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In this paper we provide some additional results related to Krein’s resolvent
formula for a non-densely defined symmetric operator. We show that coeffi-
cients in Krein’s formula can be expressed in terms of analogues of the clas-
sical von Neumann formulas. The relationship between two Weyl-Tichmarsh
m-functions corresponding to self-adjoint extensions of a non-densely defined
symmetric operator is established.

1. INTRODUCTION

The goal of this paper is to provide additional results in connection with
Krein’s formula. In the recent paper by F. Gesztesy, K. Makarov, and
E. Tsekanovskii [11], the authors have revisited Krein’s formula associated
with self-adjoint extensions of a densely-defined symmetric operator. They
showed that the coefficients in Krein’s formula can be expressed in terms
of the classical von Neumann parametrization formulas.

In this paper, we extend the above-mentioned results to the case when the
original operator is not densely defined. The analogues of the von Neumann
formulas to the non-dense case, also known as Krasnoselskii’s formulas
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[13], take a form of indirect decompositions. Besides the Krasnoselskii
formulas there is another analogue of the von Neumann formulas obtained
by Yu. Arlinskii, Ju. S̆muljan, and E. Tsekanovskii [4], [21], where these
decompositions are direct.

In this note, we show that the coefficients of the Krein resolvent for-
mula can be expressed in terms of both indirect and direct analogues of
the von Neumann formulas mentioned above. In order to treat the direct
decomposition case, we introduce triplets of Hilbert spaces and associated
projection operators. The concept of the operator-valued Weyl-Tichmarsh
m-function is extended to the case of the non-densely defined operator and
its self-adjoint extensions. Here we show that, in the case of indirect de-
composition, this result resembles the case of a symmetric densely-defined
operator [11] unlike the direct decomposition case. We should mention that
the linear-fractional transformation between two m-functions for an oper-
ator with deficiency indices (1, 1) was studied in great detail by Aronszajn
[5] and Donoghue [9].

We conclude our discussion with two examples. In the first example, the
Hilbert space is finite dimensional, and consequently, the semi- deficiency
spaces are trivial. In the final example, the deficiency indices are (∞,∞),
but the semi-deficiency spaces are one-dimensional. The coefficient function
and its connections to the generalizations of the von Neumann formula are
explicitly calculated for both examples.

In this paper we follow the notation of [11].

2. PRELIMINARY RESULTS

In this section we recall some basic facts related to the theory of exten-
sions of linear operators with non-dense domain.

Let H denote a Hilbert space with inner product (x, y) and let B(H) be
the Banach space of bounded linear operators on H. Let Ȧ be a closed
linear symmetric operator ((Ȧx, y) = (x, Ȧy), ∀x, y ∈ D(Ȧ)), acting in the
Hilbert space H with generally speaking a non-dense domain D(Ȧ). Let
H0 = D(Ȧ), and Ȧ∗ be the adjoint to the operator Ȧ (we consider Ȧ acting
from H0 into H).

It is easy to see that for the symmetric operator Ȧ, D(Ȧ) ⊂ D(Ȧ∗), and
Ȧ∗y = PȦy (∀y ∈ D(Ȧ)), where P is an orthogonal projection of H onto
H0. We put

L := H�H0 Mλ := (Ȧ− λI)D(Ȧ) Nλ := (Mλ̄)⊥. (1)

The subspace Nλ is called a defect subspace of Ȧ for the point λ̄. The
cardinal number dimNλ remains constant when λ is in the upper half-
plane. Similarly, the number dimNλ remains constant when λ is in the
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lower half-plane. The numbers dimNλ and dimNλ̄ (Imλ < 0) are called
the defect numbers or deficiency indices of operator Ȧ [1]. The subspace
Nλ is the set of solutions of the equation Ȧ∗g = λPg and therefore can be
written as Nλ = ker(Ȧ∗−λP ). For further convenience, we will denote the
deficiency subspaces of Ȧ by N±, that is,

N± = ker(Ȧ∗ ∓ Pi). (2)

Let Pλ be the orthogonal projection onto Nλ, set

Bλ = PλL, N′
λ = Nλ �Bλ. (3)

It is easy to see that N′
λ = Nλ ∩ H0 and N′

λ is the set of solutions of the
equation Ȧ∗g = λg (see [21]), where Ȧ∗ : H → H0 is the adjoint operator
to Ȧ.

The subspace N′
λ is the defect subspace of the densely defined symmetric

operator PȦ on H0 ([21]). The numbers dimN′
λ and dimN′

λ̄ (Imλ < 0) are
called semi-defect numbers or the semi-deficiency indices of the operator Ȧ
[13]. As in (2), we set

N ′
± = ker(Ȧ∗ ∓ i). (4)

The von Neumann formula

D(Ȧ∗) = D(Ȧ) + Nλ + Nλ̄, (Imλ 6= 0), (5)

for a non-densely defined operator Ȧ continue to hold, but this decompo-
sition is not direct. There is another generalization of the von Neumann
formulas [4], [13], [21] to the case of a non-densely defined symmetric ope-
rator.

From now on we will require our symmetric operator Ȧ to have equal
deficiency indices, i.e., def(Ȧ) = (n, n), n ∈ N ∪ {∞}. It is known [13]
that in this case Ȧ admits self-adjoint extensions A (A∗ = A). Let A be
such an extension. Then Ȧ ⊂ A and PAx = Ȧ∗x (∀x ∈ D(A)). According
to [13], an operator U (D(U) ⊆ Ni, R(U) ⊆ N−i) is called an admissible
operator if (U − I)fi ∈ D(Ȧ), fi ∈ D(U) implies that fi = 0. Then
(see [13]) any symmetric extension A of the non-densely defined closed
symmetric operator Ȧ, is defined by an isometric admissible operator U ,
with D(U) ⊆ N+, and R(U) ⊆ N− by the formula

Af = ȦfȦ + (−ifi − iUfi), f ∈ D(A), fȦ ∈ D(Ȧ), fi ∈ N+, (6)

where

D(A) = D(Ȧ) u (I − U)D(U). (7)
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The operator A is self-adjoint if and only if D(U) = N+ and R(U) = N−.
The last two equations is a generalization of the von Neumann formula to
the case of non-densely defined operator Ȧ obtained by M. Krasnoselskii
[13].

We call two self-adjoint extensions A1 and A2 of Ȧ relatively prime if
D(A1)∩D(A2) = D(Ȧ). (In this case we shall also say that A1 and A2 are
relatively prime w.r.t. Ȧ). Let A1 and A2 be two distinct self-adjoint exten-
sions of Ȧ. The basic result on Krein’s formula for the case of symmetric
(densely defined) operator Ȧ with finite deficiency indices, as presented by
Akhiezer and Glazman [1], then reads as follows.

Theorem 2.1. (Krein’s formula, [1])
There exists a P1,2(z) = (P1,2,j,k(z))1≤j,k≤n ∈ Mn(C), z ∈ ρ(A2) ∩ ρ(A1),
such that

det(P1,2(z)) 6= 0, z ∈ ρ(A2) ∩ ρ(A1), (8)

P1,2(z)−1 = P1,2(z0)−1 + (z − z0)
(

u1,k(z0), u1,j(z̄)
)

, z, z0 ∈ ρ(A1), (9)

(A2 − z)−1 = (A1 − z)−1 −
n

∑

j,k=1

P1,2,j,k(z)
(

· , u1,k(z̄)
)

u1,j(z). (10)

where {u1,j(z)}1≤j≤n is a basis for Nz.

Reference [11] presents coefficients in the Krein formula for the case of
a densely defined symmetric operator with deficiency n ∈ N ∪ {∞}. The
non-dense version for the coefficients in Krein’s formula is given below in
Theorem 4.1.

The literature on Krein’s formula is very extensive. For a treatment of
applications of the Krein’s formula we refer to [2], [3], [18].

3. CAYLEY TRANSFORM AND THE FUNCTION P1,2(Z)

For any self-adjoint extension A of Ȧ inH we introduce its unitary Cayley
transform CA by

CA = (A + i)(A− i)−1. (11)

The following lemma is a modification of the similar result in [11] for the
non-dense case.

Lemma 3.1. Let A, A1, and A2 be self-adjoint extensions of Ȧ. Then
(i). The Cayley transform of A maps N− onto N+

CAN− = N+. (12)
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(ii). D(A) = D(Ȧ)+̇(I − C−1
A )N+.

(iii). N+ is an invariant subspace for CA1C
−1
A2

and CA2C
−1
A1

.
(iv). Suppose A1 and A2 are relatively prime w.r.t. Ȧ. Then

ran((A2 − i)−1 − (A1 − i)−1) = N+, (13)

ker(((A2 − i)−1 − (A1 − i)−1)
∣

∣

N−
) = {0}. (14)

Proof. A proof of (i), (iii), and (iv) can be replicated from the proof
of the relevant lemma in [11] with some minor adjustments. Therefore we
only prove (ii).

(ii). By (7),

D(A) = D(Ȧ) u (I − UA)N+. (15)

for some admissible isometric operator UA : N+ → N−. The inverse Cayley
transform,

C−1
A = (A− i)(A + i)−1,

is obviously an admissible operator in the above mentioned sense. Indeed,
a direct check shows that C−1

A f = f implies f = 0 for any f ∈ H. Also,
since I −C−1

A = 2i(A + i)−1, (I − C−1
A )N+ = 2i(A + i)−1N+ ⊆ D(A), one

concludes

UA = C−1
A

∣

∣

N+
. (16)

Next, assuming A`, ` = 1, 2 to be self-adjoint extensions of Ȧ and follow-
ing [11], we define

P1,2(z) = (A1 − z)(A1 − i)−1((A2 − z)−1 − (A1 − z)−1)(A1 − z)(A1 + i)−1,

(17)

z ∈ ρ(A1) ∩ ρ(A2).

The following properties of P1,2(z) are needed.

Lemma 3.2. [11] Let z, z′ ∈ ρ(A1) ∩ ρ(A2).
(i). P1,2 : ρ(A1) ∩ ρ(A2) → B(H) is analytic and

P1,2(z)∗ = P1,2(z̄). (18)
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(ii).

P1,2(z)
∣

∣

N⊥
+

= 0, P1,2(z)N+ ⊆ N+. (19)

(iii).

P1,2(z) = P1,2(z′)

+ (z − z′)P1,2(z′)(A1 + i)(A1 − z′)−1(A1 − i)(A1 − z)−1P1,2(z).
(20)

(iv). ran(P1,2(z)
∣

∣

N+
) is independent of z ∈ ρ(A1) ∩ ρ(A2).

(v). Assume A1 and A2 are relatively prime self-adjoint extensions of Ȧ.
Then P1,2(z)

∣

∣

N+
: N+ → N+ is invertible (i.e., one-to-one).

(vi). Assume A1 and A2 are relatively prime self-adjoint extensions of Ȧ.
Then

ran(P1,2(i)) = N+. (21)

(vii).

P1,2(i)
∣

∣

N+
= (i/2)(I − CA2C

−1
A1

)
∣

∣

N+
. (22)

Next, let

CA2C
−1
A1

∣

∣

N+
= −e−2iα1,2 (23)

for some self-adjoint (possibly unbounded) operator α1,2 in N+. If A1 and
A2 are relatively prime, then

{(m + 1
2 )π}m∈Z ∩ σp(α1,2) = ∅ (24)

and

(P1,2(i)
∣

∣

N+
)−1 = tan(α1,2)− iIN+ . (25)

In addition, tan(α1,2) ∈ B(N+) if and only if ran(P1,2(i)) = N+.

Proof.
(i) is clear from (17).

(ii). Let f ∈ D(Ȧ), g = (Ȧ + i)f . Then

P1,2(z)g = (A1 − z)(A1 − i)−1((A2 − z)−1 − (A1 − z)−1)(Ȧ− z)f = 0
(26)
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yields P1,2(z)
∣

∣

ran(Ȧ+i) = 0 and hence P1,2(z)
∣

∣

ran(Ȧ+i)
= P1,2(z)

∣

∣

N⊥
+

= 0

since P1,2(z) ∈ B(H). Moreover, by (17)

ran(P1,2(z)) ⊆ (A1 − z)(A1 − i)−1 ker(Ȧ∗ − Pz) ⊆ ker(Ȧ∗ − Pi) = N+

(27)

since

(Ȧ∗ − Pi)(A1 − z)(A1 − i)−1
∣

∣

ker(Ȧ∗−Pz)

= (Ȧ∗ − Pi)(I − (z − i)(A1 − i)−1)
∣

∣

ker(Ȧ∗−Pz)

= (Ȧ∗ − Pz + Pz − Pi− (z − i)(Ȧ∗ − Pi)(A1 − i)−1)
∣

∣

ker(Ȧ∗−Pz)

= (P (z − i)I − (z − i)(PȦ∗ − Pi)(A1 − i)−1)
∣

∣

ker(Ȧ∗−Pz) = 0. (28)

This proves (19).
Items (iii)– (vi) are proved in [11].

4. WEYL-TICHMARSH OPERATOR AND KREIN’S
FORMULA

Here we define the Weyl-Tichmarsh operators associated with self-adjoint
extensions of Ȧ.

Definition 4.1. Let A be a self-adjoint extension of Ȧ, N ⊆ N+ a
closed linear subspace of N+ = ker(Ȧ∗−Pi), and z ∈ ρ(A). Then the Weyl-
Tichmarsh operator MA,N (z) ∈ B(N ) associated with the pair (A,N ) is
defined by

MA,N (z) = PN (zA + I)(A− z)−1
∣

∣

N = zIN + (1 + z2)PN (A− z)−1
∣

∣

N ,
(29)

with PN the orthogonal projection in H onto N .

We need the following lemma and theorem that are modified versions
of the corresponding results from [11].

Lemma 4.1. [11] Let A`, ` = 1, 2 be relatively prime self-adjoint exten-
sions of Ȧ. Then

(P1,2(z)
∣

∣

N+
)−1 = (P1,2(i)

∣

∣

N+
)−1 − (z − i)PN+(A1 + i)(A1 − z)−1PN+

(30)

= tan(α1,2)−MA1,N+(z), z ∈ ρ(A1). (31)
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The theorem below gives Krein’s formula in terms of Weyl-Tichmarsh
operator-function.

Theorem 4.1. (see [11]) Let A1 and A2 be self-adjoint extensions of Ȧ
and z ∈ ρ(A1) ∩ ρ(A2). Then

(A2 − z)−1 = (A1 − z)−1 + (A1 − i)(A1 − z)−1P1,2(z)(A1 + i)(A1 − z)−1

(32)

= (A1 − z)−1 + (A1 − i)(A1 − z)−1PN1,2,+

× (tan(αN1,2,+)−MA1,N1,2,+(z))−1PN1,2,+(A1 + i)(A1 − z)−1,
(33)

where

N1,2,+ = ker((A1
∣

∣

D(A1)∩D(A2)
)∗ − P1i), (34)

P1 is orthoprojection onto D(A1) ∩ D(A2), and

e−2iαN1,2,+ = −CA2C
−1
A1

∣

∣

N1,2,+
. (35)

Proof. If A1 and A2 are relatively prime w.r.t. Ȧ, then P1 = P and Lem-
mas 3.1, 3.2, and 4.1 prove (32)–(35). If A1 and A2 are arbitrary self-adjoint
extensions of Ȧ one replaces Ȧ by the largest common symmetric part of A1

and A2 given by A1
∣

∣

D(A1)∩D(A2)
.

We should note that when operator Ȧ is densely defined, the orthoprojec-
tion operator P in (35) is identity. In this case the above theorem matches
the corresponding result from [11].

Corollary 4.1.

P1,2(i)
∣

∣

N1,2,+
= (i/2)(I − U−1

A2
UA1)

∣

∣

N1,2,+
, (36)

where

UA` = C−1
A`

∣

∣

N+
, ` = 1, 2 (37)

denotes the linear isometric isomorphism from N+ onto N− parametrizing
the self-adjoint extensions A` of Ȧ.

Proof. Combine (15), (16), and (22).
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Now we present the linear fractional transformation relating the Weyl-
Tichmarsh operators MA`,N1,2,+ associated with two self-adjoint extensions
A`, (` = 1, 2), of Ȧ. Even though the opeator Ȧ is not densely defined, the
theorem below and its proof formally resembles the corresponding result in
[11].

Theorem 4.2. [11] Suppose A1 and A2 are self-adjoint extensions of
Ȧ and z ∈ ρ(A1) ∩ ρ(A2). Then

MA2,N+(z) = (P1,2(i)
∣

∣

N+
+ (IN+ + iP1,2(i)

∣

∣

N+
)MA1,N+(z))

× ((IN+ + iP1,2(i)
∣

∣

N+
)− P1,2(i)

∣

∣

N+
MA1,N+(z))−1, (38)

= e−iα1,2(cos(α1,2) + sin(α1,2)MA1,N+(z))

× (sin(α1,2)− cos(α1,2)MA1,N+(z))−1eiα1,2 , (39)

where

e−2iα1,2 = −CA2C
−1
A1

∣

∣

N+
, (40)

P1,2(i)
∣

∣

N+
= (i/2)(I − CA2C

−1
A1

)
∣

∣

N+
, (41)

IN+ + iP1,2(i)
∣

∣

N+
= (1/2)(I + CA2C

−1
A1

)
∣

∣

N+
. (42)

5. RIGGED HILBERT SPACES AND ANALOGUES OF THE
VON NEUMANN FORMULAS

In this section we are going to equip our Hilbert space H with spaces
H+ and H− called spaces with positive and negative norms, respectively
[8]. We introduce a new Hilbert space H+ = D(Ȧ∗) ((D(Ȧ∗) = H) with
inner product

(f, g)+ = (f, g) + (Ȧ∗f, Ȧ∗g) (f, g ∈ H+), (43)

and then construct the rigged Hilbert space H+ ⊂ H ⊂ H−. HereH− is the
space of all linear functionals over H+ that are continuous with respect to
‖·‖+. The norms of these spaces are connected by the relations ‖x‖ ≤ ‖x‖+
(x ∈ H+), and ‖x‖− ≤ ‖x‖ (x ∈ H). It is well known that there exists an
isometric operator R which maps H− onto H+ such that

(x, y)− = (x,Ry) = (Rx, y) = (Rx,Ry)+ (x, y ∈ H−),

(u, v)+ = (u,R−1v) = (R−1u, v) = (R−1u,R−1v)− (u, v ∈ H+).
(44)
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The operator R will be called the Riesz-Berezanskii operator. In what
follows we use symbols (+), (·), and (−) to indicate the norms ‖ · ‖+, ‖ · ‖,
and ‖ · ‖− by which geometrical and topological concepts are defined in
H+, H, and H−.

We call an operator Ȧ regular, if PȦ is a closed operator inH0. Obviously
any densely defined closed symmetric operator is regular. For a regular
operator Ȧ we have

H+ = D(Ȧ) + N′
λ + N′

λ̄ + N, (Imλ 6= 0) (45)

where N := RL. This is a generalization of von Neumann’s formula. For
λ = ±i we obtain the (+)-orthogonal decomposition

H+ = D(Ȧ)⊕N′
i ⊕N′

−i ⊕N. (46)

By P+
M we denote the orthogonal projection in H+ onto M = N′

i⊕N′
−i⊕N.

It was shown in [4] that operator P+
M maps the space N±i with (·)-metrics

bijectively and homeomorphically onto N⊕N′
±i. Thus the inverse operator

(

P+
M

)−1
exists.

Let Ã be a closed symmetric extension of the operator Ȧ. Then D(Ã) ⊂
H+ and PÃx = Ȧ∗x (∀x ∈ D(Ã)). Operator Ã is regular if PÃ is closed.
According to [21], regularity of a closed symmetric extension Ã is equivalent
to D(Ã) being (+)-closed.

Let us now denote by P+
N , the orthogonal projection operator from H+

onto N. We introduce a new inner product (·, ·)1 defined by

(f, g)1 = (f, g)+ + (P+
Nf, P+

Ng)+ (47)

for all f, g ∈ H+. The obvious inequality

‖f‖2+ ≤ ‖f‖21 ≤ 2‖f‖2+

shows that the norms ‖ · ‖+ and ‖ · ‖1 are topologically equivalent. It
is easy to see that the spaces D(A), N′

i, N′
−i, N are (1)-orthogonal. We

write M1 for the Hilbert space M = N′
i ⊕ N′

−i ⊕ N with inner product
(f, g)1. We denote by H+1 the space H+ with norm ‖ · ‖1, and by R1

the corresponding Riesz-Berezanskii operator related to the rigged Hilbert
space H+1 ⊂ H ⊂ H−1. The following theorem gives a characterization of
the regular extensions for a regular closed symmetric operator Ȧ (see [4]).

Theorem 5.1. [4], [21] I. For each closed symmetric extension Ã of a
regular operator Ȧ there exists a (1)-isometric operator V = V (Ã) on M1
with the properties: a) D(V ) is (+)-closed and belongs to N⊕N′

i, R(V ) ⊂
N⊕N′

−i; b) V h = h only for h = 0, and D(Ã) = D(Ȧ)⊕ (I + V )D(V ).
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Conversely, for each (1)-isometric operator V with the properties a) and
b) there exists a closed symmetric extension Ã in the sense indicated.

II. The extension Ã is regular if and only if the manifold R(I + V ) is
(1)-closed.

III. The operator Ã is self-adjoint if and only if D(V ) = N⊕N′
i, R(V ) =

N⊕N′
−i.

An operator V that is described in the theorem 5.1 is related to operator
U in (6)-(7) by the formula

V P+
Mg = P+

M Ug, g ∈ Ni. (48)

Now let A1 and A2 be relatively prime self-adjoint extensions of Ȧ. Ac-
cording to theorem 5.1 there are two (1)-isometric operators VA1 and VA2

associated with operators A1 and A2 respectively. By (48) we have

VA1P
+
Mg = P+

M UA1g, VA2P
+
Mg = P+

M UA2g, g ∈ Ni. (49)

Consider operator V−1
A2
VA1 : N⊕N′

i → N⊕N′
i. It is easy to see that this

operator is unitary and

V−1
A2
VA1 = P+

M U−1
A2
UA1

(

P+
M

)−1
. (50)

Consequently there exists a self-adjoint operator β1,2 in N⊕N′
i such that

V−1
A2
VA1 = −e−2iβ1,2 . (51)

Combining (40), (50), and (51) we get

e−2iα1,2 =
(

P+
M

)−1
e−2iβ1,2P+

M. (52)

Similar relationships can be obtained between sin, cos, and tan of opera-
tors α1,2 and β1,2, respectively. These relationships will allow us to relate
Krein’s formula and analogues of the von Neumann parametrization (46)
for the non-dense case. In particular we have

P1,2(i)
∣

∣

N1,2,+
= (i/2)

(

I −
(

P+
M

)−1 V−1
A2
VA1P

+
M

)

∣

∣

N1,2,+
, (53)

and theorem 4.1 can be re-written in the following form

Theorem 5.2. Let A1 and A2 be self-adjoint extensions of Ȧ and z ∈
ρ(A1) ∩ ρ(A2). Then

(A2 − z)−1 = (A1 − z)−1 + (A1 − i)(A1 − z)−1PN1,2,+

× (
(

P+
M

)−1
tan(βN1,2,+)P+

M −MA1,N1,2,+(z))−1PN1,2,+(A1 + i)(A1 − z)−1,
(54)
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where

N1,2,+ = ker((A1
∣

∣

D(A1)∩D(A2)
)∗ − P1i), (55)

P1 is orthoprojection onto D(A1) ∩ D(A2), and

e−2iβN1,2,+ = −V−1
A2
VA1

∣

∣

N1,2,+
. (56)

The theorem describing the relationship between functions MA1(z) and
MA2(z) can be given now in terms of the operator β1,2. In particular,
theorem 4.2 now takes the following form:

Theorem 5.3. Suppose A1 and A2 are self-adjoint extensions of Ȧ and
z ∈ ρ(A1) ∩ ρ(A2). Then

MA2,N+(z) =
(

P+
M

)−1
e−iβ1,2

[

cos(β1,2)P+
M + sin(β1,2)P+

MMA1,N+(z)
]

×
[

sin(β1,2)P+
M − cos(β1,2)P+

MMA1,N+(z)
]−1

eiβ1,2P+
M, (57)

where e−2iβ1,2 is defined by ( 56).

6. EXAMPLES

Example 6.1. Let H = C 3. We define operator Ȧ as follows

Ȧ =





1 0 0
0 0 i
0 −i 0



 (58)

with D(Ȧ) = {~x ∈ C 3 | ~x = (x1, x2, 0)}. If we consider operator Ȧ as
acting from C 2 into C 3 then its adjoint is

Ȧ∗ =





1 0 0
0 0 i
0 0 0



 (59)

defined on entire C 3. It is easy to see that (Ȧx, y) = (x, Ȧ∗y) for all
x ∈ D(Ȧ) and y ∈ C 3. An orthoprojection P : C 3 → C 2 then takes the
form

P =





1 0 0
0 1 0
0 0 0



 . (60)
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Next, we introduce two self-adjoint extensions of Ȧ

A1 =





1 0 0
0 0 i
0 −i a



 , A2 =





1 0 0
0 0 i
0 −i b



 , (61)

where a and b are two real numbers and a > b. One can verify that A1 and
A2 are relatively prime iff a 6= b. Deficiency spaces N± = ker(Ȧ∗∓Pi) are
one dimensional subspaces of C 3

N+ = {~z ∈ C 3 | ~z = (0, z, z)} (62)

and

N− = {~z ∈ C 3 | ~z = (0,−z, z)}, (63)

respectively. Hence def(Ȧ) = (1, 1). It is easy to see now that semi-
deficiency subspaces of Ȧ are trivial. Therefore if H is equipped as a
rigged triplet the projection operator P+

M acts as the identity mapping
on N making (52) trivial.

The Cayley transform CA1 of the self-adjoint extension A1, for example,
is

CA1 = (A + i)(A− i)−1 =
1

a− 2i





2 + ai 0 0
0 −a 2i
0 −2i a



 (64)

Its inverse is given by

C−1
A1

=
1

a + 2i





2− ai 0 0
0 −a 2i
0 −2i a



 .

A direct check shows that CA1 : N− = N+ and that CA2C
−1
A1

: N+ = N+,
where

CA2C
−1
A1

=
1

(a + 2i)(b− 2i)





(2− ai)(2 + bi) 0 0
0 4 + ab 2(a− b)i
0 2(a− b)i 4 + ab



 .

(65)

Now we can evaluate −e−2iβ1,2 = CA2C
−1
A1

∣

∣

N+
. Simple calculations show

that for any z ∈ N+

−e−2iβ1,2z = χz,



14 SERGEY BELYI, GOVIND MENON, AND EDUARD TSEKANOVSKII

where

χ =
(4 + a b)− 2 (a− b)i
(4 + ab) + 2(a− b)i

. (66)

It is easy to see now that

1 ∈ σp(CA1C
−1
A2

∣

∣

N+
),

iff χ = 1 which can happen only when a = b. This confirms that A1 and
A2 are relatively prime iff a 6= b.

Furthermore,

tan β1,2 =
χ + 1
χ− 1

i =
4 + ab

2(a− b)
. (67)

The left-hand side of the Krein formula reads

(A2 − zI)−1 − (A1 − zI)−1 =
a− b

(z2 − bz − 1)(z2 − az − 1)





0 0 0
0 1 zi
0 −zi z2



 .

(68)

In particular,

(A2 − iI)−1 − (A1 − iI)−1 =
a− b

(2 + ai)(2 + bi)





0 0 0
0 1 −1
0 1 −1



 , (69)

which immediately confirms (13). Function P1,2(z) now has a form

P1,2(z) =
(a− b)(z2 − az − 1)
(4 + a2)(z2 − bz − 1)





0 0 0
0 1 1
0 1 1



 , (70)

where

P1,2(i) =
(a− b)

(2− ai)(2 + bi)





0 0 0
0 1 1
0 1 1



 . (71)

For any ~z ∈ N+,

P1,2(i)~z = 2
(a− b)

(2− ai)(2 + bi)
~z,
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and one easily checks that

(

P1,2(i)
∣

∣

N+

)−1
= (tan β1,2 − iI)

∣

∣

N+
=

(2− ai)(2 + bi)
2(a− b)

. (72)

The functions MA1,N+(z) and MA2,N+(z) are

MA1,N+(z) =
az2 + 4z − a
−4z2 + 4az + 4





0 0 0
0 1 1
0 1 1



 , (73)

and

MA2,N+(z) =
bz2 + 4z − b
−4z2 + 4bz + 4





0 0 0
0 1 1
0 1 1



 . (74)

In order to verify (38) we notice that

sin β1,2 =
4 + ab√

a2 + 4
√

b2 + 4
, cosβ1,2 =

2(a− b)√
a2 + 4

√
b2 + 4

. (75)

and the right-hand side of (57) exactly matches (74).

Example 6.2. Let H = L2((0,∞); dx) and

−∇2 = − d2

dx2 . (76)

Let

D =
{

g ∈ L2
((0,∞);dx) | g, g′ ∈ ACloc((0,∞)), g(x) ≡ 0,∀x ∈ (0, 1],

g′(1+) = 0
}

, (77)

and

H0 = D = {g ∈ L2((0,∞); dx)
∣

∣ g(x) ≡ 0, ∀x ∈ (0, 1]}. (78)

It is easy to verify that

B := H�H0 = {g ∈ L2((0,∞); dx) | g(x)
a.e.≡ 0, ∀x ∈ [1, +∞)}. (79)

We define an operator Ȧ : H0 → H = H0 ⊕B on D(Ȧ) as

Ȧ =
[

−∇2 0
0 0

]

, where D(Ȧ) =
{[

g
0

]

∣

∣

∣ g ∈ D
}

. (80)
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Then Ȧ∗ : H0 ⊕B → H0 is given by

Ȧ∗ =
[

−∇2 0
0 0

]

(81)

with

D(Ȧ∗) =
{[

g0
gb

]

∣

∣

∣ g0 ∈ H0, gb ∈ B, g0, g′0 ∈ ACloc(1,∞),

gb, g′b ∈ ACloc(0, 1)} . (82)

A projection operator P : H = H0 ⊕B → H0 is defined as follows

P =
[

IH0 0
0 0

]

. (83)

Now one can verify that the semideficiency subspace

N ′
z = ker(Ȧ∗ − z),

is the set of functions g(x) ∈ D(Ȧ∗) such that

g(x) =
[

cei
√

zx

0

]

, c ∈ C. (84)

Similarly the deficiency space

Nz = ker(Ȧ∗ − Pz)

contains all the functions g(x) = g0(x) + gb(x), (g0(x) ∈ H0, gb(x) ∈ B)
from D(Ȧ∗) such that

g(x) =
[

cei
√

zx

gb(x)

]

, c ∈ C. (85)

So we conclude that def(Ȧ) = (∞,∞).
Now let A be an arbitrary self-adjoint extension of Ȧ. The formula for

the resolvent of A can be found as a solution of the differential equation

(A− λI)y(x) = f(x)

that belongs to L2((0,∞); dx). If f(x) = f0(x) + fb(x), (f0(x) ∈ H0,
fb(x) ∈ B) then
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y(x) = (A− λI)−1f(x) = (A− λI)−1
[

f0(x)
fb(x)

]

(86)

=







C1ei
√

λx + i
2
√

λ
Φ0

C2ei
√

λx + C3e−i
√

λx + i
2
√

λ
ΦB





 (87)

where

Φ0 = ei
√

λx

x
∫

1

f0(t)e−i
√

λt dt + e−i
√

λx

∞
∫

x

f0(t)ei
√

λt dt,

and

ΦB = ei
√

λx

x
∫

0

fb(t)e−i
√

λt dt + e−i
√

λx

1
∫

x

fb(t)ei
√

λt dt.

We should note that the values of the constants {C1, C2, C3} depend on
the function f(t) and λ. Now we introduce two self-adjoint extensions A1

and A2 of Ȧ

A1 = A2 =
[

−∇2 0
0 −∇2

]

,

with

D(A1) =
{[

g0

gb

]

∈ D(Ȧ∗)
∣

∣

∣ gb(0+) = 0, gb(1−) = g′b(1−), g0(1+) = 0
}

,

(88)

D(A2) =
{[

g0

gb

]

∈ D(Ȧ∗)
∣

∣

∣ gb(0+) = 0, gb(1−) = g′b(1−), g0(1+) = g′0(1+)
}

(89)

These extensions are not relatively prime. One can see that their maxi-
mal symmetric part is wider than Ȧ and is a symmetric densely defined
operator in H. Using the initial conditions one can find a set of constants
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{C1, C2, C3} for each extension. Straightforward calculations then yield

(

(A2 − zI)−1 − (A1 − zI)−1)f(x) =
ie−2i

√
z

i +
√

z
P

∞
∫

1

f0(x) ei
√

zx dx · ei
√

zx

=
ie−2i

√
z

i +
√

z
P

(

f0(x), ei
√

zx
)

ei
√

zx.

(90)

We should mention that the self-adjoint extensions A1 and A2 are selected
such that the function P12(z) is zero on entire subspace B. Similarly, for
f(x) = f0(x) + fb(x)

P12(z)f(x) = P12(z)(f0(x) + fb(x)) = P12(z)f0(x).

Let us write N+ as follows

N+ = N ′
+ ⊕NB

+ ,

where NB
+ is an orthogonal complement to N ′

+ in N+. It can be seen
that both N ′

+ and NB
+ are invariant w.r.t. the Weyl-Tichmarsh functions

MA1,N+(z) and MA2,N+(z). Consequently we write

MAk,N+(z) =

[

MAk,N ′
+
(z) 0

0 MAk,NB
+

(z)

]

, (k = 1, 2) (91)

The main goal of this example is to illustrate Theorem 4.2. We note that
the self-adjoint extensions A1 and A2 are constructed in a such a way that
MA1,NB

+
(z) = MA2,NB

+
(z). Consequently, P1,2(i)

∣

∣

NB
+

= 0 and formula (38)

trivially holds for an arbitrary gb(x) ∈ NB
+ . Thus we need to concentrate

only on H0 component of N+ which is in fact N ′
+.

In order to proceed we are going to use (86) to derive the formula for
CA

∣

∣

N ′
−

: N ′
− → N ′

+, where

CA = (A + i)(A− i)−1,

is a Cayley transform of a self-adjoint extension of operator Ȧ. This yields

CA[ei
√
−ix] =

(

2iC1 +

√

i
2

e−
√

2i

)

ei
√

ix, (92)
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where C1 is defined by (86)-(89). Therefore, to compute

CA2C
−1
A1

∣

∣

∣

N ′
+

= U−1
2 U1

∣

∣

∣

N ′
+

= −e−2iα1,2

∣

∣

∣

N ′
+

we use (92) with appropriate values for C1 determined by the initial con-
ditions in (88)-(89) for each of the extensions A1 and A2. Consequently

CA2C
−1
A1

[ei
√

ix] =
1 + i√

2
ei
√

ix, (93)

and α1,2 = 3π/8. Performing straightforward though tedious calculations
we find that

P12(z)
∣

∣

∣

N ′
+

=
i√

2(
√

z + i)
, (94)

and

P12(i)
∣

∣

∣

N ′
+

=
1 + (

√
2− 1)i

2
√

2
. (95)

Computing the two functions MA1,N ′
+
(z) and MA2,N ′

+
(z) using the defini-

tion (29), we get

MA1,N ′
+
(z) = 1 +

√
2z i, (96)

and

MA2,N ′
+
(z) =

(
√

2 + 1)(i−
√

z)
(
√

z + i)
. (97)

Now one can easily verify the result of Theorem 4.2.
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55–91.
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