Ω0(R, J). Then we will show that the
product of these two transfer functions belongs to the class Ω0(R, J).

Let us consider an operator

Ty = −y′′, (7.1)

defined on the set

D(T ) = {y(t) ∈ L2
[0,l] : y′′(t) ∈ L2

[0,l], y(0) = y′(0) = 0}.
It is easy to show that its adjoint operator

T ∗y = −y′′, (7.2)

is defined on the set

D(T ∗) = {y(t) ∈ L2
[0,l] : y′′(t) ∈ L2

[0,l], y(l) = y′(l) = 0}.
Solution of the initial value problem provides us with the inverse operator

T−1f =

x∫

0

(t− x)f(t)dt, f ∈ L2
[0,l]. (7.3)

Let ξ(x) = ‖ϕ1(x) ϕ2(x)‖ be a row vector whose entries are

ϕ1(x) =
1√
2

and ϕ2(x) =
x√
2
, (7.4)

and let

J =
(

0 −i
i 0

)
.

Obviously, J = J∗ = J−1. Then (7.3) can be re-written (see [12]) as

T−1 = −2i

x∫

0

f(t)ξ(t) dtJξ∗(x). (7.5)

Similarly,

(T−1)∗f = 2i

l∫

x

f(t)ξ(t) dtJξ∗(x).

Now we can find

T−1 − (T−1)∗

2i
f(x) =

l∫

0

f(t)ξ(t) dtJξ∗(x) =
2∑

α,β=1

(f, ϕα)jαβϕβ(x).

Here jαβ is an element of J and ϕi(x), i = 1, 2 are defined above.
According to [11] T−1 can be included into the system

θ1 =
(

T−1 K1 J
L2

[0,l] C 2

)
, (7.6)

where K1 is a channel operator that is going to be described below. First, we find
an operator K∗

1 for the system θ1. Let us remind that

T−1 − (T−1)∗

2i
f =

2∑

α,β=1

(f, ϕα)jαβϕβ = K1JK∗
1 . (7.7)
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Using this relation we can see that

K∗
1f =




(f, ϕ1)

(f, ϕ2)


 , (7.8)

where

(f, ϕ1) =
1√
2

l∫

0

f(t)dt and (f, ϕ2) =
1√
2

l∫

0

tf(t)dt. (7.9)

The operator K1 : C 2 → L2
[0,l] then

K1




c1

c2


 = c1ϕ1(x) + c2ϕ2(x). (7.10)

Let Wθ1(λ) be a characteristic operator-valued function of the system θ1. Then
[12] it is represented by the formula

Wθ1(λ) = I − 2i‖(T−1 − λI)−1ϕα, ϕβ‖J, α, β = 1, 2, (7.11)

or

Wθ1(λ) = I − 2i

l∫

0

[
(T−1 − λI)−1ξ∗(x)

]
ξ(x) dxJ. (7.12)

Hence, in order to write down Wθ1(λ) we have to find the resolvent (T−1 − λI)−1

values on ϕi, (i = 1, 2). Using (7.4) we are solving

(T−1 − λI)−1f(x) =
1√
2
, (7.13)

and

(T−1 − λI)−1f(x) =
x√
2
, (7.14)

for f(x). In this case (7.13) yields

(T−1 − λI)−1ϕ1(x) = − 1
2
√

2λ
e

i√
λ

x − 1
2
√

2λ
e
− i√

λ
x
,

and (7.14) yields

(T−1 − λI)−1ϕ2(x) = − 1
2
√

2i
√

λ
e

i√
λ

x − 1
2
√

2i
√

λ
e
− i√

λ
x
.

After the routine calculations we end up with the matrix

‖(T−1 − λI)−1ϕα, ϕβ‖ =




1
i
√

λ
Γ(λ)

(
l

i
√

λ
− 1

)
Γ(λ)

Γ(λ)
(
l − i

√
λ
)

Γ(λ)


 , (7.15)

where

Γ(λ) =
e

i√
λ

l − e
− i√

λ
l

2
√

2
. (7.16)
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Then
I − 2i‖(T−1 − λI)−1ϕα, ϕβ‖J

=




1−
(
1− l

i
√

λ

)
Γ(λ) − 1

i
√

λ
Γ(λ)

(l − i
√

λ)Γ(λ) 1− Γ(λ)




= Wθ1(λ),

and

Wθ1

(
1
λ

)
=




1− (1− il
√

λ)Γ
(

1
λ

) −i
√

λΓ
(

1
λ

)

(l − i√
λ
Γ

(
1
λ

)
1− Γ

(
1
λ

)


 . (7.17)

Thus, we just have found a characteristic operator-valued function of the system
θ1. Let us note that D(T−1) = D((T−1)∗) and therefore Wθ1(λ) can be related to
the class Ω1(R, J).

According to [31] there exists a bi-extension A of the operator T and the system

θ2 =
(

A K2 J
H+ ⊂ L2

[0,l] ⊂ H− C 2

)
, (7.18)

such that

Wθ2(λ) = Wθ1

(
1
λ

)
.

Here A2 = −y′′ with

D(A2) =
{

y ∈ L2
[0,l] : y′′ ∈ L2

[0,l], y(0) = y(l) = y′(0) = y′(l) = 0
}

. (7.19)

Then A2 ⊂ T ⊂ A, A2 ⊂ T ∗ ⊂ A∗, D(A2) = L2
[0,l], D(T ) 6= D(T ∗). Furthermore,

the transfer operator-valued function

Wθ2(λ) = Wθ1

(
1
λ

)
, (7.20)

belongs to the class Ω0(R, J).
We use similar approach on the system θ2. In order to find generalized vectors

ϕ̂i ∈ H− (i = 1, 2) we explore [31],[32] the relations (A∗2y, ϕ1) = (y, ϕ̂1) and
(A∗2y, ϕ2) = (y, ϕ̂2), y ∈ H+. It turns out that

ϕ̂1 =
1√
2
[δ′(x− l)− δ′(x)]

and

ϕ̂2 =
1√
2
[lδ′(x− l)− δ(x− l)− δ(x)],

where δ(x) is the delta-function. Then

A− A∗
2i

=
2∑

α,β=1

(·, ϕ̂α)jαβϕ̂β . (7.21)

This implies

K∗
2g =




(g, ϕ̂1)

(g, ϕ̂2)


 =

1√
2




g′(0)− g′(l)

g(l)− g(0)− lg′(l)


 . (7.22)
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Now let W (λ) = Wθ1(λ) ·Wθ2(λ). We will show that W (λ) belongs to Ω0(R, J). In
order to do that according to the Theorem 6.7 we must show that

D =
{
x1 ∈ D((T−1)∗), x2 ∈ D(T ), K∗

1x1 + K∗
2x2 = 0

}
,

is dense in L2
[0,l] ⊗ L2

[0,l].
K∗

1x1 + K∗
2x2 = 0,

implies that
∫ l

0

x1(t)dt + x′2(0)− x′2(l) = 0,

∫ l

0

tx1(t)dt + x2(l)− x2(0)− lx′2(l) = 0.

(7.23)

Taking into account the fact that x1(t) ∈ D((T−1)∗) and x2(t) ∈ D(T ) we simplify
(7.23) and get

∫ l

0

x1(t)dt− x′2(l) = 0,

∫ l

0

tx1(t)dt + x2(l)− lx′2(l) = 0.

(7.24)

We shall show that the set of vector-functions
(
x1(t) x2(t)

)
with condition (7.24)

is dense in L2
[0,l] ⊗ L2

[0,l]. Let
(
y1(t) y2(t)

)
be an arbitrary vector-function from

L2
[0,l] ⊗L2

[0,l]. It is known [25] that the set of differential functions with fixed value
of function and its derivative at the point is dense in L2

[0,l]. Then there exists a

sequence x
(n)
2 (t) ∈ L2

[0,l] such that

x′(n)
2 (l) =

∫ l

0

y1(t)dt, ∀n ∈ N,

lx′(n)
2 (l)− x

(n)
2 (l) =

∫ l

0

ty1(t)dt, ∀n ∈ N,

and ‖y2(t) − x
(n)
2 (t)‖ → 0 when n → ∞. Thus an arbitrary vector-function(

y1(t) y2(t)
)

was approximated by the sequence of elements form D. Hence D

is dense in L2
[0,l] ⊗ L2

[0,l] and operator-valued function W (λ) = Wθ1(λ) · Wθ2(λ)
belongs to the class Ω0(R, J).
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[3] Yu.M.Arlinskĭi, E.R.Tsekanovskĭi. [1974] The method of equipped spaces in the theory of ex-
tensions of Hermitian operators with a nondense domain of definition, Sibirsk. Mat. Zh.
15, 597–610.

[4] D.R. Arov, M.A. Nudelman. [1996] Passive linear stationary dynamical scattering systems with
continuous time, Integr. Equat. Oper. Th. 24, 1–45.
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[8] S.V. Belyi, E.R. Tsekanovskĭi. [1998] On classes of realizable operator-valued R-functions,
Operator theory: Advances and Applications, Birkhäuser Verlag Basel, (to appear).
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