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The c-Entropy of non-dissipative L-systems

S. Belyi, K. A. Makarov, and E. Tsekanovskii

Abstract. In this paper, we extend the definition of c-entropy to canonical
L-systems with non-dissipative state-space operators. We also introduce the
concepts of dissipation and accumulation coefficients for such systems. In
addition, we examine the coupling of these L-systems and derive closed form
expressions for the corresponding c-entropy.
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1. Introduction

In this paper we continue our study of L-systems’ c-entropy (see [4, 3, 2, 5])
and its properties.

Recall the concept of a canonical L-system.
Let A be a bounded linear operator in a Hilbert space H and E is another

Hilbert space with dimE < ∞. By a canonical L-system we mean the array

(1) Θ =

(

A K J

H E

)

,

where K ∈ [E,H], J is a bounded, self-adjoint, and unitary operator in E, and
ImA = KJK∗. The operator-valued function

WΘ(z) = I − 2iK∗(A− zI)−1KJ, z ∈ ρ(A),
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is called the transfer function of an L-system Θ and

VΘ(z) = i[WΘ(z) + I]−1[WΘ(z)− I]J = K∗(ReA− zI)−1K, z ∈ ρ(A) ∩ C±,

is called the impedance function of Θ. The formal definition of L-systems is pre-
sented in Section 2.

The main goal of this note is to extend the concept of c-Entropy to canonical
non-dissipative L-systems with two-dimensional input-output space E. We are
going to utilize simple yet descriptive model L-systems based on the multiplication
operator covered in [2]. In addition to that we will generalize the notion of the
dissipation coefficient introduced in [5] and [4] (see also [2]).

The paper is organized as follows.
Section 2 contains necessary information on the L-systems theory.
In Section 3 we present a detailed construction of a canonical dissipative L-

system associated with the multiplication by a scalar operator. The input-output
space for such an L-system is C2 and both transfer and impedance functions are
(2× 2) matrix-valued functions.

Sections 4–7 of the paper contain the main results.
Section 4 provides a construction of canonical L-systems that are similar to

those in Section 3. These systems are no longer dissipative and have the directing
operator J different from the identity matrix. We also provide explicit formulas for
the transfer and impedance matrix-functions.

In Section 5 we extend the definition of c-entropy to a wider class of canonical
L-systems compared those discussed in [4, 3, 2, 5]. We apply this definition to
L-systems constructed in Sections 3 and 4 and obtain explicit representations for
c-entropy in each case. In addition to that, we determine the model parameter(s)
that yield(s) an extreme c-entropy value.

In Section 6, we extend the definition of the dissipation coefficient initially
proposed in [5, 4, 2] to non-dissipative systems. This generalization introduces
a novel concept of accumulation coefficient previously unexplored in this context.
Additionally, we derive explicit analytical expressions for both dissipation and accu-
mulation coefficients within the model L-systems framework developed in Sections
3 and 4.

In Section 7, we revisit the concept of L-system coupling (see [1, 8]), and
derive the explicit form of the coupling between two canonical L-systems discussed
Sections 3 and 4 followed by an independent proof of the Multiplication Theorem
(see, e.g., [8, 11]): the transfer function of the coupling coincides with the product
of the transfer functions associated with the factor L-systems.

The paper is concluded with illustrative examples that demonstrate the con-
structions and concepts discussed.

2. Preliminaries

For a pair of Hilbert spaces H1, H2 denote by [H1,H2] the set of all bounded
linear operators from H1 to H2.

Let T be a bounded linear operator in a Hilbert space H, K ∈ [E,H], and J

be a bounded, self-adjoint, and unitary operator in E, where E is another Hilbert
space with dimE < ∞. Let also

(2) ImT = KJK∗.
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By definition, the Livšic canonical system or simply canonical L-system

is just the array

(3) Θ =

(

T K J

H E

)

.

The spacesH and E here are called state and input-output spaces, and the operators
T , K, J will be refered to as main, channel, and directing operators, respectively.

Notice that relation (2) implies

(4) Ran(ImT ) ⊆ Ran(K).

We associate with an L-systemΘ two analytic functions, the transfer function
of the L-system Θ

(5) WΘ(z) = I − 2iK∗(T − zI)−1KJ, z ∈ ρ(T ),

and also the impedance function given by the formula

(6) VΘ(z) = K∗(ReT − zI)−1K, z ∈ ρ(ReT ).

The transfer function WΘ(z) of the L-system Θ and function VΘ(z) of the form
(6) are connected by the following relations valid for Im z 6= 0, z ∈ ρ(T ),

(7)
VΘ(z) = i[WΘ(z) + I]−1[WΘ(z)− I]J,

WΘ(z) = (I + iVΘ(z)J)
−1(I − iVΘ(z)J).

Recall that the impedance function VΘ(z) of a canonical L-system admits the
integral representation (see, e.g., [1, Section 5.5], [8])

(8) VΘ(z) =

∫

R

dσ(t)

t− z
,

where σ is an operator-valued bounded Borel measure in E with the compact
support on R.

As far as the inverse problem is concerned, we refer to [1, 7, 9] and references
therein for the description of the class of all Herglotz-Nevanlinna functions that
admit realizations as impedance functions of an L-system.

3. An L-system with a dissipative operator

Let H2 be a two-dimensional Hilbert space with an inner product (·, ·) and an
orthogonal normalized basis of vectors h01, h02 ∈ H2, (‖h01‖ = ‖h02‖ = 1). For
a fixed number λ0 ∈ C such that Imλ0 > 0 we introduce (see also [8]) a linear
operator

(9) Tdh =

[

λ0 0
0 −λ̄0

]

h, h =

[

h1

h2

]

∈ H2.

Clearly,

T ∗
d =

[

λ̄0 0
0 −λ0

]

, ImTd =

[

Imλ0 0
0 Imλ0

]

, ReTd =

[

Reλ0 0
0 −Reλ0

]

.

We are going to include Td into an L-system Θ. Let K : C2 → H2 be such that

(10) K

[

c1
c2

]

= (
√

Imλ0)

[

h01 0
0 h02

] [

c1
c2

]

= (
√

Imλ0)

[

c1h01

c2h02

]

∈ H2,
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for all c1, c2 ∈ C. Then, the adjoint operator K∗ : H2 → C2 acts on an arbitrary

vector h =

[

h1

h2

]

=

[

c1h01

c2h02

]

∈ H2 as follows

(11) K∗h = K∗
[

c1h01

c2h02

]

=
√

Imλ0

[

(h, c1h01)
(h, c2h02)

]

=
√

Imλ0

[

c1
c2

]

.

Let

(12) I =

[

1 0
0 1

]

be the identity operator. Furthermore,

(13)

KIK∗h =
√

Imλ0

[

h01 0
0 h02

] [

1 0
0 1

]

√

Imλ0

[

c1
c2

]

=

[

Imλ0 0
0 Imλ0

] [

h1

h2

]

= ImTdh.

Thus, we can construct an L-system of the form

(14) Θd =

(

Td K I

H2 C2

)

,

where operators Td and K are defined by (9) and (10), respectively. Taking into
account that

(Td − zI)−1 =

[

1
λ0−zI

0

0 − 1
λ0+zI

]

,

we proceed with calculations of the transfer function WΘ(z).
We have

(15)

WΘd
(z) = I − 2iK∗(Td − zI)−1KI =

[

1 0
0 1

]

− 2i Imλ0

[

1
λ0−z

0

0 − 1
λ0+z

]

=

[

1 0
0 1

]

−
[

λ0−λ̄0

λ0−z
0

0 −λ0−λ̄0

λ0+z

]

=

[

λ̄0−z
λ0−z

0

0 λ0+z

λ̄0+z

]

.

The corresponding impedance function of the form (6) is easily found and given
by

(16) VΘd
(z) = K∗(Re Td − zI)−1K =

[

Imλ0

Reλ0−z
0

0 − Imλ0

Reλ0+z

]

.

By direct check one confirms that VΘ(z) is a Herglotz-Nevanlinna matrix-valued
function.

4. L-systems with a non-dissipative operator

Let H2 be a two-dimensional Hilbert space with an inner product (·, ·) and an
orthogonal normalized basis of vectors h01, h02 ∈ H2, (‖h01‖ = ‖h02‖ = 1). For
a fixed number λ0 ∈ C such that Imλ0 > 0 we introduce (see also [8]) a linear
operator

(17) Tmh =

[

λ0 0
0 λ̄0

]

h, h =

[

h1

h2

]

∈ H2.
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Clearly,

T ∗
m =

[

λ̄0 0
0 λ0

]

, ImTm =

[

Imλ0 0
0 − Imλ0

]

, ReTm =

[

Reλ0 0
0 Reλ0

]

.

We are going to include Tm into an L-system Θm. Let K : C2 → H2 be of the form
(10), that is,

K

[

c1
c2

]

= (
√

Imλ0)

[

h01 0
0 h02

] [

c1
c2

]

= (
√

Imλ0)

[

c1h01

c2h02

]

∈ H2,

for all c1, c2 ∈ C. Then, the adjoint operator K∗ : H2 → C2 is of the form (11)

and acts on an arbitrary vector h =

[

h1

h2

]

=

[

c1h01

c2h02

]

∈ H2 as follows

K∗h = K∗
[

c1h01

c2h02

]

=
√

Imλ0

[

(h, c1h01)
(h, c2h02)

]

=
√

Imλ0

[

c1
c2

]

.

Define a signature operator

(18) Jm =

[

1 0
0 −1

]

and note that Jm = J∗
m = J−1

m . Furthermore,

(19)

KJmK∗h =
√

Imλ0

[

h01 0
0 h02

] [

1 0
0 −1

]

√

Imλ0

[

c1
c2

]

=

[

Imλ0 0
0 − Imλ0

] [

h1

h2

]

= ImTmh.

Thus, we can construct an L-system of the form

(20) Θm =

(

Tm K Jm
H2 C2

)

,

where operators Tm, K, and Jm are defined by (17), (10), and (18), respectively.
Taking into account that

(Tm − zI)−1 =

[

1
λ0−zI

0

0 1
λ0−zI

]

,

we proceed with calculations of the transfer function WΘm
(z). We have

(21)

WΘm
(z) = I − 2iK∗(Tm − zI)−1KJm =

[

1 0
0 1

]

− 2i Imλ0

[

1
λ0−z

0

0 − 1
λ0−z

]

=

[

1 0
0 1

]

−
[

λ0−λ̄0

λ0−z
0

0 −λ0−λ̄0

λ0−z

]

=

[

λ̄0−z
λ0−z

0

0 λ0−z

λ0−z

]

.

The corresponding impedance function of the form (6) is easily found and given by

(22) VΘm
(z) = K∗(ReTm − zI)−1K =

[

Imλ0

Reλ0−z
0

0 Imλ0

Reλ0−z

]

=
Imλ0

Reλ0 − z
I.

By direct check one confirms that VΘm
(z) is a Herglotz-Nevanlinna matrix-valued

function.
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Now we are going to construct yet another L-system whose main operator is
not dissipative. Using the same conventions as in the beginning of the section we
set

(23) Tah =

[

λ̄0 0
0 −λ0

]

h, h =

[

h1

h2

]

∈ H2.

Clearly,

T ∗
a =

[

λ0 0
0 −λ̄0

]

, ImTa =

[

− Imλ0 0
0 − Imλ0

]

, ReTa =

[

Reλ0 0
0 −Reλ0

]

.

We are going to include Ta into an L-system Θ. Let K : C2 → H2 be still defined
via (10) with K∗ : H2 → C2 given by (11).

Define a signature operator

(24) Ja = −I =

[

−1 0
0 −1

]

and note that Ja = J∗
a = J−1

a . Furthermore,

(25)

KJaK
∗h =

√

Imλ0

[

h01 0
0 h02

] [

−1 0
0 −1

]

√

Imλ0

[

c1
c2

]

=

[

− Imλ0 0
0 − Imλ0

] [

h1

h2

]

= ImTah.

Thus, we can construct an L-system of the form

(26) Θa =

(

Ta K Ja
H2 C2

)

,

where operators Ta, K, and Ja are defined by (23), (10), and (24), respectively.
Taking into account that

(Ta − zI)−1 =

[ 1
λ̄0−zI

0

0 − 1
λ0+zI

]

,

we proceed with calculations of the transfer function WΘa
(z). We have

(27)

WΘa
(z) = I − 2iK∗(Ta − zI)−1KJa =

[

1 0
0 1

]

− 2i Imλ0

[ − 1
λ̄0−z

0

0 1
λ0+z

]

=

[

1 0
0 1

]

−
[

−λ0−λ̄0

λ̄0−z
0

0 λ0−λ̄0

λ0+z

]

=

[

λ0−z

λ̄0−z
0

0 λ̄0+z
λ0+z

]

.

For the corresponding impedance function we have

(28) VΘa
(z) = K∗(Re Ta − zI)−1K =

[

Imλ0

Re λ0−z
0

0 − Imλ0

Reλ0+z

]

.

5. c-Entropy of dissipative and non-dissipative L-systems

We begin with reminding the definition of L-system c-Entropy introduced in
[5].
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Definition 1. Let Θ be an L-system of the form (3). The quantity

(29) S = −tr ln(|WΘ(−i)|),
where WΘ(z) is the transfer function of Θ, is called the coupling entropy (or
c-Entropy) of the L-system Θ.

Note that if, in addition, the point z = i belongs to ρ(T ), then we also have
that

(30) S = tr ln(|WΘ(i)|).
Our next goal is to calculate the c-Entropies for the dissipative and non-

dissipative cases described in Sections 3 and 4, respectively.
Let us start with the dissipative case.

Theorem 2. Let Θd be an L-system of the form (14) that is based upon operator
Td in (9). Then the c-Entropy Sd of Θd is

(31) Sd = ln
|λ0|2 + 2 Imλ0 + 1

|λ0|2 − 2 Imλ0 + 1
.

Proof. Our plan is to find Sd by the definition using (29). Keeping in mind
(21) we observe

(32)

ln

∣

∣

∣

∣

λ̄0 + i

λ0 + i

∣

∣

∣

∣

= ln

∣

∣

∣

∣

Reλ0 + i(1− Imλ0)

Reλ0 + i(1 + Imλ0)

∣

∣

∣

∣

= ln

√

(Re λ0)2 + (1 − Imλ0)2

(Re λ0)2 + (1 + Imλ0)2

=
1

2
ln

|λ0|2 − 2 Imλ0 + 1

|λ0|2 + 2 Imλ0 + 1
.

Similarly,

(33)

ln

∣

∣

∣

∣

λ0 − i

λ̄0 − i

∣

∣

∣

∣

= ln

∣

∣

∣

∣

Reλ0 + i(Imλ0 − 1)

Reλ0 − i(Imλ0 + 1)

∣

∣

∣

∣

= ln

√

(Re λ0)2 + (Im λ0 − 1)2

(Re λ0)2 + (Im λ0 + 1)2

=
1

2
ln

|λ0|2 − 2 Imλ0 + 1

|λ0|2 + 2 Imλ0 + 1
.

Consequently,

(34)

Sd = −tr ln(|WΘd
(−i)|) = −tr ln





∣

∣

∣

λ̄0+i
λ0+i

∣

∣

∣
0

0
∣

∣

∣

λ0−i

λ̄0−i

∣

∣

∣





= −tr





ln
∣

∣

∣

λ̄0+i
λ0+i

∣

∣

∣
0

0 ln
∣

∣

∣

λ0−i

λ̄0−i

∣

∣

∣





= −tr

[

1
2 ln

|λ0|2−2 Imλ0+1
|λ0|2+2 Imλ0+1 0

0 1
2 ln

|λ0|2−2 Imλ0+1
|λ0|2+2 Imλ0+1

]

= − ln
|λ0|2 − 2 Imλ0 + 1

|λ0|2 + 2 Imλ0 + 1
= ln

|λ0|2 + 2 Imλ0 + 1

|λ0|2 − 2 Imλ0 + 1
.

Hence, we have shown (31). �

Now we are going to evaluate c-Entropy in the first non-dissipative case.
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Theorem 3. Let Θm be an L-system of the form (20) that is based upon oper-
ator Tm in(17). Then the c-Entropy Sm of Θm is zero.

Proof. Once again we are going to find Sm by the definition using (29). Tak-
ing into account (21) and (29) we have

(35)

Sm = −tr ln(|WΘm
(−i)|) = −tr ln





∣

∣

∣

λ̄0+i
λ0+i

∣

∣

∣
0

0
∣

∣

∣

λ0+i

λ̄0+i

∣

∣

∣





= −tr





ln
∣

∣

∣

λ̄0+i
λ0+i

∣

∣

∣
0

0 ln
∣

∣

∣

λ0+i

λ̄0+i

∣

∣

∣



 = −
(

ln

∣

∣

∣

∣

λ̄0 + i

λ0 + i

∣

∣

∣

∣

+ ln

∣

∣

∣

∣

λ0 + i

λ̄0 + i

∣

∣

∣

∣

)

= − ln 1 = 0.

Thus, Sm = 0. �

At this point we are ready to discuss the accumulative case.

Theorem 4. Let Θa be an L-system of the form (26) that is based upon operator
Ta in (23). Then the c-Entropy Sa of Θa is

(36) Sa = ln
|λ0|2 − 2 Imλ0 + 1

|λ0|2 + 2 Imλ0 + 1
.

Proof. Our plan is to find Sa by the definition using (29). Keeping in mind
(15) we reciprocate the fraction in (32) to get

(37) ln

∣

∣

∣

∣

λ0 + i

λ̄0 + i

∣

∣

∣

∣

=
1

2
ln

|λ0|2 + 2 Imλ0 + 1

|λ0|2 − 2 Imλ0 + 1
.

Similarly, reciprocating the corresponding fraction in (33) yields

(38) ln

∣

∣

∣

∣

λ̄0 − i

λ0 − i

∣

∣

∣

∣

=
1

2
ln

|λ0|2 + 2 Imλ0 + 1

|λ0|2 − 2 Imλ0 + 1
.

Consequently,

(39)

Sa = −tr ln(|WΘa
(−i)|) = −tr ln





∣

∣

∣

λ0+i

λ̄0+i

∣

∣

∣
0

0
∣

∣

∣

λ̄0−i
λ0−i

∣

∣

∣





= −tr

[

1
2 ln

|λ0|2+2 Imλ0+1
|λ0|2−2 Imλ0+1 0

0 1
2 ln

|λ0|2+2 Imλ0+1
|λ0|2−2 Imλ0+1

]

= − ln
|λ0|2 + 2 Imλ0 + 1

|λ0|2 − 2 Imλ0 + 1
= ln

|λ0|2 − 2 Imλ0 + 1

|λ0|2 + 2 Imλ0 + 1
.

Hence, we have shown (36). �

Note that since Imλ0 > 0 the c-Entropy in (36) is clearly negative.
We are going to analyze the L-systems Θd and Θa closer to see what values of

λ0 provide us with extreme values of c-Entropy.

Theorem 5. Let Θd be an L-system of the form (14) that is based upon operator
Td in (9). Then the c-Entropy Sd = +∞ if and only if λ0 = i. Moreover, the c-
Entropy Sd attains its maximum (finite) value whenever λ0 = ai, for a ∈ (0, 1) ∪
(1,+∞).
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Figure 1. Maximal c-Entropy of a dissipative L-system

Proof. Applying formula (31) for the c-Entropy Sd and taking into account
that Imλ0 > 0, we observe that the numerator of the expression

(40)
|λ0|2 + 2 Imλ0 + 1

|λ0|2 − 2 Imλ0 + 1

is always greater than 1. Consequently, the natural logarithm expression on the
right side of (31) is positive infinity if and only if the denominator in (40) is zero,
or

|λ0|2 − 2 Imλ0 + 1 = (Reλ0)
2 + (1− Imλ0)

2 = 0.

The last equation is true whenever λ0 = i.
The second part of the statement is proved by considering the expression

|λ0|2 + 2 Imλ0 + 1

|λ0|2 − 2 Imλ0 + 1
=

(Reλ0)
2 + (1 + Imλ0)

2

(Reλ0)2 + (1− Imλ0)2

as a function of a single real variable x = Reλ0 while keeping Imλ0 = a > 0, a 6= 1
fixed. Then

f(x) =
x2 + (1 + a)2

x2 + (1− a)2

clearly attains its maximum at x = 0. �

The graph of c-Entropy Sd(x, y) as a function of x = Reλ0 and y = Reλ0

is shown on Figure 1. The visible pick is actually represents the infinite value of
Sd(x, y) that occurs at the point (0, 1) when λ0 = i.

A somewhat similar result takes place when we consider an accumulative L-
system Θa.
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Figure 2. Minimal c-Entropy of an accumulative L-system

Theorem 6. Let Θa be an L-system of the form (26) that is based upon operator
Ta in (23). Then the c-Entropy Sa = −∞ if and only if λ0 = i. Moreover,
the c-entropy Sd attains its minimum (finite) value whenever λ0 = ai, for a ∈
(0, 1) ∪ (1,+∞).

Proof. The proof relies on the formula (36) and closely replicates the steps
of the proof of Theorem 5 but applied to the expression

(41)
|λ0|2 − 2 Imλ0 + 1

|λ0|2 + 2 Imλ0 + 1
=

(Re λ0)
2 + (1− Imλ0)

2

(Re λ0)2 + (1 + Imλ0)2
.

Here we observe that the natural logarithm expression on the right side of (36) is
negative infinity if and only if the numerator in (41) is zero, or (as we have shown
in the proof of Theorem 5)

|λ0|2 − 2 Imλ0 + 1 = (Reλ0)
2 + (1− Imλ0)

2 = 0.

The last equation is true whenever λ0 = i.
The second part of the statement is proved by analyzing the function

g(x) =
x2 + (1 − a)2

x2 + (1 + a)2

to show that it achieves its minimum at x = 0. �

The graph of c-Entropy Sa(x, y) as a function of x = Reλ0 and y = Reλ0

is shown on Figure 2. The visible drop actually represents the infinite value of
Sa(x, y) that occurs at the point (0, 1) when λ0 = i.
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6. Coefficients of dissipation and accumulation

Let us recall the definition of the dissipation coefficient of a L-system with the
main dissipative operator T .

Definition 7 (cf. [5], [4]). Let Θ be an L-system of the form (3) with the
main operator T and c-Entropy S. Then the quantity

(42) D = 1− e−2S

is called the coefficient of dissipation of the L-system Θ if S ≥ 0.
Similarly, the quantity

(43) A = 1− e2S

is called the coefficient of accumulation of the L-system Θ if S < 0.

We will evaluate the coefficient of dissipation (or accumulation) for all three
cases described in Section 6. We begin with the case of an L-system of the form
(14) with the dissipative operator Td.

Theorem 8. Let Θd be an L-system of the form (14) that is based upon operator
Td in (9). Then the dissipation coefficient Dd of Θd is

(44) Dd =
8 Imλ0(|λ0|2 + 1)

(|λ0|2 + 2 Imλ0 + 1)2
.

Proof. In order to simplify calculations let us temporarily denote λ0 = a+bi.
Using (42) with (31) and performing straightforward calculations we get

Dd = 1− e−2Sd = 1−
( |λ0|2 − 2 Imλ0 + 1

|λ0|2 + 2 Imλ0 + 1

)2

= 1−
(

a2 + (1− b)2
)2

(

a2 + (1 + b)2
)2

=

(

a2 + (1 + b)2
)2 −

(

a2 + (1− b)2
)2

(

a2 + (1 + b)2
)2 =

8a2b + 8b+ 8b3
(

a2 + (1 + b)2
)2

=
8b(a2 + b2 + 1)
(

a2 + (1 + b)2
)2 =

8 Imλ0(|λ0|2 + 1)

(|λ0|2 + 2 Imλ0 + 1)2
.

Thus, (44) takes place. �

Nest we will treat the case when the main operator of our L-system is neither
dissipative nor accumulative.

Theorem 9. Let Θm be an L-system of the form (20) that is based upon opera-
tor Tm in (17). Then the dissipation coefficient Dm of Θm is zero, that is Dm = 0.

Proof. As we have shown in Theorem 3, for an L-system of the form (20)
that is based upon operator Tm in (17) the value of c-Entropy is zero. Hence, (42)
yields

Dm = 1− e−2·0 = 1− 1 = 0.

�

Finally we are going to look at the case when the main operator of our L-system
is accumulative.
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Theorem 10. Let Θa be an L-system of the form (26) that is based upon
operator Ta in (23). Then the accumulation coefficient Aa of Θa is

(45) Aa =
8 Imλ0(|λ0|2 + 1)

(|λ0|2 + 2 Imλ0 + 1)2
.

Proof. As in the proof of Theorem 8 we let temporarily λ0 = a + bi. Using
(43) with (36) and performing straightforward calculations we obtain

Aa = 1− e2Sa = 1−
( |λ0|2 − 2 Imλ0 + 1

|λ0|2 + 2 Imλ0 + 1

)2

= 1−
(

a2 + (1− b)2
)2

(

a2 + (1 + b)2
)2

=
8b(a2 + b2 + 1)
(

a2 + (1 + b)2
)2 =

8 Imλ0(|λ0|2 + 1)

(|λ0|2 + 2 Imλ0 + 1)2
.

Thus, (45) takes place. �

7. L-system coupling and c-Entropy

In this section, following [8] (see also [1], [6] and [2]), we introduce the coupling
of two L-systems based upon the multiplication operator discussed in Sections 3
and 4.

Let H2 be a two-dimensional Hilbert space with an inner product (·, ·) and
an orthogonal normalized basis of vectors h01, h02 ∈ H2, (‖h01‖ = ‖h02‖ = 1).
For fixed numbers λ1, λ2, µ1, µ2 ∈ C and such that Imλ1 > 0 and Imλ2 > 0, we
introduce linear operators T1 and T2 in H2 of the form

(46) T1h =

[

λ1 0
0 µ1

]

h, T2h =

[

λ2 0
0 µ2

]

h, h =

[

h1

h2

]

∈ H2.

Clearly, for j = 1, 2

T ∗
j =

[

λ̄j 0
0 µ̄j

]

, ImTj =

[

Imλj 0
0 Imµj

]

, ReTj =

[

Reλj 0
0 Reµj

]

.

Let Kj : C
2 → H2 (for j = 1, 2) be such that

(47)

Kj

[

c1
c2

]

=

[

(
√

Imλj)h01 0

0 (
√

Imµj)h02

] [

c1
c2

]

=

[

(
√

Imλj)c1h01

(
√

Imµj)c2h02

]

,

for all c1, c2 ∈ C. Then, the adjoint operators K∗
j : H2 → C2 (for j = 1, 2) act on

an arbitrary vector h =

[

h1

h2

]

=

[

c1h01

c2h02

]

∈ H2 as follows

(48) K∗
j h = K∗

j

[

c1h01

c2h02

]

=

[

(
√

Imλj)(h, c1h01)
(
√

Imµj)(h, c2h02)

]

=

[

(
√

Imλj)c1
(
√

Imµj)c2

]

.

Let also

(49) J = I =

[

1 0
0 1

]

be the identity operator. Furthermore,

(50)

KjJK
∗
j h =

[

(
√

Imλj)h01 0
0 (

√

Imµj)h02

] [

1 0
0 1

] [

(
√

Imλj)c1
(
√

Imµj)c2

]

=

[

Imλj 0
0 Imµj

] [

h1

h2

]

= ImTjh.
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Consider two L-systems based on T1 and T2, respectively,

(51) Θ1 =

(

T1 K1 J

H2 C2

)

and Θ2 =

(

T2 K2 J

H2 C2

)

.

Taking into account that

(52) (Tj − zI)−1 =

[

1
λj−zI

0

0 1
µj−zI

]

, j = 1, 2,

we proceed with calculations of the transfer function WΘj
(z). Performing steps

similar to the ones that were used to obtain formula (21), we get

(53) WΘj
(z) = I − 2iK∗

j (Tj − zI)−1KjJ =

[

λ̄j−z

λj−z
0

0
µj−z

µj−z

]

, j = 1, 2.

Define an operator T acting on the Hilbert space H2 ⊕H2 as

(54)

T

[

h1

h2

]

=

[

T1 2iK1JK
∗
2

0 T2

] [

h1

h2

]

=

[

T1h1 + 2iK1K
∗
2h2

T2h2

]

=









λ1 0 2i
√
Imλ1 Imλ2 0

0 µ1 0 2i
√
Imµ1 Imµ2

0 0 λ2 0
0 0 0 µ2

















h11

h12

h21

h22









.

Here

h1 =

[

h11

h12

]

,h2 =

[

h21

h22

]

∈ H2.

Direct check reveals that

(55) T∗
[

h1

h2

]

=









λ̄1 0 0 0
0 µ̄1 0 0

−2i
√
Imλ1 Imλ2 0 λ̄2 0
0 −2i

√
Imµ1 Imµ2 0 µ̄2

















h11

h12

h21

h22









.

In addition to T we define an operator K : C2 → H2 ⊕H2 as

(56) Kc = K

[

c1
c2

]

=

[

K1c

K2c

]

=









(
√
Imλ1 c1)h01

(
√
Imµ1 c2)h02

(
√
Imλ2 c1)h01

(
√
Imµ2 c2)h02









, c =

[

c1
c2

]

.

In this case the adjoint operator K∗ : H2 ⊕H2 → C2 is defined for all h1,h2 ∈ H2

as follows

(57) K∗
[

h1

h2

]

= K∗
1h1 +K∗

2h2 =

[

(h11,
√
Imλ1 h01) + (h12,

√
Imµ1 h02)

(h21,
√
Imλ2 h01) + (h22,

√
Imµ2 h02)

]

.

One can confirm that

(58)

ImT

[

h1

h2

]

=
1

2i

(

2i ImT1 2iK1K
∗
2

2iK2K
∗
1 2i ImT2

)[

h1

h2

]

=

[

K1K
∗
1h1 +K1K

∗
2h2

K2K
∗
2h2 +K2K

∗
1h1

]

= KK∗
[

h1

h2

]

,

and hence ImT = KK∗.
Summarizing, we arrive at the following definition.
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Definition 11. Given two systems of the form (51)

Θ1 =

(

T1 K1 J

H2
C

2

)

and Θ2 =

(

T2 K2 J

H2
C

2

)

,

define the coupling of two L-systems as

Θ =

(

T K J

H2 ⊕H2 C2

)

,

where the operators T and K are presented in (54)–(57).
In writing,

Θ = Θ1 ·Θ2.

The following theorem can be derived from a more general result [8, Theorem
3.1], however, for the convenience of the reader, we provide a simple proof of it.

Theorem 12 (cf. [8]). Let an L-system Θ be the coupling of two L-systems Θ1

and Θ2 of the form (51) with the main operators T1 and T2 given by (46). Then if
z ∈ ρ(T1) ∩ ρ(T2) = C \ {λ1, λ2, µ1, µ2}, we have

(59) WΘ(z) = WΘ1
(z) ·WΘ2

(z) =

[

λ̄1−z
λ1−z

· λ̄2−z
λ2−z

0

0 µ̄1−z

µ1−z
· µ̄2−z

µ2−z

]

.

Proof. We start with a simple observation that for T defined by (54) we have

(60) T− zI =

[

T1 − zI 2iK1JK
∗
2

0 T2 − zI

]

Then a direct check would confirm that

(61) (T− zI)−1 =

[

(T1 − zI)−1 −2i(T1 − zI)−1K1JK
∗
2 (T2 − zI)−1

0 (T2 − zI)−1

]

.

Applying formulas (52), (47)–(49) together with (61) one gets

(T− zI)−1 =











1
λ1−zI

0 −2i
√
Imλ1 Imλ2

(λ1−zI)(λ2−zI) 0

0 1
µ1−zI

0 −2i
√
Imµ1 Imµ2

(µ1−zI)(µ2−zI)

0 0 1
λ2−zI

0

0 0 0 1
µ2−zI











.

Taking in to account that

2i
√

Imλ1 · Imλ2 =

√

(λ1 − λ̄1)(λ2 − λ̄2),

and also
2i ((λ2 − z) Imλ1 − 2i Imλ1 Imλ2 + (λ1 − z) Imλ1)

(λ1 − z)(λ2 − z)

=
(λ1 − λ̄1)(λ̄2 − z) + (λ1 − z)(λ2 − λ̄2)

(λ1 − z)(λ2 − z)
,

(the same is true for µ1 and µ2) we proceed to find

2iK∗(T−zI)−1K =

[

(λ1−λ̄1)(λ̄2−z)+(λ1−z)(λ2−λ̄2)
(λ1−z)(λ2−z) 0

0 (µ1−µ̄1)(µ̄2−z)+(µ1−z)(µ2−µ̄2)
(µ1−z)(µ2−z)

]

.
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Next we observe that

1−(λ1 − λ̄1)(λ̄2 − z) + (λ1 − z)(λ2 − λ̄2)

(λ1 − z)(λ2 − z)

=
(λ1 − z)(λ2 − z)− (λ1 − λ̄1)(λ̄2 − z)− (λ1 − z)(λ2 − λ̄2)

(λ1 − z)(λ2 − z)

=
(λ̄1 − z)(λ̄2 − z)

(λ1 − z)(λ2 − z)
.

Finally,

WΘ(z) = I − 2iK∗(T− zI)−1K

= I −
[

(λ1−λ̄1)(λ̄2−z)+(λ1−z)(λ2−λ̄2)
(λ1−z)(λ2−z) 0

0 (µ1−µ̄1)(µ̄2−z)+(µ1−z)(µ2−µ̄2)
(µ1−z)(µ2−z)

]

=

[

(λ̄1−z)(λ̄2−z)
(λ1−z)(λ2−z) 0

0 (µ̄1−z)(µ̄2−z)
(µ1−z)(µ2−z)

]

= WΘ1
(z) ·WΘ2

(z),

completing the proof. �

Now, we turn our attention to the c-Entropy of L-system coupling. The fol-
lowing theorem establishes the additivity property of c-Entropy with respect to
the coupling of two L-systems, thereby justifying the use of the term “coupling
entropy.”

Theorem 13. Let an L-system Θ be the coupling of two L-systems Θ1 and Θ2

of the form (51) with the corresponding c-entropies S1 and S2. Then the c-Entropy
S of Θ is such that

(62) S = S1 + S2.

If either S1 = ∞ or S2 = ∞, then S = ∞.

Proof. We rely on the Definition 1 of c-Entropy and Theorem 12. Applying
(29) with (59) yields

S = −tr ln(|WΘ(−i)|) = −tr ln(|WΘ1
(−i) ·WΘ2

(−i)|)
= −tr ln(|WΘ1

(−i)| − tr ln(|WΘ2
(−i)| = S1 + S2.

�

Now we are going to look into the dissipation and accumulation coefficients
of the coupling of two L-systems of the form (51). In [4] we made a note that
if L-system Θ with c-Entropy S is a coupling of two L-systems Θ1 and Θ2 with
c-entropies S1 and S2, respectively, formula (62) holds, i.e., S = S1 + S2. Let D,
D1, and D2 be the dissipation coefficients of L-systems Θ, Θ1, and Θ2. Then (42)
implies

1−D = e−2S = e−2(S1+S2) = e−2S1 · e−2S2 = (1−D1)(1 −D2).

Thus, the formula

(63) D = 1− (1−D1)(1 −D2) = D1 +D2 −D1D2

describes the coefficient of dissipation of the L-system coupling. Similarly,

1−A = e2S = e2(S1+S2) = e2S1 · e2S2 = (1−A1)(1 −A2).
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Therefore,

(64) A = 1− (1−A1)(1−A2) = A1 +A2 −A1A2

is the coefficient of accumulation of the L-system coupling.

8. Examples

In this section we present examples that illustrate the construction of L-system
of the forms (14), (20), and (26) for various values of λ0.

Example 1. Let λ0 = i and consider the linear operators Td, Tm, and Ta

of the forms (9), (17), and (23), respectively, acting on a two-dimensional Hilbert
space H2 with an inner product (·, ·) and an orthogonal normalized basis of vectors
h01, h02 ∈ H2, (‖h01‖ = ‖h02‖ = 1). We have then

(65) Tdh =

[

i 0
0 i

]

h, Tmh =

[

i 0
0 −i

]

h, Tah =

[

−i 0
0 −i

]

,

where h =

[

h1

h2

]

∈ H2.

We are going to include Td, Tm, and Ta into L-systems Θd, Θm, and Θa of the
forms (14), (20), and (26), respectively. In order to do that we take an operator
K : C2 → H2 of the form (10) that in our case of Im i = 1 becomes

(66) K

[

c1
c2

]

=

[

h01 0
0 h02

] [

c1
c2

]

=

[

c1h01

c2h02

]

for all c1, c2 ∈ C. Then, the adjoint operator K∗ : H2 → C2 is given by (11) and is

(67) K∗h = K∗
[

c1h01

c2h02

]

=

[

(h, c1h01)
(h, c2h02)

]

=

[

c1
c2

]

.

Following (12), (18), and (24) we set

(68) Jd = I =

[

1 0
0 1

]

, Jm =

[

1 0
0 −1

]

, Ja = −I =

[

−1 0
0 −1

]

.

We are constructing three L-systems Θd, Θm, and Θa of the forms (14), (20),
and (26)

(69) Θd =

(

Td K Jd
H2 C2

)

, Θm =

(

Tm K Jm
H2 C2

)

, Θa =

(

Tm K Ja
H2 C2

)

,

where operators Td, Tm, Ta, Jd, Jm, Ja, and K are defined by (65)–(68). Note that
all three L-systems above share the same channel operator K of the form (66).

Using (15), (21), and (27) we have

(70)

WΘd
(z) = I − 2iK∗(Td − zI)−1KI =

[ −i−z
i−z

0

0 i+z
−i+z

]

=
z + i

z − i
I,

WΘm
(z) = I − 2iK∗(Tm − zI)−1KJm =

[

z+i
z−i

0

0 z−i
z+i

]

,

WΘa
(z) = I − 2iK∗(Ta − zI)−1KJa =

[

z−i
z+i

0

0 z−i
z+i

]

=
z − i

z + i
I.
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The corresponding impedance function is easily found using (16), (22), and (28)

(71)

VΘd
(z) = K∗(ReTd − zI)−1K =

[

− 1
z

0
0 − 1

z

]

= −1

z
I,

VΘm
(z) = K∗(ReTm − zI)−1K =

[

− 1
z

0
0 − 1

z

]

= −1

z
I,

VΘa
(z)K∗(ReTa − zI)−1K =

[

− 1
z

0
0 − 1

z

]

= −1

z
I.

As one can see VΘd
(z) = VΘm

(z) = VΘa
(z) for all z ∈ C±\{0}. Also, the c-entropies

Sd, Sm, and Sa of all three L-systems Θd, Θm, and Θa are found via (31), (35),
and (36), respectively, and are

(72) Sd = +∞, Sm = 0, Sa = −∞.

The corresponding dissipation/accumulation coefficients are (see (42)-(43))

(73) Dd = 1, Dm = 0, Aa = 1.

Example 2. Following the steps of Example 1 we let λ0 = 1 + i and consider
the linear operators Td, Tm, and Ta of the forms (9), (17), and (23). Then
(74)

Tdh =

[

1 + i 0
0 1 + i

]

h, Tmh =

[

1 + i 0
0 1− i

]

h, Tah =

[

1− i 0
0 1− i

]

,

where h =

[

h1

h2

]

∈ H2.

We are constructing three L-systems Θd, Θm, and Θa of the forms (14), (20),
and (26)

(75) Θd =

(

Td K Jd
H2 C2

)

, Θm =

(

Tm K Jm
H2 C2

)

, Θa =

(

Tm K Ja
H2 C2

)

,

where operators Td, Tm, Ta, Jd, Jm, Ja, and K are defined by (74), (66)–(68).
Using (15), (21), and (27) we have

(76)

WΘd
(z) = I − 2iK∗(Td − zI)−1KI =

[ 1−i−z
1+i−z

0

0 1+i+z
1−i+z

]

,

WΘm
(z) = I − 2iK∗(Tm − zI)−1KJm =

[ 1−i−z
1+i−z

0

0 1+i−z
1−i−z

]

,

WΘa
(z) = I − 2iK∗(Ta − zI)−1KJa =

[ 1+i−z
1−i−z

0

0 1−i+z
1+i+z

]

.

The corresponding impedance function is easily found using (16), (22), and (28)

(77)

VΘd
(z) = K∗(ReTd − zI)−1K =

[ 1
1−z

0

0 − 1
1+z

]

,

VΘm
(z) = K∗(ReTm − zI)−1K =

[ 1
1−z

0

0 1
1−z

]

=
1

1− z
I,

VΘa
(z)K∗(Re Ta − zI)−1K =

[ 1
1−z

0

0 − 1
1+z

]

.
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The c-entropies Sd, Sm, and Sa of all three L-systems Θd, Θm, and Θa are found
via (31), (35), and (36), respectively, and are

(78) Sd = ln 5, Sm = 0, Sa = − ln 5.

The corresponding dissipation/accumulation coefficients are (see (42)-(43))

(79) Dd = 1− e−2 ln 5 =
24

25
, Dm = 0, Aa = 1− e−2 ln 5 =

24

25
.
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