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SEPPO HASSI





V

FOREWORD

With this Festschrift we celebrate the sixtieth birthday of our friend and colleague Professor
Seppo Hassi of the University of Vaasa. It consists of papers written by colleagues outside
Vaasa, who have been coauthors of Seppo, as well as by colleagues from Vaasa. Although
many friends and colleagues have known and worked with Seppo for a long time, quite
a few people answered in disbelief "What? Seppo 60?" when first approached about this
project.

This collection of essays shows our appreciation of Seppo as a friend and as a colleague.
From early on, his main activities have been in the branches of mathematics, known as
operator theory and spectral theory, although his interests are much broader. Almost all
of the included essays reflect these interests. Unfortunately, due to the consequences of
the global pandemic some contributions could not be submitted in time to be part of our
collection.

It is our pleasure to thank all the authors, both for contributing their work to this volume
and for their readiness to respond to our questions and suggestions. Furthermore, we are
grateful to Heinz Langer, Kenneth Nordström, Seppo Pynnönen, and Franek Szafraniec for
answering our queries concerning several points about the past and present of the person
to whom this volume is dedicated. Finally, our thanks go to the staff at the University of
Vaasa, in particular to Riikka Kalmi, for their efficient production of this collection.

Groningen and Vaasa, April 2021

Henk de Snoo and Rudi Wietsma
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SEPPO HASSI, 60 YEARS

Seppo Ortamo Hassi was born on July 2, 1961, in Hyvinkää in southern Finland. He re-
ceived his secondary school education in Pori, located on the western coast of Finland, and
in 1980 he went to the University of Helsinki to be a student in mathematics. There Seppo
obtained his master’s degree in 1984. He would stay at the university and eventually in 1985
became an assistant in the Department of Statistics (which was located at Yliopistonkatu,
while the Department of Mathematics was located at Alexanterinkatu, a geographical gap).

The leading people in the statistics department were Hannu Niemi (a student of Louhivaara,
whom we will meet below) and Seppo Mustonen. Mustonen somehow awakened Seppo’s
interest in singular values and canonical representations of operators. This eventually led
to the dissertation A singular value decomposition of matrices in a space with an indefi-
nite scalar product, with Ilppo Simo Louhivaara (1927 - 2008)† as adviser. This thesis in
mathematics was approved by the University of Helsinki on January 31, 1991, at the time
that Seppo served in the Finnish army (between August 1990 and April 1991). The oppo-
nent at the defence was Heinz Langer (originally from Dresden); Langer had first visited
Louhivaara in Jyväskylä in 1969 and had been a frequent guest ever since.

Prior to finishing his dissertation, Seppo had been invited to participate in the Schur Analysis
meeting (October 16 - October 20, 1989) at the Karl Marx Universität in Leipzig, Deutsche
Demokratische Republik, organized by Bernd Kirstein and Bernd Fritzsche. This seminar
brought together many people from East and West. It took place in the middle of the peace-
ful protests against the communist regime that had been going on in Leipzig for some time.
Loudspeakers in empty streets would advise the public not to follow the protesting crowds:
"They are misguided." On November 9, shortly after the conference, the Berlin wall came
down. At the beginning of the conference it turned out that Heinz Langer had left the
country and at its closing it was announced that the great mathematician Mark Grigorievich
Kreı̆n (1907-1989) had died. One of the people present from the East was Yury L’vovich
Smul’yan (1927-1990), whose work played an important role in Seppo’s dissertation and in
his later articles.

With the dissertation completed, Seppo started some joint work with his colleague Ken-
neth Nordström, who was also an assistant in the Department of Statistics. Their interest
focussed on antitonicity properties of operators and projections in indefinite inner prod-
uct spaces. In the meantime Heinz Langer had obtained a professorship at the Technische
Universität Wien in 1991. He invited Seppo to spend some weeks in Vienna in 1992 at
the same time that Henk de Snoo from Groningen was also visiting. During that period
Langer’s Dutch and Finnish visitors started to work together, which led to many mutual

†Louhivaara had been one of the many students of Rolf Herman Nevanlinna (1895-1980). He was also interested
in extension theory and indefinite metrics, like his contemporary fellow students Yrjö Kilpi (1924-2010) and
Erkki Pesonen (1930-2006). Louhivaara had been a professor of mathematics at the universities in Helsinki
and Jyväskylä, before moving to the Freie Universität Berlin.
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visits to Holland and Finland over the years, up till the present day. It was during a num-
ber of subsequent conferences in or visits to Vienna, Pula, Timisoara, Warsaw, Krakow,
and Budapest that it was possible to meet old and new acquaintances and lay foundations
for future work. It is appropriate to mention in this context Michael Kaltenbäck, Harald
Woracek, Henrik Winkler, Andreas Fleige, Franek Szafraniec, Zoltán Sebestyén (thanks
to Jan Stochel), Jean-Philippe Labrousse, and last, but not least, Yury Arlinskiı̆, Vladimir
Derkach, and Mark Malamud. A sabbatical visit to Groningen and Berlin in the academic
year 2000-2001 made it possible to meet the group around Karl-Heinz Förster of the Tech-
nische Universität Berlin, which consisted of Peter Jonas and Peter’s students Carsten Trunk
and Jussi Behrndt. Peter Jonas was from East Berlin and had come to the Technische Uni-
versität via Ilppo Simo Louhivaara at the Freie Universität. Seppo’s visit led to fruitful
contacts; also the later December conferences in Berlin were very productive.

Seppo would remain at the Department of Statistics in Helsinki until 2001; in the mean-
time he had been formally named docent at the Department of Mathematics of the same
university. In November-December 2000 there had been a longer visit to Manfred Möller
at the University of Witwatersrand in South Africa and it was there that Seppo found out
that the University of Vaasa was interested in his person. He obtained a professorship at
that university in the spring of 2001. Seppo settled down in Vaasa during the summer and
took up the usual teaching and administrative tasks. In the following years the number of
coworkers increased with, for instance, Annemarie Luger, Adrian Sandovici, Sergey Belyi,
Eduard Tsekanovskiı̆, and Sergii Kużel. As a consequence there has been a regular stream
of visitors (all of whom think with a certain melancholy of the old wooden guestrooms
of the University of Vaasa). In May 2003 Seppo was the organizer of an Operator Theory
Symposium and, a little later, in 2005 he was one of the organizers of the Algorithmic Infor-
mation Theory Conference, see Acta Wasaensia 124, 2005. Moreover, Seppo was one of the
organizers of the conferences "Boundary relations" and "Operator realizations of analytic
functions" at the Lorentz Center in Leiden in 2009 and 2013, respectively.

The main mathematical interest of Seppo circles around the topics of spectral theory, bound-
ary value problems for differential equations, operator theory and its applications in analy-
sis, mathematical physics, and system theory. This keeps him going with great dedication.
In particular, right from the beginning Seppo looked into situations involving indefinite in-
ner product spaces and this interest also led to several doctoral students, Rudi Wietsma,
Dmytro Baidiuk, and Lassi Lilleberg, writing a dissertation on this topic under his direc-
tion. Being a rather prolific writer himself, he is furthermore an editor for a number of
mathematical journals.

When Seppo first arrived in Vaasa he belonged to the Department of Mathematics and Statis-
tics. As the century progresses, so does the university. Seppo now belongs to the School of
Technology and Innovations, where he is the leader of the Mathematics and Statistics Re-
search Group. He is also head of the Doctoral Programme in Technical Sciences. Moreover,
there are duties beyond Vaasa. For many years Seppo has been involved with the nationwide
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entrance exam for Technical Sciences and Architecture studies of the member universities
in Finland. And then there is the Academy of Finland: for some years now Seppo has been
a member of its Research Council for Natural Sciences and Engineering, and a member of
its steering group. All these things coming his way are done with his usual attention to
detail.

Those who deal with Seppo, either as colleagues or as students, know that he provides a
listening ear and is ready to help whenever needed. And those who are fortunate enough to
work with him recognize his quiet determination. Uninterrupted, he can sit behind his desk
for hours, like a sphinx – lost in thought (so we assume). But when he returns back to real
life, you know that something is going to happen.

On behalf of all his many friends, whether in Vaasa or elsewhere in the world, we congratu-
late Seppo on reaching his sixtieth birthday and we wish him, together with his wife Merja
and their son Leo, good health and happiness. May there be many more productive years to
come!
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CONGRUENCE OF SELFADJOINT OPERATORS AND
TRANSFORMATIONS OF OPERATOR-VALUED
NEVANLINNA FUNCTIONS

Yury Arlinskiı̆

Dedicated to my colleague and friend Seppo Hassi on the occasion of his sixtieth birthday

1 Introduction

The Banach space of all continuous linear operators acting between Hilbert spaces H and K is
denoted by B(H,K) and by B(H) if K = H. Likewise, the group of all invertible operators in
B(H) is denoted by GB(H). Let N be a Hilbert space. Recall that a B(N)-valued function M is
called a Nevanlinna function (Behrndt, Hassi & de Snoo, 2020) (alternatively, an R-function (Allen
& Narcowich, 1976; Derkach & Malamud, 2017; Kac & Kreı̆n, 1968; Shmul’yan, 1971), a Herglotz
function (Gesztesy & Tsekanovskiı̆, 2000), or a Herglotz-Nevanlinna function (Arlinskiı̆, Belyi &
Tsekanovskiı̆, 2011; Arlinskiı̆ & Klotz, 2010)) if it is holomorphic outside the real axis, symmetric
M(λ)∗ = M(λ̄), and satisfies the inequality Imλ ImM(λ) ≥ 0 for all λ ∈ C\R.

The class of Nevanlinna functions is often denoted by R[N]. A function M ∈ R[N] admits the
integral representation

M(λ) = A+Bλ+

∫
R

(
1

t− λ
− t

t2 + 1

)
dΣ(t),

∫
R

dΣ(t)

t2 + 1
∈ B(N), λ ∈ C\R, (1.1)

where A = A∗ ∈ B(N), 0 ≤ B = B∗ ∈ B(N), the B(N)-valued function Σ(·) is nondecreasing
and Σ(t) = Σ(t − 0), see (Behrndt, Hassi & de Snoo, 2020; Derkach & Malamud, 2017; Kac &
Kreı̆n, 1968; Shmul’yan, 1971). The integral is uniformly convergent in the strong topology; cf.
(Behrndt, Hassi & de Snoo, 2020; Brodskiı̆, 1969; Kac & Kreı̆n, 1968).

It follows from (1.1) that

B = s-lim
y↑∞

M(iy)

y
and ImM(iy) = B y +

∫
R

y

t2 + y2
dΣ(t).

This implies that limy→∞ yImM(iy) exists in the strong resolvent sense as a selfadjoint relation;
see, e.g., (Behrndt, et al., 2010). This limit is a bounded selfadjoint operator if and only ifB = 0 and∫
R dΣ(t) ∈ B(N), in which case s-limy→∞ yImM(iy) =

∫
R dΣ(t). In this case one can rewrite

the integral representation (1.1) in the form

M(λ) = E +

∫
R

1

t− λ
dΣ(t),

∫
R
dΣ(t) ∈ B(N), (1.2)

where E = limy→∞M(iy) in B(N).

The class of B(N)-valued Nevanlinna functions M with the integral representation (1.2) for which
E = 0 is denoted byR0[N]. In this paper we consider the following subclasses of the classR0[N].
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Definition 1.1. Let M belong to the classR0[N]. Then M is said to belong to N [N] if

s-lim
y→∞

iyM(iy) = −IN.

Moreover, M is said to belong to N0
N if M ∈ N [N] and M is holomorphic at infinity.

If A is a selfadjoint operator in the Hilbert space H and N is a subspace (closed linear manifold) of
H, then the compressed resolvent M(λ), defined as

M(λ) = PN(A− λI)−1�N, λ ∈ ρ(A), (1.3)

belongs to the class N [N]. Moreover, M as in (1.3) belongs to the class N0
N ⊆ N [N] if and only

if the selfadjoint operator A is bounded. Throughout this paper the representation of M ∈ N (N)

in the form (1.3) is called a realization of the function M . Note that the function M in (1.3) is
often called the compressed resolvent, N-resolvent, Weyl function, or m-function; see (Berezansky,
1968; Gesztesy & Simon, 1997). Here, and throughout the paper, the notation T �N denotes the
restriction of a linear operator T to the set N ⊂ dom T and PL denotes the orthogonal projection
onto a subspace L in the Hilbert space H.

Let H = N⊕K be a decomposition of a Hilbert space H, then a selfadjoint operator A ∈ H is called
minimal with respect to N, or N-minimal, if

H = span
{
N + (A− λI)−1N : λ ∈ C \ R

}
.

The next theorem follows from (Brodskiı̆, 1969: Theorem 4.8) and Naı̆mark’s dilation theorem
(Brodskiı̆, 1969: Theorem 1, Appendix I); see (Arlinskiı̆, Hassi & de Snoo, 2006) and (Arlinskiı̆ &
Klotz, 2010) for the case M ∈ N0

N.

Theorem 1.2. The following assertions are valid:

(1) IfM ∈ N [N], then there exist a Hilbert space H containing N as a subspace and a selfadjoint
operator A in H, such that A is N-minimal and M(λ) is of the form (1.3) for λ in the domain
of M . If M ∈ N0

N, then the selfadjoint operator A is bounded.

(2) If A1 and A2 are selfadjoint operators in the Hilbert spaces H1 and H2, respectively, N is a
common subspace of H1 and H2, A1 and A2 are N-minimal, and

PN(A1 − λIH1
)−1�N = M(λ) = PN(A2 − λIH2

)−1�N, λ ∈ C\R,

then there exists a unitary operator U mapping H1 onto H2 such that

U�N = IN and UA1 = A2U.

The following linear transformations ω of the complex plane C will play an important role in this
paper. Let

ω(λ) = aλ+ b, λ ∈ C, (1.4)

where a ∈ R+, b ∈ R, then ω has the property

ω(R) = R, ω(C−) = C−, ω(C+) = C+.
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Note that if ω1(λ) = a1λ+ b1 and ω2(λ) = a2λ+ b2, then

ω1 ◦ ω2(λ) := ω1(ω2(λ)) = a1a2λ+ a1b2 + b1. (1.5)

Hence, these transformations form a group with respect to composition. The inverse transformation
ω[−1] corresponding to ω(λ) = aλ+ b is

ω[−1](λ) = a−1λ− ba−1. (1.6)

This group is denoted by G. For ω(λ) = aλ+ b ∈ G we define aω := a. It follows from (1.5) that

aω1◦ω2
= aω2◦ω1

= aω1
aω2

.

Hence, the function G 3 ω 7→ aω ∈ R+ is a character on the group G.

For a function ω(λ) = aλ+ b ∈ G define the following transformations Gω on N (N):

M(λ) 7→ Gω(M)(λ) := aωM(λ) (I + (λ− ω(λ))M(λ))
−1
. (1.7)

The properties of this transformation are discussed in the theorem below. For this theorem also recall
that two linear operators X and Y in H are said to be congruent, if there exists U ∈ GB(H) such
that

Y = U∗XU ;

see, e.g., (Patel, 1983). In the case of unbounded X and Y , the above equality means that

dom Y = U−1 dom X and Y U−1f = U∗Xf, for all f ∈ dom X.

The main goal of this paper is to prove the following theorem.

Theorem 1.3. For the transformations Gω defined in (1.7), where ω is given by (1.4), the following
assertions are valid:

(1) For each ω ∈ G the transformation Gω is well-defined and maps N (N) into N (N), and N0
N

into N0
N.

(2) The set {Gω : ω ∈ G} is a group with respect to composition:

Gω2
(Gω1

(M)) = Gω1◦ω2
(M), ω1, ω2 ∈ G,

G−1
ω (M) = Gω[−1](M), ω ∈ G, M ∈ N (N).

In particular, for each ω ∈ G the transformation Gω mapsN (N) bijectively ontoN (N), and
N0

N bijectively onto N0
N.

(3) If A is a N-minimal realization of M ∈ N (N) and if ω(λ) = aλ+ b ∈ G, then any minimal
realization of the function Gω(M) is congruent toA−bPN. Moreover, if ω(λ) = λ+b, b 6= 0,

then any minimal realization of the function Gω(M) is unitarily equivalent to A− bPN.

Note that the transformations

N0
N 3M(λ) 7→MB(λ) := M(λ) (IN +BM(λ))

−1 ∈ N0
N, B = B∗ ∈ B(N),
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have been considered in Arlinskiı̆, Hassi & de Snoo (2006) and Arlinskiı̆ & Klotz (2010). The
transformations

R[N] 3 m(λ) 7→
m(λ) + t

1− tm(λ)
∈ R[N], t ∈ R ∪ {∞},

of scalar Nevanlinna functions and their connections with selfadjoint extensions of symmetric op-
erators with deficiency indices (1, 1) have been studied in Behrndt, Hassi, de Snoo, Wietsma &
Winkler (2013). Other transformations of Nevanlinna functions, or Nevanlinna families, and their
fixed points have been examined in Arlinskiı̆ (2017; 2020) and Arlinskiı̆ & Hassi (2019).

This paper is organized as follows. In Section 2 we study properties of congruent operators; in
particular, it is shown that congruence preserves the deficiency indices of densely defined closed
symmetric operators. In Section 3 we define and examine special transformations of linear operators,
which are used in Section 4 in the proof of Theorem 1.3.

2 Properties of congruent operators

Proposition 2.1. The following assertions are valid:

(1) If the closed densely defined operators X and Y are congruent, then the adjoint operators
X∗ and Y ∗ are congruent.

(2) Congruence preserves the notions densely defined, closed, maximal dissipative, maximal ac-
cumulative, and selfadjoint.

(3) If the closed densely defined symmetric operatorsX and Y are congruent, then the deficiency
indices of X and Y coincide.

Proof. (1) If X and Y are densely defined and Y = U∗XU , then

Y ∗ = U∗X∗U, (2.1)

as easily follows.

(2) Let Y = U∗XU , U ∈ GB(H). Then (dom Y )⊥ = U∗(dom X)⊥ and it follows that X and Y
are both densely defined or non-densely defined.

Next let X be a closed operator and suppose that {fn} and {U∗XUfn} are Cauchy sequences.
Then, due to assumption U ∈ GB(H), it follows that {Ufn} and {XUfn} are Cauchy sequences.
Since X is closed, we get that g = lim

n→∞
Ufn ∈ dom X and Xg = lim

n→∞
Ufn. Hence

U−1g = lim
n→∞

fn ∈ dom Y and Y U−1g = U∗XU(U−1g) = lim
n→∞

U∗XUfn.

Thus, Y is closed.

The equality (Y f, f) = (XUf,Uf), f ∈ dom Y , yields that congruence preserves the notions
Hermitian, dissipative, and accumulative. Thanks to (2.1) congruence preserves selfadjointness.
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Finally, it is well-known that X is maximal dissipative if and only if X is dissipative and X∗ is
accumulative. Hence, we conclude that congruence also preserves the notions maximal dissipative
and maximal accumulative.

(3) Suppose that X is a closed densely defined symmetric operator whose deficiency indices are
(n+(X), n−(X)). Consider a maximal dissipative extension X̃ of X . Then for any λ, Imλ < 0,
the following direct decomposition of dom X∗ holds:

dom X∗ = dom X̃ +̇Nλ(X). (2.2)

Here Nλ(X) = ker(X∗ − λI) is the defect subspace of X corresponding to λ. In particular, if
h ∈ dom X∗, then there exists h̃ ∈ dom X̃ and ϕλ ∈ Nλ(X) such that

h = h̃+ ϕλ and X∗h = X̃h̃+ λϕλ. (2.3)

Next we will describe the defect subspace Nλ(Y ) for the symmetric operator Y congruent to X:

Y = U∗XU.

For this purpose, set Ỹ = U∗X̃U. Then Ỹ is a maximal dissipative extension of Y , see part (2) of
this proposition. Hence, from the equality

Ỹ − λI = U∗X̃U − λI = (U∗X̃ − λU−1)U,

it follows that the operator (U∗X̃ − λU−1)−1 exists, is bounded, is defined on the whole H for
Imλ < 0, and maps H onto dom X̃ .

Let fλ ∈ Nλ(Y ). Then

0 = (Y ∗ − λI)fλ = (U∗X∗ − λU−1)Ufλ. (2.4)

As hλ := Ufλ belongs to dom X∗, (2.2)-(2.3) imply that the following decomposition holds

hλ = hX̃ + ϕλ and X∗hλ = X̃hX̃ + λϕλ, hX̃ ∈ dom X̃, ϕλ ∈ Nλ(X).

Consequently,

(Y ∗ − λI)fλ = (U∗X∗U − λI)fλ

= (U∗X∗ − λU−1)Ufλ

= (U∗X∗ − λU−1)hλ

= U∗X∗hλ − λU−1hλ

= U∗(X̃hX̃ + λϕλ)− λU−1(hX̃ + ϕλ)

= (U∗X̃ − λU−1)hX̃ + λ(U∗ − U−1)ϕλ.

Combining the preceding result with (2.4) yields

hX̃ = λ(U∗X̃ − λU−1)−1(U−1 − U∗)ϕλ.
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Hence,
hλ =

(
I + λ(U∗X̃ − λU−1)−1(U−1 − U∗)

)
ϕλ,

fλ = U−1
(
I + λ(U∗X̃ − λU−1)−1(U−1 − U∗)

)
ϕλ.

Thus, Nλ(Y ) ⊆ U−1
(
I + λ(U∗X̃ − λU−1)−1(U−1 − U∗)

)
Nλ(X). One can verify that the con-

verse inclusion is also true. Therefore

Nλ(Y ) = U−1
(
I + λ(U∗X̃ − λU−1)−1(U−1 − U∗)

)
Nλ(X).

This equality yields that dimNλ(Y ) = dimNλ(X), Imλ < 0. Similarly, using the decomposition

dom X∗ = dom X̃∗ +̇Nλ̄, Imλ < 0,

we obtain the equality dimNλ(Y ) = dimNλ(X). Consequently, the deficiency indices of Y are
given by (n+(X), n−(X)).

3 Special transformations of operators

Let H be an infinite-dimensional separable complex Hilbert space, let N be a subspace of H, and set
N⊥ := H	N. For z ∈ C \ (R ∪ iR) define the operator Uz,N ∈ B(H) as follows

Uz,N := PN⊥ + i
Im z

Re z
PN = I −

z̄

Re z
PN. (3.1)

It is clear from the first equality in (3.1) that Uz,N Uiz̄,N = PN⊥ − PN. Moreover, it follows from
the second equality in (3.1) that ran Uz,N = H and that Uz,N ∈ GB(H); in fact, one has

U−1
z,N = I −

iz̄

Im z
PN = U−iz,N. (3.2)

Hence, one also sees immediately that

U∗z,N = Uz̄,N and U∗−1
z,N = Uiz̄,N. (3.3)

Observe that

U∗z,N Uz,N =
(
I − z

Re z
PN

)(
I − z̄

Re z
PN

)
= I +

|z|2 − 2(Re z)2

(Re z)2
PN, (3.4)

so that Uz,N ∈ GB(H) is unitary if and only if (Re z)2 = (Im z)2.

For z ∈ C \ (R ∪ iR) we define the transformation Fz,N on the set of all linear operators A in H as
follows 

dom Fz,N(A) = Uz,N dom A,

Fz,N(A)f =

(
A+

iz

Im z
PN(A− z̄I)

)
U−1
z,Nf, f ∈ dom Fz,N(A).

(3.5)



Acta Wasaensia 7

Lemma 3.1. Let A be an operator and let z ∈ C \ (R ∪ iR). Then the operator Fz,N(A) satisfies

Fz,N(A) = U∗−1
z,N

(
A−

|z|2

Re z
PN

)
U−1
z,N, (3.6)

i.e., Fz,N(A) is congruent to the operator A − (|z|2/Re z)PN. Moreover, if |Im z| = |Re z|, then
Fz,N(A) is unitarily equivalent to the operator A− (|z|2/Re z)PN.

Proof. It follows from (3.1) that

A+
iz

Im z
PN(A− z̄I) =

(
I + i

z

Im z
PN

)
A+ i

|z|2

Im z
PN

= Uiz,NA+ Uiz,NUz,Ni
|z|2

Im z
PN

= Uiz,N

[
A+ Uz,Ni

|z|2

Im z
PN

]
= Uiz,N

(
A−

|z|2

Re z
PN

)
.

Consequently, the first statement about the congruence now follows from the definition of Fz,N(A)

and (3.3). The last statement follows from the identity (3.4).

It is clear from the definition in (3.5), that

(dom Fz,N(A))⊥ = U∗−1
z,N (dom A)⊥.

Thus, the operator Fz,N(A) is densely defined if and only if the operator A is densely defined.
Furthermore, the domain of dom Fz,N(A) is closed if and only if dom A is closed.

The next corollary collects the basic properties of the transformation Fz,N.

Corollary 3.2. The transformation Fz,N in (3.5) possesses the following properties:

(1) dom Fz,N(A) ∩ dom Fz,N(B) = {0} if and only if dom A ∩ dom B = {0}.

(2) The operatorFz,N(A) is bounded or closed if and only ifA is bounded or closed, respectively.

(3) The operator Fz,N(A) is symmetric, dissipative, or accumulative if and only if A is symmet-
ric, dissipative, or accumulative, respectively. Moreover, maximality with respect to these
properties is preserved and selfadjointness is also preserved.

(4) The following relation holds

(Fz,N(A))∗ = Fz,N(A∗).

(5) The following identities hold

dom Fz,N(A) ∩N⊥ = dom A ∩N⊥ and PN⊥Fz,N(A)�N⊥ = PN⊥A�N
⊥.

(6) If A is a closed densely defined symmetric operator, then the deficiency indices of Fz,N(A)

coincide with the deficiency indices of A.
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Proof. (1) Due to the identity

dom Fz,N(A) ∩ dom Fz,N(B) = Uz,N (dom A ∩ dom B) ,

we obtain the equivalence

dom Fz,N(A) ∩ dom Fz,N(B) = {0} ⇐⇒ dom A ∩ dom B = {0}.

(2) – (5) These statements follow from Lemma 3.1, because Fz,N(A) is congruent to the operator
A(z,N) given by (3.6), and A(z,N) is the additive perturbation of A by the bounded selfadjoint
operator (|z|2/Re z)PN.

(6) It is well known that the additive perturbation of a symmetric operator by a bounded selfadjoint
operator preserves deficiency indices, see, e.g., (Akhiezer & Glazman, 1981).

Let N be a subspace of the Hilbert space H. For a linear operator A in H and λ ∈ ρ(A) we define
the transform Tz,N(A, λ) of A by

Tz,N(A, λ) := PN⊥ + i
Re z

Im z
PN(A− ζz(λ)I)(A− λI)−1, (3.7)

where ζz(λ) is defined by

ζz(λ) := λ

(
Im z

Re z

)2

+
|z|2

Re z
. (3.8)

From the definition in (3.7) it is clear that Tz,N(A, λ) ∈ B(H), since λ ∈ ρ(A). Note that with
respect to the orthogonal decomposition H = N⊥ ⊕N one has

Tz,N(A, λ) =

(
IN⊥ 0

Az,N(A, λ) Bz,N(A, λ)

)
:

(
N⊥

N

)
→
(
N⊥

N

)
, (3.9)

where Az,N(A, λ) and Bz,N(A, λ) are defined by

Az,N(A, λ) := PNTz,N(A, λ)�N⊥, Bz,N(A, λ) := PNTz,N(A, λ)�N,

so that Az,N(A, λ) ∈ B(N⊥,N) and Bz,N(A, λ) ∈ B(N). In particular, it is useful to observe that
the compression PNTz,N(A, λ)�N has the form

PNTz,N(A, λ)�N = i
Re z

Im z

(
I + (λ− ζz(λ))PN(A− λ)−1

)
, (3.10)

cf. (3.7). The properties of the transform Tz,N(A, λ) and its compression Bz,N(A, λ) to N are stated
in the following theorem.

Theorem 3.3. Let A be a linear operator in the Hilbert space H, let z ∈ C \ (R ∪ iR), and let
Fz,N(A) be defined as in (3.5). Let λ ∈ ρ(A) and let the transformation Tz,N(A, λ) of A be defined
as in (3.7). Then the following identity holds

Fz,N(A)− λI = Tz,N(A, λ)(A− λI)U−1
z,N, λ ∈ ρ(A). (3.11)

Consequently, for λ ∈ ρ(A) the following statements are equivalent:
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(i) λ ∈ ρ(Fz,N(A));

(ii) the operator Tz,N(A, λ) belongs to GB(H);

(iii) the operator PNTz,N(A, λ)�N belongs to GB(N).

Moreover, for λ ∈ ρ(Fz,N(A)) ∩ ρ(A), one has

(Fz,N(A)− λI)−1 = Uz,N(A− λ)−1Tz,N(A, λ)−1, (3.12)

while the compression of (Fz,N(A)− λI)−1 to N is given by

PN(Fz,N(A)− λI)−1�N

=

(
Im z

Re z

)2

PN(A− λI)−1
(
IN + (λ− ζz(λ))PN(A− λI)−1�N

)−1
. (3.13)

In particular, if the operator A is a maximal dissipative, maximal accumulative, or selfadjoint in the
Hilbert space H, then (3.12) and (3.13) hold for each proper subspace N, for each z ∈ C\ (R∪ iR),
and for each λ in C−, C+, or C− ∪ C+, respectively.

Proof. Let Â := Fz,N(A). It follows from dom Â = Uz,N dom A that any f̂ ∈ dom Â is of the
form f̂ = Uz,NfA with a unique fA ∈ dom A and conversely. From (3.5) one therefore sees that
for all f̂ ∈ dom Â

(Â− λI)f̂ =

(
A+

iz

Im z
PN(A− z̄I)

)
fA − λ

(
I −

z̄

Re z
PN

)
fA

= (A− λ)fA +
iz

Im z
PN(A− z̄I)fA + λ

z̄

Re z
PNfA

= (A− λI)fA +
iz

Im z
PN(A− λI)fA +

(
iz

Im z
(λ− z̄) + λ

z̄

Re z

)
PNfA

=

(
I +

iz

Im z
PN +

(
iz

Im z
(λ− z̄) + λ

z̄

Re z

)
PN(A− λI)−1

)
(A− λI)fA.

By writing I = PN⊥ +PN, we see that the first factor in the right-hand side of the last term is given
by

PN⊥ +

(
I +

iz

Im z

)
PN + i

λRe z2 − |z|2 Re z

Re z Im z
PN(A− λ)−1

= PN⊥ + i
Re z

Im z
PN

[
A− λ+

λRe z2 − |z|2 Re z

(Re z)2

]
(A− λ)−1

= PN⊥ + i
Re z

Im z
PN(A− ζz(λ))(A− λ)−1 = Tz,N(A, λ),

where the following identities were used

I +
iz

Im z
= i

Re z

Im z
and ζz(λ) = λ−

λRe z2 − |z|2 Re z

(Re z)2
.

Therefore, (3.11) has been shown.
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(i)⇔ (ii) This equivalence follows from (3.11).

(ii)⇔ (iii) This equivalence follows from (3.9) and (3.11).

The resolvent formula (3.12) follows from (3.11). In order to see (3.13), first observe from (3.1) and
(3.10) that

PN Uz,N = i
Im z

Re z
PN and B−1

z,N(λ) =
1

i

Im z

Re z

(
I + (λ− ζz(λ))PN(A− λ)−1

)−1
.

Therefore, it is seen as a consequence of (3.9) and (3.12) that

PN (Fz,N(A)− λI)−1�N = PN Uz,N(A− λ)−1T −1
z,N �N = PN Uz,N(A− λ)−1B−1

z,N(λ)

=

(
Im z

Re z

)2

PN(A− λ)−1
(
I + (λ− ζz(λ))PN(A− λ)−1

)−1
,

which gives (3.13).

Next let A be a maximal dissipative operator. Then by Proposition 3.2 the operator Â := Fz,N(A)

is maximal dissipative too. Therefore the open lower half-plane C− belongs to the resolvent set of
A and Â. As has been proven above, the operators Tz,N(A, λ) and Bz,N(A, λ) belong to GB(H)

and GB(N), respectively for all λ ∈ C−. Hence the identities (3.12) and (3.13) are valid for all
λ ∈ C−. The proofs of the statements for a maximal accumulative or selfadjoint operator A can be
established in a similar way.

Corollary 3.4. Let A be a selfadjoint operator in the Hilbert space H and let N be a subspace of H.
Then A is N-minimal if and only if Fz,N(A) is N-minimal.

Proof. It follows from (3.9) and (3.11), and from the invertibility of Bz,N(A, λ) in H, that

(Fz,N(A)− λI)−1 = Uz,N (A− λ)−1

(
IN⊥ 0

−Bz,N(A, λ)−1Az,N(A, λ) Bz,N(A, λ)−1

)
.

Thanks to the invertibility of Uz,N in H, the statement is clear from the above identity.

Lemma 3.5. Let A be an operator in the Hilbert space H and let z1, z2 ∈ C \ (R ∪ iR). Then

Fz2,N(Fz1,N(A)) =

(
PN⊥ −

Re z1 Re z2

Im z1 Im z2
PN

)

×

A−
 |z1|2

Re z1
+
|z2|2

Re z2

(
Im z1

Re z1

)2
PN

(PN⊥ −
Re z1 Re z2

Im z1 Im z2
PN

)
.

Thus, the operator Fz2,N(Fz1,N(A)) is congruent to the operator

A−

 |z1|2

Re z1
+
|z2|2

Re z2

(
Im z1

Re z1

)2
PN.
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Proof. Let A be a linear operator, then it follows from (3.6) that

Fz2,N(Fz1,N(A)) = Fz2,N(Â1) = U∗−1
z2,N

(
Â1 −

|z2|2

Re z2
PN

)
U−1
z2,N

= U∗−1
z2,N

(
U∗−1
z1,N

(
A−

|z1|2

Re z1
PN

)
U−1
z1,N
−
|z2|2

Re z2
PN

)
U−1
z2,N

= U∗−1
z2,N
U∗−1
z1,N

(
A−

|z1|2

Re z1
PN −

|z2|2

Re z2
U∗z1,NPNUz1,N

)
U−1
z1,N
U−1
z2,N

,

which, thanks to (3.2) and (3.3), gives the required result.

One can easily verify the identity

Fµ(z),N ◦ Fz,N = Fz,N ◦ Fµ(z),N = id,

where id is the identity transformation on the set of all linear operators in H and the function µ(z) is
defined as

µ(z) := iz
Re z

Im z
= −Re z + i

(Re z)2

Im z
= z + i

z2

Im z
, z ∈ C \ (R ∪ iR).

Remark 3.6. Let S be a closed densely defined symmetric operator in the Hilbert space H, let
z ∈ C \ (R∪ iR), and let Nz = ker(S∗− zI) 6= {0} be the deficiency subspace of S corresponding
to z. Define the associated operators US(z) by

US(z) := Uz,Nz
= PN⊥z

+ i
Im z

Re z
PNz

= I −
z̄

Re z
PNz

.

Then the symmetric operator

S(z) = US(z)∗−1

(
S −

|z|2

Re z
PNz

)
US(z)−1

has been studied in Arlinskiı̆ (2021) and it was established that S(z) preserves various properties of
S. When the deficiency indices of S are equal, then a bijection of the set of all selfadjoint extensions
of S onto the set of all selfadjoint extensions of S(z) was established.

4 Proof of Theorem 1.3

This section provides a proof of Theorem 1.3. It is based on the general constructions in Section 3,
which are applied under the assumption that the underlying operator is selfadjoint.

(1) Let M ∈ N (N) be arbitrary. Then by Theorem 1.2 there exists a selfadjoint operator A in the
Hilbert space H, containing N as a subspace, realizing M as follows

M(λ) = PN(A− λI)−1�N, λ ∈ C \ R. (4.1)
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Let the transformation ω(λ) = aλ+ b ∈ G, where a ∈ R+ and b ∈ R \ {0}, be arbitrary, cf. (1.4).
Then define zω ∈ C \ (R ∪ iR) as

zω :=
b

1 + a
+ i

√
ab

1 + a
(4.2)

so that ζzω (λ) = ω(λ), see (3.8). Note that, conversely, a and b in (4.2) can be expressed in terms
of zω as

a =

(
Im zω

Re zω

)2

and b =
|zω|2

Re zω
. (4.3)

For the selfadjoint operator A in (4.1) let Â := Fzω,N(A), where zω is given by (4.2) and Fz,N is
the transformation defined in (3.5). Then Â is selfadjoint by Corollary 3.2, and Theorem 3.3 implies
that for λ ∈ C\R

PN(Â− λI)−1�N =

(
Im z

Re z

)2

PN(A− λI)−1
(
IN + (λ− ζzω (λ))PN(A− λI)−1�N

)−1

= aωM(λ) (I + (λ− ω(λ))M(λ))
−1 (4.4)

= Gω(M)(λ),

see (4.1), (4.3), and (1.7). Now the representation (4.4) for Gω(M) shows that it belongs to the class
N (N), since it is the compression of the resolvent of the selfadjoint operator Â. If the representing
operator A is additionally assumed to be bounded, then Corollary 3.2 implies that also Â is bounded
and, hence, Gω(M) ∈ N0

N.

(2) Let ωk(λ) = akλ+ bk ∈ G be arbitrary, for k = 1, 2. Then one observes

ω1 ◦ ω2(λ) = ω1(λ)− aω1
(λ− ω2(λ)), (4.5)

cf. (1.5). For M ∈ N (N) we have by (1) that Mω1
:= Gω1

(M) ∈ N (N). Therefore, observe that

Gω2(Gω1(M))(λ) = Gω2(Mω1)(λ) = aω2Mω1(λ) (I + (λ− ω2(λ))Mω1(λ))
−1

= aω1
aω2

M(λ) (I + (λ− ω1(λ))M(λ))
−1

×
[
I + (λ− ω2(λ))aω1

M(λ) (I + (λ− ω1(λ))M(λ))
−1
]−1

= aω1
aω2

M(λ) (I + (λ− ω1(λ))M(λ))
−1

(I + (λ− ω1(λ))M(λ))

× [(I + (λ− ω1(λ))M(λ)) + aω1(λ− ω2(λ))M(λ)]
−1

= aω1aω2M(λ)
[
I +

(
λ− ω1(λ) + aω1(λ− ω2(λ)

)
M(λ)

]−1

= aω1◦ω2M(λ)
(
I +

(
λ− ω1 ◦ ω2(λ)

)
M(λ)

)−1
= Gω1◦ω2(M)(λ),

where the penultimate identity follows thanks to (4.5). This shows that the first identity in Theo-
rem 1.3 (2) holds. That identity implies the second identity in view of (1.5) and (1.6).

Let M̂ ∈ N (N) be arbitrary. Then by the above composition result M := Gω[−1](M̂) ∈ N (N)

and Gω(M) = M̂ , showing that G is surjective. Likewise, if M1,M2 ∈ N (N) satisfy the equality
Gω(M1) = Gω(M2), then composing the preceding equality with Gω[−1] yields thatM1 = M2. Thus
Gω is bijective on the set N (N). The bijectivity of Gω restricted to the set N0

N can be established in
exactly the same manner.
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(3) Let A be a N-minimal realization of M ∈ N (N) and let ω(λ) = aλ + b ∈ G be arbitrary.
Moreover, define zw as in (4.2) and let Â := Fzω,N(A). Then the identity (4.4) holds. Lemma 3.1
now yields that the operator Â = Fzω,N(A) is congruent to the operator

A(z,N) = A−
|z|2

Re z
PN = A− bPN,

see also (4.2) and (4.3), via

U−1
z,N = PN⊥ − i

Re z

Im z
PN = PN⊥ − i

1√
a
PN.

Moreover, the operator A is N-minimal if and only if the operator Â := Fzω,N(A) is N-minimal,
see Corollary 3.4. Finally, recall that by Theorem 1.2 (2) any N-minimal realization of Gω(M) is
unitary equivalent to Â = Fzω,N(A) and, hence, is congruent to A− bPN. This establishes the first
part of this assertion.

Next assume that ω(λ) = λ + b. If zω is such that ζzω (λ) = ω(λ), then equation (4.3) implies that
(Re z)2 = (Im z)2. Therefore (3.3) yields that the operator U∗−1

z,N is equal to PN⊥+ iPN and, hence,

is unitary. Consequently, Lemma 3.1 shows that Â := Fzω,N(A) is unitary equivalent to A− bPN.
This establishes the second part of the assertion by Theorem 1.2 (2).

Remark 4.1. The composition formula Gω2
◦ Gω1

= Gω1◦ω2
in Theorem 1.3 has a counterpart for

the operator representations. With the transformations

ω1(λ) = a1λ+ b1 and ω2(λ) = a2λ+ b2,

define the corresponding parameters

z1 =
b1

1 + a1
+ i

√
a1b1

1 + a1
and z2 =

b2

1 + a2
+ i

√
a2b2

1 + a2
,

cf. (4.2). Then the composition of Fz2,N(Fz1,N(A)) in Lemma 3.5 is given in terms of ω1 and ω2

by (
PN⊥ −

1
√
a1a2

PN

)(
A− (a1b2 + b1)PN

)(
PN⊥ −

1
√
a1a2

PN

)
.

Note that a1b2 + b1 is the constant term of the composition ω1 ◦ ω2, see (1.5).
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A CLASS OF SINGULAR PERTURBATIONS OF THE DIRAC
OPERATOR: BOUNDARY TRIPLETS AND WEYL FUNCTIONS

Jussi Behrndt, Markus Holzmann, Christian Stelzer, and Georg Stenzel

Dedicated to our friend and colleague Seppo Hassi on the occasion of his 60th birthday!

1 Introduction

Singular perturbations of self-adjoint operators play an important role in the description of ideal-
ized quantum systems, where a localized short-range potential is often replaced by a more singular
model potential. More precisely, assume that A0 is a self-adjoint differential operator in an L2-
Hilbert space which is viewed as the Hamiltonian of an unperturbed quantum system and suppose
that V is some potential such that the formal sum AV = A0 + V describes the quantum system
under investigation. Standard operator theory techniques ensure that for potentials V belonging to
certain function spaces the perturbed operator AV is again self-adjoint; we refer the reader to the
monographs of Reed & Simon (1972; 1975; 1979; 1978) or Kato (1995). However, a detailed spec-
tral analysis of AV is typically very difficult, and for this reason the potential V is often replaced
by an idealized perturbation term of δ-type, which is then regarded as an approximation of the real
model, see (Behrndt et al., 2017; Exner, 2008). On the one hand, this procedure may simplify the
spectral analysis considerably, see (Albeverio et al., 2005; Behrndt, Langer & Lotoreichik, 2013;
Brasche et al., 1994; Holzmann & Unger, 2020), but, on the other hand, it may lead to new technical
difficulties in the mathematically rigorous definition of the Hamiltonian itself.

In the case that A0 is the Laplacian in an L2-space and the δ-potential is supported on hypersurfaces
in Rd (e.g., curves in R2, or surfaces in R3) the standard quadratic form approach is useful. Roughly
speaking, the perturbed operator Aτ = A0 + τδΣ is in this situation viewed as the self-adjoint
operator corresponding to the form

a[f, g] = (∇f,∇g)L2 +

∫
Σ

τ f |Σ g|Σ dx, (1.1)

where (∇f,∇g)L2 is the quadratic form defined on the Sobolev spaceH1 associated with the Lapla-
cian, and the singular perturbation is encoded in the additive form perturbation with Σ denoting the
support of the δ-distribution, τ is some real (position dependent) coefficient, and f |Σ and g|Σ denote
the traces of the Sobolev space functions f and g, respectively, defined in an appropriate way. Of
course, one has to impose certain assumptions on the support Σ of the δ-potential and the coeffi-
cient τ to ensure that a in (1.1) is a densely defined closed semibounded form (which then gives
rise to a self-adjoint operator Aτ ); we refer to (Brasche et al., 1994; Exner, 2008; Exner & Kovarik,
2015; Herczyński, 1989; Stollmann & Voigt, 1996) for a detailed treatment and further references.
A different approach to the operator Aτ is via extension theory techniques in general, and bound-
ary triplet methods in particular, see the recent monograph (Behrndt, Hassi & de Snoo, 2020) and
(Derkach, Hassi & Malamud, 2020; Derkach et al., 2000; 2006; 2009; 2012; Derkach, Hassi & de
Snoo, 2001; 2003) by Seppo Hassi and his coauthors for an extensive treatment of boundary triplets
and further developments. For the case of point interactions it is well known what type of transmis-
sion or jump conditions the functions in the domain of Aτ satisfy; cf. (Albeverio et al., 2005) for a
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comprehensive treatment of point interactions. In the case that the δ-distribution is supported on a
hypersurface we refer to (Behrndt, Langer & Lotoreichik, 2013), where quasi boundary triplets were
used for the first time to define Aτ as a self-adjoint restriction of a Laplacian that is decoupled along
the support Σ. As in the case of point interactions, also in the multi-dimensional setting one ends
up with transmission and jump conditions for the functions in the domain of Aτ along the support
Σ of the δ-distribution, see also (Behrndt et al., 2020; 2018; Mantile, Posilicano & Sini, 2016). In
conclusion, for the case that A0 is the Laplacian (or some more general semibounded Schrödinger
operator) nowadays one may efficiently apply form techniques or boundary triplet methods to define
and study the perturbed operator Aτ ; depending on the particular problem under consideration one
method may prove more useful than the other.

Now assume that the unperturbed operator A0 is the Dirac operator instead of the Laplacian or the
Schrödinger operator. While the Dirac operator describes a similar physical system as the Laplace
operator including relativistic effects (see Section 3 for more details), the mathematical situation is
entirely different: The free Dirac operator A0 is not semibounded from below and, hence, standard
quadratic form methods are not applicable. Therefore, it is most natural to try to apply boundary
triplet techniques, since these methods do not require any type of semiboundedness of the operators
under consideration. In fact, Dirac operators with singular interactions supported on points and
spheres were already treated with direct methods in (Albeverio et al., 2005; Dittrich, Exner & Šeba,
1989; Gesztesy & Šeba, 1987), but for more general supports of the singular potential only recently
a series of papers was published (Arrizabalaga, Mas & Vega, 2014; 2015; 2016), which in turn led
to our publications (Behrndt et al., 2018; Behrndt & Holzmann, 2020; Behrndt, Holzmann & Mas,
2020; Behrndt et al., 2020) employing the quasi boundary triplet technique. We also emphasize
the recent papers (Behrndt et al., 2019; 2020; Holzmann, Ourmières-Bonafos & Pankrashkin, 2018;
Mas & Pizzichillo, 2018; Ourmières-Bonafos & Vega, 2018; Pankrashkin & Richard, 2014) where
closely related techniques were used to study Dirac operators with δ-shell interactions.

The main objective of this note is to provide boundary triplets for Dirac operators with Lorentz scalar
interactions supported on a point in the one-dimensional case, and supported on curves and surfaces
in the two- and three-dimensional situation. This operator is formally given by

Aτ = A0 + τα0δΣ,

where α0 is a Dirac matrix defined in Section 3, and τα0δΣ describes the Lorentz scalar δ-shell in-
teraction supported on Σ. The one-dimensional setting with a single point interaction is particularly
easy to treat and we discuss in Section 4 a possible choice of an ordinary boundary triplet, which
was also used in Pankrashkin & Richard (2014). We compute the corresponding γ-field and Weyl
function, and give an expression for the resolvent of the singularly perturbed one-dimensional Dirac
operator. In the multi-dimensional setting one observes typical analytic difficulties with trace maps
and integration by parts formulas on maximal operator domains, similar to the case of the Laplacian
or more general elliptic operators; cf. (Behrndt & Langer, 2007; 2012). It is convenient to extend the
notion of ordinary boundary triplet in such a way that these analytic difficulties can be circumvented.
As in the case of symmetric second order elliptic operators, the concepts of quasi boundary triplets
and generalized boundary triplets are useful and fit in this setting very well. In the present manuscript
we allow some flexibility in the domain of the boundary maps and obtain a family of quasi boundary
triplets that reduce to a generalized boundary triplet in the limit case, where the parameter describing
regularity of the operator domain is minimal; cf. Theorem 5.3. As in the one-dimensional situation,
we provide the corresponding γ-fields and Weyl functions, we discuss the self-adjointness of the
operator Aτ , and list some of its spectral properties. An interesting issue in the multi-dimensional
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setting is the regularity of the support Σ of the Lorentz scalar δ-perturbation: From C2-curves and
hypersurfaces treated earlier in Arrizabalaga, Mas & Vega (2014; 2015); Behrndt et al. (2018; 2019);
Behrndt & Holzmann (2020); Ourmières-Bonafos & Vega (2018) and piecewise C2-curves studied
in Pizzichillo & Van Den Bosch (2019), we make a substantial step towards more rough supports
and discuss in Theorem 5.4 the case that Σ is the boundary of a bounded Lipschitz domain.

The paper is organized as follows. In Section 2 we briefly recall some basic definitions and abstract
facts about ordinary, generalized, and quasi boundary triplets. Section 3 is devoted to regular Dirac
operators: We collect some required notations, state the well-known properties of the unperturbed
Dirac operator A0, and shortly describe the physical interpretation of the objects of interest. In
Section 4 we study the one-dimensional case, provide an ordinary boundary triplet suitable to treat
singular perturbations of the free Dirac operator in R, and investigate Dirac operators with Lorentz
scalar δ-point interactions. Finally, Section 5 is devoted to the multi-dimensional case. We construct
a family of quasi boundary triplets that are suitable to prove the self-adjointness of Dirac operators
with Lorentz scalar δ-shell interactions supported on arbitrary closed compact Lipschitz smooth
hypersurfaces in R2 and R3.

2 Ordinary, generalized, and quasi boundary triplets

In this section we briefly recall basic definitions of ordinary and generalized boundary triplets, quasi
boundary triplets, and some related techniques in extension and spectral theory of symmetric and
self-adjoint operators in Hilbert spaces. The concepts will be presented such that they can be ap-
plied directly to Dirac operators with singular interactions in the next sections. We refer the reader to
(Behrndt, Hassi & de Snoo, 2020; Behrndt & Langer, 2007; 2012; Brüning, Geyler & Pankrashkin,
2008; Derkach & Malamud, 1991; 1995; Gorbachuk & Gorbachuk, 1991) for more details on bound-
ary triplet techniques. Throughout this section H denotes a complex Hilbert space with inner prod-
uct (·, ·)H and S is a densely defined closed symmetric operator with adjoint S∗.

Definition 2.1. Let T be a linear operator in H such that T = S∗. A triplet {G,Γ0,Γ1} consisting
of a Hilbert space G and linear mappings Γ0,Γ1 : dom T → G is called a quasi boundary triplet for
S∗ if it has the following properties:

(i) For all f, g ∈ dom T the abstract Green’s identity

(Tf, g)H − (f, Tg)H = (Γ1f,Γ0g)G − (Γ0f,Γ1g)G

is true.

(ii) The range of Γ = (Γ0,Γ1)> is dense in G × G.

(iii) The restriction A0 := T � ker Γ0 is a self-adjoint operator inH.

If (i) and (iii) hold, and the mapping Γ0 : dom T → G is surjective, then {G,Γ0,Γ1} is called a
generalized boundary triplet; if (i) and (iii) hold, and the mapping

Γ = (Γ0,Γ1)> : dom T → G × G

is surjective, then {G,Γ0,Γ1} is called an ordinary boundary triplet.
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Note that the above (non-standard) definition of generalized and ordinary boundary triplets is equiva-
lent to the usual one given in, e.g., (Behrndt, Hassi & de Snoo, 2020; Brüning, Geyler & Pankrashkin,
2008; Derkach & Malamud, 1991; 1995; Gorbachuk & Gorbachuk, 1991), see (Behrndt & Langer,
2007: Corollary 3.2 & Corollary 3.7). In particular, if {G,Γ0,Γ1} is an ordinary boundary triplet,
then T = S∗. Note that a quasi boundary triplet, generalized boundary triplet, or ordinary boundary
triplet for S∗ exists if and only if the defect numbers dim ker(S∗ ± i) coincide, i.e., if and only if
S admits self-adjoint extensions in H. Moreover, the operator T in Definition 2.1 is in general not
unique.

Next, we recall the definition of the γ-field and the Weyl function associated with the quasi boundary
triplet {G,Γ0,Γ1}. These mappings will allow us to describe spectral properties of self-adjoint
extensions of S. With A0 = T � ker Γ0 the direct sum decomposition

dom T = dom A0 +̇ ker(T − λ) = ker Γ0 +̇ ker(T − λ), λ ∈ ρ(A0), (2.1)

holds. The definition of the γ-field and Weyl function for quasi boundary triplets is in accordance
with the definition for ordinary and generalized boundary triplets in Derkach & Malamud (1991;
1995).

Definition 2.2. Assume that T is a linear operator in H satisfying T = S∗ and let {G,Γ0,Γ1} be a
quasi boundary triplet for S∗. Then the corresponding γ-field γ and Weyl function M are defined
by

ρ(A0) 3 λ 7→ γ(λ) :=
(
Γ0 � ker(T − λ)

)−1

and
ρ(A0) 3 λ 7→M(λ) := Γ1

(
Γ0 � ker(T − λ)

)−1
,

respectively.

From (2.1) we see that the γ-field is well defined and that ran γ(λ) = ker(T − λ) holds for all
λ ∈ ρ(A0). Moreover, dom γ(λ) = ran Γ0 is dense in G by Definition 2.1. With the help of the
abstract Green’s identity in Definition 2.1 (i) one verifies that

γ(λ)∗ = Γ1(A0 − λ)−1, λ ∈ ρ(A0). (2.2)

Thus γ(λ)∗ is a bounded and everywhere defined operator from H to G. Therefore, γ(λ) is a, in
general not everywhere defined, bounded operator; cf. (Behrndt & Langer, 2007: Proposition 2.6)
or (Behrndt & Langer, 2012: Proposition 6.13). If {G,Γ0,Γ1} is a generalized or ordinary boundary
triplet, then γ(λ) is automatically bounded and everywhere defined.

Next, we state some useful properties of the Weyl function M corresponding to the quasi boundary
triplet {G,Γ0,Γ1}; see, e.g., (Behrndt & Langer, 2007: Proposition 2.6) for proofs of these state-
ments. For any λ ∈ ρ(A0) the operator M(λ) is densely defined in G with dom M(λ) = ran Γ0

and ran M(λ) ⊂ ran Γ1. Moreover, for all λ, µ ∈ ρ(A0) and ϕ ∈ ran Γ0 one has

M(λ)ϕ−M(µ)∗ϕ = (λ− µ)γ(µ)∗γ(λ)ϕ. (2.3)

Therefore, we see that M(λ) ⊂ M(λ)∗ for any λ ∈ ρ(A0) and hence M(λ) is a closable, but, in
general, unbounded linear operator in G. If {G,Γ0,Γ1} is a generalized or ordinary boundary triplet,
then M(λ) is bounded and everywhere defined.
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In the main part of this paper we are going to use ordinary boundary triplets, generalized boundary
triplets, quasi boundary triplets, and their Weyl functions to define and study self-adjoint exten-
sions of the underlying symmetry S. Let again T be a linear operator in H such that T = S∗, let
{G,Γ0,Γ1} be a quasi boundary triplet for S∗, and let ϑ be a linear operator in G. Then we define
the extension Aϑ of S by

Aϑ := T � ker(Γ1 − ϑΓ0), (2.4)

i.e., f ∈ dom T belongs to dom Aϑ if and only if f satisfies Γ1f = ϑΓ0f . If ϑ is a symmetric
operator in G, then Green’s identity implies

(Aϑf, g)H − (f,Aϑg)H = (ϑΓ0f,Γ0g)G − (Γ0f, ϑΓ0g)G = 0 (2.5)

for all f, g ∈ dom Aϑ and, hence, the extension Aϑ is symmetric inH.

Of course, one is mostly interested in the self-adjointness of Aϑ. If {G,Γ0,Γ1} is an ordinary
boundary triplet, then the situation is simple: Here one has a one-to-one correspondence between
self-adjoint realizations Aϑ as in (2.4) and self-adjoint operators and relations ϑ in G. In particular,
if ϑ is a self-adjoint operator in G, then Aϑ is self-adjoint inH, see, e.g., (Behrndt, Hassi & de Snoo,
2020: Theorem 2.1.3) for more details.

If {G,Γ0,Γ1} is a generalized or a quasi boundary triplet, then the self-adjointness of ϑ does, in
general, not imply the self-adjointness of Aϑ, or vice versa. However, the following theorem, where
we also state an abstract version of the Birman-Schwinger principle and a Kreı̆n type resolvent
formula for canonical extensions Aϑ, will allow us to give conditions for the self-adjointness of Aϑ;
for the proof we refer to (Behrndt & Langer, 2007: Theorem 2.8) or (Behrndt & Langer, 2012:
Theorem 6.16).

Theorem 2.3. Let T be a linear operator in H satisfying T = S∗, let {G,Γ0,Γ1} be a quasi
boundary triplet for S∗ with A0 = T � ker Γ0, and denote the associated γ-field and Weyl function
by γ and M , respectively. Let Aϑ be the extension of S associated with an operator ϑ in G as in
(2.4). Then the following statements hold for all λ ∈ ρ(A0):

(i) λ ∈ σp(Aϑ) if and only if 0 ∈ σp(ϑ−M(λ)). Moreover,

ker(Aϑ − λ) =
{
γ(λ)ϕ : ϕ ∈ ker(ϑ−M(λ))

}
.

(ii) If λ /∈ σp(Aϑ), then g ∈ ran (Aϑ − λ) if and only if γ(λ)∗g ∈ ran (ϑ−M(λ)).

(iii) If λ /∈ σp(Aϑ), then

(Aϑ − λ)−1g = (A0 − λ)−1g + γ(λ)
(
ϑ−M(λ)

)−1
γ(λ)∗g

holds for all g ∈ ran (Aϑ − λ).

Assertion (ii) of the previous theorem shows how the self-adjointness of an extension Aϑ can be
proven if {G,Γ0,Γ1} is a generalized or a quasi boundary triplet. If ϑ is symmetric in G, then Aϑ is
symmetric inH by (2.5), and hence Aϑ is self-adjoint if, in addition, ran (Aϑ ∓ i) = H. According
to Theorem 2.3 (ii) the latter is the case if ran γ(∓i)∗ ⊂ ran (ϑ−M(±i)).
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3 Some facts about Dirac operators

In this section, a brief introduction to Dirac operators will be presented. These operators correspond
to the right-hand side of the Dirac equation. The free Dirac equation was derived by P. Dirac when
linearising the relativistic energy-momentum relationship

E2 =
d∑
j=1

p2
j +m2, (3.1)

where E denotes the energy and p = (p1, . . . , pd) denotes the momentum. Here, and in the subse-
quent sections, d is the space dimension and m > 0 is the mass of the particle. Furthermore, the
speed of light c and Planck’s constant ~ are set to 1 for simplicity. This can always be realized by a
suitable choice of units. The usual linearization approach, as it is carried out for instance in Thaller
(1992), corresponds toE − d∑

j=1

αjpj −mα0

E +

d∑
j=1

αjpj +mα0

 = 0 (3.2)

with matrices αj ∈ CN×N , whereN = 2[(d+1)/2] and [·] is the Gauss bracket. For the cases relevant
to us we have N = 2 for d ∈ {1, 2} and N = 4 for d = 3. A comparison of (3.2) with the energy-
momentum relationship (3.1) shows that the matrices αj must be chosen such that they satisfy the
anti-commutation relations

αkαj + αjαk = 2δkjIN for all k, j ∈ {0, 1, . . . , d}, (3.3)

where In denotes the n × n-identity matrix. For d ∈ {1, 2} the matrices αj can be chosen as the
Pauli spin matrices

α1 = σ1 =

(
0 1

1 0

)
, α2 = σ2 =

(
0 −i
i 0

)
, and α0 = σ3 =

(
1 0

0 −1

)
,

and for d = 3 as the so-called Dirac matrices

αj =

(
0 σj
σj 0

)
and α0 =

(
I2 0

0 −I2

)
.

If one now applies the usual substitution rules i ∂∂t and −i ∂
∂xj

for E and pj in one of the factors in
(3.2), one obtains the free Dirac equation

i
∂

∂t
Ψ =

−i d∑
j=1

αj
∂

∂xj
+mα0

Ψ,

which describes a particle with spin 1/2, such as an electron, that moves in Rd. Here, and in the
following, we use for x = (x1, . . . , xd) ∈ Rd the formal notations

α · x :=
d∑
j=1

αjxj and α · ∇ :=
d∑
j=1

αj
∂

∂xj
.



Acta Wasaensia 21

As in the case of the Schrödinger equation, one now defines the free Dirac operator as the right-hand
side of the free Dirac equation by

A0f := (−i(α · ∇) +mα0) f, dom A0 = H1(Rd;CN ). (3.4)

With the help of the Fourier transform it is not difficult to verify thatA0 is self-adjoint inL2(Rd;CN )

with purely essential spectrum

σ(A0) = (−∞,−m] ∪ [m,∞); (3.5)

cf. (Thaller, 1992) or (Weidmann, 2003). From a physical point of view there are possible energy
states of the system that are negative and these energies are not bounded from below. This led to the
discovery of anti-particles, as, e.g., in the case of the electron, the positron.

To derive an explicit representation of the resolvent (A0 − λ)−1 for λ ∈ ρ(A0), one uses that (3.3)
implies the relation

(A0 − λ)(A0 + λ) =
(
−∆ +m2 − λ2

)
IN ,

where −∆ is the free Laplace operator defined on dom (−∆) = H2(Rd). This implies

(A0 − λ)−1 =
(
− i(α · ∇) +mα0 + λIN

)
(−∆ +m2 − λ2)−1IN . (3.6)

Using the well-known form of the resolvent of−∆, one finds that (A0−λ)−1 is an integral operator
in L2(Rd;CN ). In order to describe its integral kernel Gλ,d(x − y), we write Kj for the modified
Bessel functions of the second kind and

k(λ) =
√
λ2 −m2 and ζ(λ) =

λ+m

k(λ)
=

λ+m√
λ2 −m2

; (3.7)

here
√
z is chosen for z ∈ C \ [0,∞) such that Im

√
z > 0. For d ∈ {1, 2, 3} the integral kernel

Gλ,d is explicitly given by

Gλ,1(x) =
i

2
eik(λ)|x|

(
ζ(λ) sgn (x)

sgn (x) ζ(λ)−1

)
,

Gλ,2(x) =
k(λ)

2π
K1

(
− ik(λ)|x|

)σ · x
|x|

+
1

2π
K0

(
− ik(λ)|x|

)(
λI2 +mσ3

)
, (3.8)

Gλ,3(x) =

(
λI4 +mα0 + (1− ik(λ)|x|) i(α · x)

|x|2

)
1

4π|x|
eik(λ)|x|;

cf. (Albeverio et al., 2005; Behrndt et al., 2020; Thaller, 1992; Weidmann, 2003).

Next, we consider external potential fields in which the particle moves. Since we are studying
relativistic effects, these potentials must be invariant under Lorentz transformations. For a given
scalar potential Φs the quantity V = Φsα0 is Lorentz invariant as shown in Thaller (1992). This
motivates the following formal ansatz for the Dirac operator corresponding to a relativistic quantum
particle with spin 1/2 moving in an external field consisting of a scalar potential Φs:

A = A0 + Φsα0.

Of particular interest are strongly localized fields, i.e., fields that only have an effect in a small
neighborhood of a set Σ ⊂ Rd with measure 0. An example of a field of this kind is the quark
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confinement inside a nucleon in the form of the MIT bag model. To describe these strongly localized
fields it is often a useful simplification to replace them by δ-potentials which are supported on Σ. In
the following we consider a Lorentz scalar potential which is strongly localized in a neighborhood of
the hypersurface Σ ⊂ Rd and approximate it by a δ-potential supported on Σ. Applying the formal
ansatz above for the Dirac operator yields the formal expression

Aτ = A0 + τα0δΣ (3.9)

with interaction strength τ ∈ R. In the following sections, this operator will be defined in a math-
ematically rigorous way and its properties will be studied. Recall from (3.5) that the free Dirac
operator A0 is not bounded from below and hence the usual form approach to construct self-adjoint
realizations with singular perturbations is not applicable.

4 One-dimensional Dirac operators with Lorentz scalar
δ-point interactions

In this section, one-dimensional Dirac operators with Lorentz scalar δ-interactions supported on
Σ = {0} will be investigated. The following results are well known, see for instance (Pankrashkin
& Richard, 2014), but are presented here for the sake of completeness. In particular, the methods
used and the results obtained in the discussion will serve as a motivation for the analysis of two- and
three-dimensional Dirac operators in the following section.

As already mentioned in the previous section, it is well known that the free Dirac operator

A0f = −iσ1
d

dx
f +mσ3f, dom A0 = H1(R;C2),

is self-adjoint in the Hilbert space L2(R;C2). In accordance with (3.9), Lorentz scalar δ-interactions
will now be considered, which are represented by the formal expression

Aτ = A0 + τσ3δΣ. (4.1)

Here τ ∈ R corresponds to the constant interaction strength. Following the usual construction of
self-adjoint realizations of the expression above as in Albeverio et al. (2005), one first defines the
symmetric operator

Sf := −iσ1
d

dx
f +mσ3f,

dom S := H1
0

(
(0,∞);C2

)
⊕H1

0 ((−∞, 0);C2).

It can be shown that the adjoint operator S∗ acts in the same way as S, but has the larger domain

dom S∗ = H1((0,∞);C2)⊕H1((−∞, 0);C2).

In the next step, self-adjoint extensions of S are defined by restricting S∗ to a suitable domain of
definition. This domain is characterized by imposing certain coupling conditions on Σ = {0}, which
are found by a formal integration of the expression (4.1). In the present case the coupling conditions
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for a spinor f = (f1, f2) have the form

i (f2(0+)− f2(0−)) =
τ

2
(f1(0+) + f1(0−)) ,

i (f1(0+)− f1(0−)) = −τ
2

(f2(0+) + f2(0−)) .
(4.2)

Next, we define the two linear mappings Γ0,Γ1 : dom S∗ → C2 by the assignments

Γ0f := −i
(
f2(0+)− f2(0−)

f1(0+)− f1(0−)

)
and Γ1f :=

1

2

(
f1(0+) + f1(0−)

f2(0+) + f2(0−)

)
. (4.3)

Using these boundary maps one obtains the equivalent representation

Γ0f + τσ3Γ1f = 0, f ∈ dom S∗,

of the coupling conditions in (4.2).

Proposition 4.1. The triplet {C2,Γ0,Γ1} is an ordinary boundary triplet for S∗.

Proof. Integration by parts and a straightforward computation shows that the abstract Green’s iden-
tity in Definition 2.1 is valid. If one defines the function

f(x) =
i

2

(
c2
c1

)
sgn (x)e−|x| +

(
c3
c4

)
e−|x|, x ∈ R,

for a given vector (c1, c2, c3, c4) ∈ C4, then f ∈ dom S∗ and the surjectivity of the mapping
(Γ0,Γ1)> : dom S∗ → C4 follows. This shows (ii) in Definition 2.1. Finally, to show that Def-
inition 2.1 (iii) holds, notice that the restriction A0 = S∗ � ker Γ0 corresponds to the free Dirac
operator. Hence, it follows that the triplet is an ordinary boundary triplet.

Using the ordinary boundary triplet from Proposition 4.1, one can now define the operator

Aτ = S∗ � ker(Γ0 + τσ3Γ1),

which is interpreted as the realization of the formal expression (4.1) on the basis of the coupling
conditions (4.2). Due to τ ∈ R it follows immediately thatAτ is a self-adjoint operator inL2(R;C2);
see the discussion before Theorem 2.3 with ϑ = −τ−1σ3, which is self-adjoint.

Next we derive an explicit resolvent formula for Aτ and characterize its spectrum. For this purpose,
the first step is to determine the γ-field and the Weyl function of the ordinary boundary triplet from
Proposition 4.1. To simplify the presentation, we first define the two functions

f1(x) :=
i

2

(
ζ(λ)

sgn (x)

)
eik(λ)|x| and f2(x) :=

i

2

(
sgn (x)

ζ(λ)−1

)
eik(λ)|x|

with k(λ) and ζ(λ) defined as in (3.7). Note that these functions form a basis of ker(S∗ − λ) for all
λ ∈ ρ(A0) and are mapped to the basis vectors (1, 0) and (0, 1) of C2 by Γ0. A simple computation
now shows that the γ-field is given by[

γ(λ)

(
ξ1
ξ2

)]
(x) = ξ1f1(x) + ξ2f2(x) =

i

2
eik(λ)|x|

(
ζ(λ) sgn (x)

sgn (x) ζ(λ)−1

)(
ξ1
ξ2

)
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for (ξ1, ξ2) ∈ C2 and x ∈ R, while the Weyl function corresponds to the matrix

M(λ) =
i

2

(
ζ(λ) 0

0 ζ(λ)−1

)
.

Note that the x-dependent part in the representation of the γ-field corresponds to the Green’s function
of the free Dirac operator. This will remain valid also in the multi-dimensional considerations in the
next section.

Using the above representations of the γ-field and the Weyl function the next result follows from
Theorem 2.3.

Proposition 4.2. For all λ ∈ ρ(Aτ ) ∩ ρ(A0) and f ∈ L2(R;C2) the resolvent formula

(Aτ − λ)−1f(x) = (A0 − λ)−1f(x)

+
τ

2 (2 + iτζ(λ))

((
ζ(λ)

−sgn (·)

)
eik(λ)|·|, f

)
L2(R;C2)

(
ζ(λ)

sgn (x)

)
eik(λ)|x|

− τζ(λ)

2 (2ζ(λ)− iτ)

((
−sgn (·)
ζ(λ)−1

)
eik(λ)|·|, f

)
L2(R;C2)

(
sgn (x)

ζ(λ)−1

)
eik(λ)|x|

is valid for all x ∈ R. Furthermore, the spectrum of Aτ is given by

σess(Aτ ) = (−∞,−m] ∪ [m,∞),

σdisc(Aτ ) =

{
∅, if τ ≥ 0,{

±m 4−τ2

4+τ2

}
, if τ < 0.

Proof. From Theorem 2.3 (iii) the representation

(Aτ − λ)−1f = (A0 − λ)−1f − γ(λ)τσ3(I + τM(λ)σ3)−1γ(λ)∗f

follows for all λ ∈ ρ(Aτ )∩ρ(A0). After a simple calculation, using the above expressions for the γ-
field and the Weyl function, one obtains the claimed resolvent representation for all f ∈ L2(R;C2).
The statement about the essential spectrum follows from the fact that bothAτ andA0 are self-adjoint
extensions of the operator S, which has the finite defect indices (2, 2). It remains to show the claim
about the discrete spectrum. Notice first that

σdisc(Aτ ) ⊆ (−m,m) ⊆ ρ(A0).

Thus, it follows from Theorem 2.3 (i) that λ ∈ σdisc(Aτ ) if and only if 0 ∈ σ(I + τM(λ)σ3). The
eigenvalues of this matrix can be determined in an elementary way and one obtains the defining
equations

2 + iτζ(λ) = 0 or 2ζ(λ)− iτ = 0.

If the first equality holds, then there exist an eigenvalue if and only if τ < 0 (due to the choice of the
complex square root in (3.7)). This eigenvalue is then given by

λ1 = m
4− τ2

4 + τ2
.

If the second equation holds, then a similar reasoning yields the eigenvalue λ2 = −λ1.
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5 Boundary triplets for two- and three-dimensional Dirac
operators with singular interactions

In this section we use boundary mappings similar to those in Section 4 to construct boundary triplets
for Dirac operators with δ-shell interactions in R2 and R3. However, by translating the boundary
mappings in (4.3) directly to the higher-dimensional setting one obtains a generalized or quasi
boundary triplet instead of an ordinary boundary triplet. Before we can introduce the boundary
triplets, some preliminaries related to function spaces and trace theorems are needed. For smooth
surfaces similar boundary triplets and Sobolev spaces were used in (Behrndt et al., 2018; 2019;
Behrndt & Holzmann, 2020; Holzmann, Ourmières-Bonafos & Pankrashkin, 2018) and (Behrndt et
al., 2020; Benguria et al., 2017; Ourmières-Bonafos & Vega, 2018), respectively; it is one of the
main goals of this note to extend these constructions to closed Lipschitz smooth hypersurfaces. As
an application we prove that Dirac operators with Lorentz scalar δ-shell interactions supported on
general compact Lipschitz hypersurfaces are self-adjoint.

5.1 Sobolev spaces for Dirac operators and related trace theorems

As in Section 3 the space dimension is denoted by d ∈ {2, 3} while N := 2[(d+1)/2], where [·] is the
Gauss bracket. Consequently, we have N = 2 for d = 2 and N = 4 for d = 3. Let α0, . . . , αd be
the d+ 1 anti-commuting CN×N -valued Dirac matrices defined in Section 3.

Throughout this subsection let Ω ⊂ Rd be a bounded or unbounded Lipschitz domain with compact
boundary and denote by ν the unit normal vector field at ∂Ω. For s ∈ [0, 1] we define the space

Hs
α(Ω;CN ) :=

{
f ∈ Hs(Ω;CN ) : (α · ∇)f ∈ L2(Ω;CN )

}
,

where the derivatives are understood in the distributional sense and Hs(Ω;CN ) is the standard L2-
based Sobolev space of order s of CN -valued functions, and we endow it with the norm

‖f‖2Hsα(Ω;CN ) := ‖f‖2Hs(Ω;CN ) + ‖(α · ∇)f‖2L2(Ω;CN ).

One can show with standard techniques that Hs
α(Ω;CN ) is a Hilbert space and that C∞0 (Ω;CN )

is dense in Hs
α(Ω;CN ); cf. (Benguria et al., 2017: Lemma 2.1), (Behrndt & Holzmann, 2020:

Lemma 3.2), or (Ourmières-Bonafos & Vega, 2018: Proposition 2.12) for similar arguments. More-
over, with the help of the Fourier transform one sees that Hs

α(Rd;CN ) = H1(Rd;CN ) for any
s ∈ [0, 1]. In the following lemma we state a trace theorem for Hs

α(Ω;CN ) when s ≥ 1
2 .

Lemma 5.1. For s ∈ [ 1
2 , 1] the map C∞0 (Ω;CN ) 3 f 7→ f |∂Ω extends to a unique continuous

operator γD : Hs
α(Ω;CN )→ Hs−1/2(∂Ω;CN ).

Proof. For s ∈ ( 1
2 , 1] the claim follows from the classical trace theorem (McLean, 2000: Theo-

rem 3.38), as Hs
α(Ω;CN ) is continuously embedded in Hs(Ω;CN ). For s = 1

2 we consider for
s1, s2 ∈ R the Hilbert space

Hs1,s2
∆ (Ω;CN ) :=

{
f ∈ Hs1(Ω;CN ) : −∆f ∈ Hs2(Ω;CN )

}
(5.1)
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endowed with the norm

‖f‖2
H
s1,s2
∆ (Ω;CN )

:= ‖f‖2Hs1 (Ω;CN ) + ‖∆f‖2Hs2 (Ω;CN ).

It follows from Gesztesy & Mitrea (2011: Lemma 3.1) that there exists a continuous trace map from
H

1/2,−1
∆ (Ω) toL2(∂Ω). Since (3.3) implies (α·∇)2 = −∆ in the distributional sense,H1/2

α (Ω;CN )

is continuously embedded in H1/2,−1
∆ (Ω;CN ). This yields the claim also for s = 1

2 .

Using Lemma 5.1 as well as the fact that C∞0 (Ω;CN ) is dense in Hs
α(Ω;CN ), one can show for all

f, g ∈ Hs
α(Ω;CN ), s ∈ [ 1

2 , 1], the following integration by parts formula∫
Ω

i(α · ∇)f · g dx =

∫
∂Ω

i(α · ν)f · g dσ +

∫
Ω

f · i(α · ∇)g dx. (5.2)

In the construction of boundary triplets for Dirac operators with singular interactions some families
of integral operators related to the fundamental solution Gλ,d given in (3.8) are required. Assume
that Σ ⊂ Rd is a closed bounded Lipschitz hypersurface and that Ω+ is the bounded Lipschitz
domain with ∂Ω+ = Σ, let ν be the unit normal vector field at Σ pointing outwards of Ω+, and
let Ω− := Rd \ Ω+. We introduce the potential operator Φλ : L2(Σ;CN ) → L2(Rd;CN ) for
λ /∈ (−∞,−m] ∪ [m,∞) by

Φλϕ(x) :=

∫
Σ

Gλ,d(x− y)ϕ(y) dσ(y), ϕ ∈ L2(Σ;CN ), x ∈ Rd \ Σ, (5.3)

and the strongly singular boundary integral operator Cλ : L2(Σ;CN ) → L2(Σ;CN ) by the follow-
ing limit

Cλϕ(x) := lim
ε↘0

∫
Σ\B(x,ε)

Gλ,d(x− y)ϕ(y) dσ(y), ϕ ∈ L2(Σ;CN ), x ∈ Σ, (5.4)

where B(x, ε) is the ball of radius ε centered at x. Both operators Φλ and Cλ are well defined and
bounded, see (Arrizabalaga, Mas & Vega, 2014: Lemma 3.3) and the references there. Moreover,
for λ ∈ (−m,m) the operator Cλ is self-adjoint in L2(Σ;CN ). In the next lemma we improve the
mapping properties for Φλ.

Lemma 5.2. For any λ ∈ ρ(A0) the operator Φλ gives rise to a bounded map

Φλ : L2(Σ;CN )→ H1/2
α (Rd \ Σ;CN ).

Proof. Let SL(µ) = (−∆−µ)−1γ′D be the single layer potential for −∆−µ, where γ′D is the dual
of the Dirichlet trace operator. Using that (3.3) implies (α · ∇)2 = ∆ in the distributional sense one
gets

Φλ =
(
− iα · ∇+mα0 + λIN )SL(λ2 −m2)IN ,

see also (3.6). Since
SL(λ2 −m2) : L2(Σ)→ H

3/2,0
∆ (Rd \ Σ)

is bounded, where H3/2,0
∆ (Rd \ Σ) is defined by (5.1) (this follows, e.g., from (Gesztesy & Mitrea,

2009: Equation (2.127))), the claimed result follows.
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Finally, we note that for ϕ ∈ L2(Σ;CN ) the trace of Φλϕ, which is well defined by Lemmas 5.1
and Lemma 5.2, is given by

γ±DΦλϕ = ∓ i
2

(α · ν)ϕ+ Cλϕ, (5.5)

where γ±D denotes the trace operator for Ω±; this can be shown in the same way as in (Arrizabalaga,
Mas & Vega, 2014: Lemma 3.3) or (Behrndt et al., 2020: Proposition 3.4).

5.2 Quasi boundary triplets and generalized boundary triplets for Dirac operators with
singular interactions

In this subsection we follow ideas from Section 4 and introduce a family of quasi boundary triplets
for Dirac operators; similar constructions can also be found in Behrndt et al. (2018) and Behrndt
& Holzmann (2020). Let Ω+ ⊂ Rd be a bounded Lipschitz domain and set Ω− := Rd \ Ω+,
Σ := ∂Ω+ = ∂Ω−. We denote by ν the unit normal vector field at Σ that is pointing outwards of
Ω+. In the following we will often denote the restriction of a function f defined on Rd onto Ω± by
f±.

We introduce for s ∈ [0, 1] the operators T (s) in L2(Rd;CN ) by

T (s)f := (−i(α · ∇) +mα0)f+ ⊕ (−i(α · ∇) +mα0)f−,

dom T (s) := Hs
α(Ω+;CN )⊕Hs

α(Ω−;CN ),

and S := T (s) � H1
0 (Rd \ Σ;CN ), which is given more explicitly by

Sf = (−i(α · ∇) +mα0)f, dom S = H1
0 (Rd \ Σ;CN ).

The operator S is densely defined, closed, and symmetric. Using standard arguments and distribu-
tional derivatives one verifies that

S∗ = T (0) and (T (0))∗ = S.

Next, we introduce for s ∈ [ 1
2 , 1] the mappings Γ

(s)
0 ,Γ

(s)
1 : dom T (s) → L2(Σ;CN ) by

Γ
(s)
0 f := i(α · ν)(f+|Σ − f−|Σ) and Γ

(s)
1 f :=

1

2
(f+|Σ + f−|Σ), (5.6)

and note that Γ
(s)
0 and Γ

(s)
1 are well defined due to Lemma 5.1. In order to characterize the range of

Γ
(s)
0 , we introduce the space

Hs
α(Σ;CN ) :=

{
ϕ ∈ L2(Σ;CN ) : (α · ν)ϕ ∈ Hs(Σ;CN )

}
,

whereHs(Σ;CN ) denotes the standard Sobolev space on Σ of CN -valued functions. If Σ isC1,s+ε-
smooth for some ε > 0, then Hs

α(Σ;CN ) = Hs(Σ;CN ), cf. (Behrndt, Holzmann & Mas, 2020:
Lemma A.2).

In the following theorem we show that the mappings Γ
(s)
0 and Γ

(s)
1 in (5.6) give rise to a quasi

boundary triplet for S∗ and we compute the associated γ-field and Weyl function. Recall that A0

is the free Dirac operator defined in (3.4), and that Φλ and Cλ are the mappings introduced in (5.3)
and (5.4), respectively.



28 Acta Wasaensia

Theorem 5.3. Let s ∈ [ 1
2 , 1]. Then the following statements hold:

(i) The triplet
{
L2(Σ;CN ),Γ

(s)
0 ,Γ

(s)
1

}
is a quasi boundary triplet for S∗ = T (s) such that

T (s) � ker Γ
(s)
0 = A0, and one has

ran Γ
(s)
0 = Hs−1/2

α (Σ;CN ). (5.7)

In particular,
{
L2(Σ;CN ),Γ

(1/2)
0 ,Γ

(1/2)
1

}
is a generalized boundary triplet.

(ii) For λ ∈ ρ(A0) = C \ ((−∞,−m] ∪ [m,∞)) the values γ(s)(λ) of the γ-field are given by

γ(s)(λ) = Φλ � H
s−1/2
α (Σ;CN ).

Each γ(s)(λ) is a densely defined bounded operator from L2(Σ;CN ) to L2(Rd;CN ) and an
everywhere defined bounded operator from H

s−1/2
α (Σ;CN ) to Hs

α(Rd \ Σ;CN ). Moreover,

γ(s)(λ)∗ : L2(Rd;CN )→ L2(Σ;CN )

is compact.

(iii) For λ ∈ ρ(A0) = C \ ((−∞,−m] ∪ [m,∞)) the values M (s)(λ) of the Weyl function are
given by

M (s)(λ) = Cλ � Hs−1/2
α (Σ;CN ).

Each M (s)(λ) is a densely defined bounded operator in L2(Σ;CN ) and a bounded every-
where defined operator from H

s−1/2
α (Σ;CN ) to Hs−1/2(Σ;CN ).

Proof. Let s ∈ [ 1
2 , 1] be fixed. First, we show that

{
L2(Σ;CN ),Γ

(s)
0 ,Γ

(s)
1

}
is a quasi boundary

triplet. For this we note that T (s) = T (0) = S∗, as C∞0 (Ω±;CN ) is dense in H0
α(Ω±;CN ), while

the norm in H0
α(R3 \ Σ;CN ) and the graph norm induced by T (0) are equivalent. Next, we verify

that Green’s identity in Definition 2.1 (i) is fulfilled. For this let

f = f+ ⊕ f−, g = g+ ⊕ g− ∈ dom T (s) = Hs
α(Ω+;CN )⊕Hs

α(Ω−;CN ).

Then integration by parts (5.2) applied in Ω± yields(
(−i(α · ∇) +mα0)f±, g±

)
L2(Ω±;CN )

−
(
f±, (−i(α · ∇) +mα0)g±

)
L2(Ω±;CN )

= ±
(
− i(α · ν)f±|Σ, g±|Σ

)
L2(Σ;CN )

,

where it is used that −ν is the normal vector field pointing outwards of Ω−. By adding these two
formulas for Ω+ and Ω− one arrives at Green’s identity.

Next, we show that T (s) � ker Γ
(s)
0 = A0. As the free Dirac operator A0 is self-adjoint, this shows

that T (s) � ker Γ
(s)
0 is self-adjoint. The inclusion A0 ⊂ T (s) � ker Γ

(s)
0 is clear. To verify the

converse inclusion, let f ∈ ker Γ
(s)
0 . Then Green’s identity yields for any ϕ ∈ C∞0 (Rd;CN )(

f,−i(α · ∇)ϕ
)
L2(Rd;CN )

=
(
(T (s) −mα0)f, ϕ

)
L2(Rd;CN )

. (5.8)

Hence, (α · ∇)f ∈ L2(Rd;CN ), which shows f ∈ Hs
α(Rd;CN ) = H1(Rd;CN ) = dom A0.

Therefore, we conclude that T (s) � ker Γ
(s)
0 = A0 holds.
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It remains to prove that ran (Γ
(s)
0 ,Γ

(s)
1 ) is dense in L2(Σ;CN )× L2(Σ;CN ). For this, we prove

ran (Γ
(s)
0 � ker Γ

(s)
1 ) = H1/2

α (Σ;CN ) (5.9)

and
ran (Γ

(s)
1 � ker Γ

(s)
0 ) = H1/2(Σ;CN ). (5.10)

To establish the inclusion "⊂" in (5.9) we note first that any function f ∈ ker Γ
(s)
1 satisfies the

equality f+|Σ = −f−|Σ. One can show as in (5.8) that f+⊕(−f−) ∈ Hs
α(Rd;CN ) = H1(Rd;CN )

and thus, f ∈ H1(Ω+;CN ) ⊕ H1(Ω−;CN ). Therefore, the definition of Γ
(s)
0 yields the claimed

inclusion. For the converse inclusion "⊃" let ϕ ∈ H1/2
α (Σ;CN ). Choose f± ∈ H1(Ω±;CN ) such

that f±|Σ = ∓ i
2 (α · ν)ϕ. Then f ∈ ker Γ

(s)
1 and Γ

(s)
0 f = ϕ. Since this can be done for all functions

ϕ ∈ H1/2
α (Σ;CN ), we have shown (5.9).

To verify (5.10) note that the inclusion "⊂" follows from ker Γ
(s)
0 = H1(Rd;CN ) and the definition

of Γ
(s)
1 . For the converse inclusion "⊃" let ϕ ∈ H1/2(Σ;CN ). Choose f ∈ H1(Rd;CN ) such that

f |Σ = ϕ. Then f ∈ ker Γ
(s)
0 and Γ

(s)
1 f = ϕ. Since this can be done for all ϕ ∈ H1/2(Σ;CN ), we

have verified (5.10). Hence, we have shown that
{
L2(Σ;CN ),Γ

(s)
0 ,Γ

(s)
1

}
is indeed a quasi boundary

triplet for all s ∈ [ 1
2 , 1]. Thus, except for formula (5.7), assertion (i) has been shown. Equation (5.7)

will be proved together with items (ii) and (iii).

Next, we show that γ(s)(λ)∗ is compact for all s. For this purpose, recall that formula (2.2) implies
that γ(s)(λ)∗ = Γ

(s)
1 (A0 − λ)−1. Since (A0 − λ)−1 : L2(Rd;CN )→ H1(Rd;CN ) is bounded, we

see that γ(s)(λ)∗ is actually independent of s and, furthermore, that

γ(s)(λ)∗ : L2(Rd;CN )→ H1/2(Σ;CN )

is also bounded. Since H1/2(Σ;CN ) is compactly embedded in L2(Σ;CN ), the claimed compact-
ness of γ(s)(λ)∗ follows.

The remaining assertions will be proved in three steps for various values of s ∈ [ 1
2 , 1].

Step 1 for s = 1
2 . Consider for ϕ ∈ L2(Σ;CN ) the function fλ := Φλϕ, see (5.3). Then one

has fλ ∈ H
1/2
α (Rd \ Σ;CN ) = dom T (1/2) by Lemma 5.2, and by (5.5) we get Γ

(1/2)
0 fλ = ϕ.

Therefore, ran Γ
(1/2)
0 = L2(Σ;CN ), which is (5.7) for s = 1

2 . Moreover, as Gλ,d in (3.8) is a
fundamental solution for the Dirac equation, the definition of Φλ shows that(

T (1/2) − λ
)
fλ = 0 in Rd \ Σ.

Consequently, γ(1/2)(λ) = Φλ. Finally, using the definition of Γ
(1/2)
1 and (5.5), it follows that

M (1/2)(λ) = Cλ and thus, M (1/2)(λ) is bounded in L2(Σ;CN ). This shows all claims for s = 1
2 .

Step 2 for s = 1. First note that dom T (1) = H1(Rd\Σ;CN ), the definition of Γ
(1)
0 , and (5.9) imply

ran Γ
(1)
0 = H

1/2
α (Σ;CN ). As {L2(Σ;CN ),Γ

(1)
0 ,Γ

(1)
1 } is a restriction of the triplet for s = 1

2 , we
deduce from the already shown results that

γ(1)(λ) = γ(1/2)(λ) � ran Γ
(1)
0 = Φλ � H

1/2
α (Σ;CN )

and
M (1)(λ) = M (1/2)(λ) � ran Γ

(1)
0 = Cλ � H1/2

α (Σ;CN ).
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Using the closed graph theorem and the fact that H1/2
α (Σ;CN ) and H1(Rd \Σ;CN ) are boundedly

embedded in L2(Σ;CN ) and L2(Rd;CN ), respectively, one gets that

γ(1)(λ) : ran Γ
(1)
0 = H1/2

α (Σ;CN )→ dom T (1) = H1(Rd \ Σ;CN )

is bounded as well. The mapping properties of the trace map yield that also

M (1)(λ) : ran Γ
(1)
0 = H1/2

α (Σ;CN )→ ran Γ
(1)
1 = H1/2(Σ;CN )

is bounded. Hence, all claimed statements for s = 1 have been shown.

Step 3 for s ∈ ( 1
2 , 1). First we note that an interpolation argument shows that

Φλ : Hs−1/2(Σ;CN )→ Hs
α(Rd \ Σ;CN ) = dom T (s)

is bounded. Together with (5.5) this implies that ran Γ
(s)
0 = H

s−1/2
α (Σ;CN ), i.e., (5.7), holds for

s ∈ ( 1
2 , 1). Hence, we have γ(s)(λ) = Φλ � H

s−1/2
α (Σ;CN ) and the trace theorem shows that

M (s)(λ) = Γ
(s)
1 γ(s)(λ) : Hs−1/2

α (Σ;CN )→ Hs−1/2(Σ;CN )

is bounded. Thus, all claims are proved.

In the next theorem we study the self-adjointness of a Dirac operatorAτ with a Lorentz scalar δ-shell
interaction of strength τ ∈ R \ {0}, which is formally given by −i(α · ∇) + mα0 + τα0δΣ. In a
similar way as in (4.2) we define the operator Aτ by

Aτ := T (1/2) � ker
(
Γ

(1/2)
0 + τα0Γ

(1/2)
1

)
.

The operator Aτ is given more explicitly by

Aτf = (−i(α · ∇) +mα0)f+ ⊕ (−i(α · ∇) +mα0)f−,

dom Aτ =
{
f ∈ H1/2

α (Rd \ Σ;CN ) : i(α · ν)(f+|Σ − f−|Σ) +
τ

2
α0(f+|Σ + f−|Σ) = 0

}
.

This operator was investigated under various assumptions in Behrndt et al. (2019; 2020); Holzmann,
Ourmières-Bonafos & Pankrashkin (2018); Pizzichillo & Van Den Bosch (2019). In the following
theorem it is shown, for the first time, that Aτ is self-adjoint when the interaction support Σ ⊂ Rd

is an arbitrary closed bounded Lipschitz smooth hypersurface.

Theorem 5.4. For any τ ∈ R\{0} the operatorAτ is self-adjoint in L2(Rd;CN ) and the following
statements hold:

(i) For λ ∈ ρ(Aτ ) the resolvent of Aτ is given by

(Aτ − λ)−1 = (A0 − λ)−1 − Φλ

(
1

τ
α0 + Cλ

)−1

Φ∗
λ
.

(ii) σess(Aτ ) = σess(A0) = (−∞,−m] ∪ [m,∞).

(iii) σdisc(Aτ ) is finite and λ ∈ σdisc(Aτ ) if and only if 0 ∈ σp( 1
τ α0 + Cλ).
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Remark 5.5. By Theorem 5.4 the operator Aτ is self-adjoint defined on a subset of

H1/2
α (Rd \ Σ;CN ).

If Σ is a smooth hypersurface, then it is known that Aτ is self-adjoint and

dom Aτ ⊂ H1(Rd \ Σ;CN ),

see (Behrndt et al., 2020; Holzmann, Ourmières-Bonafos & Pankrashkin, 2018). However, for
more general Lipschitz smooth hypersurfaces this smoothness in the operator domain can not be
expected, as was shown explicitly in (Le Treust & Ourmières-Bonafos, 2018: Remark 1.9) in the
two-dimensional setting for polygonal domains.

Proof of Theorem 5.4. In order to show the self-adjointness of Aτ , it suffices, according to Theo-
rem 2.3 and the discussion following it, to verify that

ran
(
Γ

(1/2)
1 (A0 ± i)−1

)
= H1/2(Σ;CN ) ⊂ ran

(
1

τ
α0 +M

(1/2)
±i

)
= ran

(
1

τ
α0 + C±i

)
.

(5.11)

In order to see this, we prove that 1
τ α0 +C±i is bijective in L2(Σ;CN ). First, we note that 1

τ α0 +C±i
is injective, as otherwise the symmetric operator Aτ would have the non-real eigenvalue ±i by
Theorem 2.3. Next, by (2.3) we have that

C±i = M (1/2)(±i) = M (1/2)(0)± iγ(1/2)(0)∗γ(1/2)(±i) = C0 +K±i

and note that K±i = ±iγ(1/2)(0)∗γ(1/2)(±i) is compact in L2(Σ;CN ) due to Theorem 5.3 (ii).
Next, we compute(

1

τ
α0 + C±i

)2

=
1

τ2
IN + C2

0 +
1

τ

(
α0C±i + C±iα0

)
+K2

±i + C0K±i +K±iC0.

Since C0 is self-adjoint, the operator 1
τ2 IN +C2

0 is a strictly positive self-adjoint operator and, hence,
it is a Fredholm operator with index zero. Next, due to the anti-commutation relation (3.3) it is not
difficult to see that

1

τ

(
α0C±i + C±iα0

)
=

1

τ
(2m± 2iα0)S(−m2 − 1),

where S(ν) is the single layer boundary integral operator for −∆ − ν. According to (Holzmann &
Unger, 2020: Lemma 3.4) the latter operator is compact. Since also K±i is compact, we conclude
that

(
1
τ α0 + C±i

)2
must be a Fredholm operator with index zero. Since 1

τ α0 + C±i is injective,
we conclude that

(
1
τ α0 + C±i

)2
is also injective and hence, as it has Fredholm index zero, it must

be surjective. Therefore 1
τ α0 + C±i is also bijective. This shows that (5.11) holds and thus, Aτ is

self-adjoint.

Next, by Theorem 2.3 the claimed resolvent formula in (i) holds for λ = ±i. The map 1
τ α0 + C±i

is bijective and, hence, boundedly invertible. This, the mapping properties of Φ±i and Φ∗∓i from
Theorem 5.3, and Kreı̆n’s resolvent formula imply assertion (ii). The resolvent formula in item (i)
for λ ∈ ρ(Aτ ) is now a direct consequence of Theorem 2.3. The fact that σdisc(Aτ ) is finite can be
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shown in the same way as in (Behrndt et al., 2020: Proposition 3.8), while the Birman-Schwinger
principle in (iii) follows again directly from Theorem 2.3 and the representation of M (1/2)(λ) from
Theorem 5.3.
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Herczyński, J. (1989). On Schrödinger operators with distributional potentials. J. Operator Theory
21, 273–295.

Holzmann, M., Ourmières-Bonafos, T. & Pankrashkin, K. (2018). Dirac operators with Lorentz
scalar shell interactions. Rev. Math. Phys. 30, 1850013, 46 pp.

Holzmann, M. & Unger, G. (2020). Boundary integral formulations of eigenvalue problems for ellip-
tic differential operators with singular interactions and their numerical approximation by boundary
element methods. Oper. Matrices 14, 555–599.

Kato, T. (1995). Perturbation Theory for Linear Operators. Classics in Mathematics. Berlin:
Springer-Verlag. (Reprint of the 1980 edition.)

Le Treust, L. & Ourmières-Bonafos, T. (2018). Self-adjointness of Dirac operators with infinite mass
boundary conditions in sectors. Ann. Henri Poincaré 19, 1465–1487.

Mantile, A., Posilicano, A. & Sini, M. (2016). Self-adjoint elliptic operators with boundary condi-
tions on not closed hypersurfaces. J. Differential Equations 261, 1–55.

Mas, A. & Pizzichillo, F. (2018). Klein’s paradox and the relativistic δ-shell interaction in R3. Anal.
& PDE 11, 705–744.

McLean, W. (2000). Strongly Elliptic Systems and Boundary Integral Equations. Cambridge: Cam-
bridge University Press.

Ourmières-Bonafos, T. & Vega, L. (2018). A strategy for self-adjointness of Dirac operators: appli-
cation to the MIT bag model and δ-shell interactions. Publ. Mat. 62, 397–437.

Pankrashkin, K. & Richard, S. (2014). One-dimensional Dirac operators with zero-range interac-
tions: spectral, scattering, and topological results. J. Math. Phys. 55, 062305, 17 pp.

Pizzichillo, F. & Van Den Bosch, H. (2019). Self-adjointness of two dimensional Dirac operators on
corner domains. arXiv:1902.05010.

Reed, M. & Simon, B. (1972). Methods of Modern Mathematical Physics I. Functional Analysis.
New York-London: Academic Press.

Reed, M. & Simon, B. (1975). Methods of Modern Mathematical Physics II. Fourier Analysis, Self-
adjointness. New York-London: Academic Press.

Reed, M. & Simon, B. (1979). Methods of Modern Mathematical Physics III. Scattering Theory.
New York-London: Academic Press.

Reed, M. & Simon, B. (1978). Methods of Modern Mathematical Physics IV. Analysis of Operators.
New York-London: Academic Press.



Acta Wasaensia 35

Stollmann, P. & Voigt, J. (1996). Perturbation of Dirichlet forms by measures. Potential Anal. 5,
109–138.

Thaller, B. (1992). The Dirac Equation. Texts and Monographs in Physics. Berlin: Springer-Verlag.

Weidmann, J. (2003). Lineare Operatoren in Hilberträumen. Teil II. Anwendungen. Mathematische
Leitfäden. Stuttgart: B. G. Teubner. (In German.)

Institut für Angewandte Mathematik, Technische Universität Graz, Steyrergasse 30, 8010 Graz, Austria
E-mail address: behrndt@tugraz.at, holzmann@math.tugraz.at, christian.stelzer09@gmail.at, and
gstenzel@math.tugraz.at





Acta Wasaensia 37

THE ORIGINAL WEYL-TITCHMARSH FUNCTIONS AND
SECTORIAL SCHRÖDINGER L-SYSTEMS

Sergey Belyi and Eduard Tsekanovskiı̆

Dedicated with great pleasure to Seppo Hassi on the occasion of his 60th birthday

1 Introduction

This paper is part of an ongoing project studying the realizations of the original Weyl-Titchmarsh
function m∞(z) and its linear-fractional transformation mα(z) associated with a Schrödinger op-
erator in L2[`,+∞). In this project the Herglotz-Nevanlinna functions −m∞(z) and 1/m∞(z) as
well as −mα(z) and 1/mα(z) are being realized as impedance functions of L-systems with a dis-
sipative Schrödinger main operator Th, Imh > 0. For the sake of brevity we will refer to these
L-systems as Schrödinger L-systems. The formal definition, exposition, and discussion of general
and Schrödinger L-systems are presented in Sections 2 and 4. We capitalize on the fact that all
Schrödinger L-systems Θµ,h form a two-parametric family whose members are uniquely defined by
a real-valued parameter µ and a complex boundary value h of the main dissipative operator.

The focus of this paper is on the case when the realizing Schrödinger L-systems are based on a
non-negative symmetric Schrödinger operator with deficiency indices (1, 1) that has an accretive
state-space operator. It is known that in this case the impedance functions of such L-systems are
Stieltjes functions, see (Arlinskiı̆, Belyi & Tsekanovskiı̆, 2011). Here we study the situation when
the realizing Schrödinger L-systems are also sectorial and the Weyl-Titchmarsh functions −mα(z)

fall into sectorial classes Sβ and Sβ1,β2 of Stieltjes functions that are discussed in detail in Section 3.
Section 5 provides us with the general realization results (obtained in Belyi & Tsekanovskiı̆ (2021))
for the functions −m∞(z), 1/m∞(z), and −mα(z). It is shown that −m∞(z), 1/m∞(z), and
−mα(z) can be realized as impedance functions of Schrödinger L-systems Θ0,i, Θ∞,i, and Θtanα,i,
respectively.

The main results of the paper are contained in Section 6. There we apply the realization theorems
from Section 5 to Schrödinger L-systems that are based on a non-negative symmetric Schrödinger
operator to obtain additional properties. Utilizing the results presented in Section 4, we derive
some new features of Schrödinger L-systems Θtanα,i whose impedance functions fall into particular
sectorial classes Sβ1,β2 with β1 and β2 explicitly described. The results are given in terms of the
parameter α that appears in the definition of the function mα(z). Moreover, the knowledge of the
limit value m∞(−0) and the value of α allow us to find the angle of sectoriality of the main and
state-space operators of the realizing L-system. This, in turn, leads to connections to Kato’s problem
about sectorial extensions of sectorial forms.

The paper is concluded with an example that illustrates the main results and concepts. The present
work is a further development of the theory of open physical systems conceived by M. Livs̆ic (1966).
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2 Preliminaries

For a pair of Hilbert spacesH1 andH2 we denote by [H1,H2] the set of all bounded linear operators
from H1 to H2. Let Ȧ be a closed, densely defined, symmetric operator in a Hilbert space H with
inner product (f, g), where f, g ∈ H. Any non-symmetric operator T in H such that Ȧ ⊂ T ⊂ Ȧ∗

will be called a quasi-self-adjoint extension of Ȧ.

Consider the rigged Hilbert spaceH+ ⊂ H ⊂ H−, whereH+ = dom Ȧ∗ and

(f, g)+ = (f, g) + (Ȧ∗f, Ȧ∗g), f, g ∈ dom A∗,

see (Berezansky, 1968; Arlinskiı̆, Belyi & Tsekanovskiı̆, 2011). Let R be the Riesz-Berezansky
operator R from H− onto H+ such that (f, g) = (f,Rg)+ and ‖Rg‖+ = ‖g‖−, where f ∈ H+,
g ∈ H−, see (Berezansky, 1968; Arlinskiı̆, Belyi & Tsekanovskiı̆, 2011). Identifying the space
conjugate to H± with H∓, we get that if A ∈ [H+,H−], then A∗ ∈ [H+,H−]. An operator
A ∈ [H+,H−] is called a self-adjoint bi-extension of a symmetric operator Ȧ if A = A∗ and
A ⊃ Ȧ. Let A be a self-adjoint bi-extension of Ȧ and let the operator Â inH be defined as follows

dom Â = {f ∈ H+ : Af ∈ H}, Â = A� dom Â.

Then the operator Â is called a quasi-kernel of a self-adjoint bi-extension A, see (Tsekanovskiı̆ &

S̆muljan, 1977) and (Arlinskiı̆, Belyi & Tsekanovskiı̆, 2011: Section 2.1). A self-adjoint bi-extension
A of a symmetric operator Ȧ is called t-self-adjoint if its quasi-kernel Â is a self-adjoint operator
in H, see (Arlinskiı̆, Belyi & Tsekanovskiı̆, 2011: Definition 4.3.1). An operator A ∈ [H+,H−] is
called a quasi-self-adjoint bi-extension of an operator T if A ⊃ T ⊃ Ȧ and A∗ ⊃ T ∗ ⊃ Ȧ.

We will be mostly interested in the following type of quasi-self-adjoint bi-extensions. Let T be
a quasi-self-adjoint extension of Ȧ with nonempty resolvent set ρ(T ). A quasi-self-adjoint bi-
extension A of an operator T is called a (∗)-extension of T if ReA is a t-self-adjoint bi-extension of
Ȧ, see (Arlinskiı̆, Belyi & Tsekanovskiı̆, 2011: Definition 3.3.5). In what follows we assume that
Ȧ has deficiency indices (1, 1). In this case it is known that every quasi-self-adjoint extension T of
Ȧ admits (∗)-extensions, see (Arlinskiı̆, Belyi & Tsekanovskiı̆, 2011). The description of all (∗)-
extensions via the Riesz-Berezansky operator R can be found in Arlinskiı̆, Belyi & Tsekanovskiı̆
(2011: Section 4.3).

Recall that a linear operator T in a Hilbert spaceH is called nonnegative, accretive, or dissipative if
(Tf, f) ≥ 0, Re (Tf, f) ≥ 0, or Im (Tf, f) ≥ 0 for all f ∈ dom T respectively, see (Kato, 1966).
An accretive operator T is called β-sectorial if there exists a value β ∈ (0, π/2) such that

(cotβ)|Im (Tf, f)| ≤ Re (Tf, f), f ∈ dom T, (2.1)

see (Kato, 1966). We say that the angle of sectoriality β is exact for a β-sectorial operator T if

tanβ = supf∈domT

|Im (Tf, f)|
Re (Tf, f)

.

An accretive operator is called extremal accretive if it is not β-sectorial for any β ∈ (0, π/2). A
(∗)-extension A of T is called accretive if Re (Af, f) ≥ 0 for all f ∈ H+. This is equivalent to the
real part ReA = (A + A∗)/2 being a nonnegative t-self-adjoint bi-extension of Ȧ.
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The following definition is a "lite" version of the definition of an L-system given for a scattering
L-system with a one-dimensional input-output space. It is tailored to the case when the symmetric
operator of an L-system has deficiency indices (1, 1). The general definition of an L-system can be
found in Arlinskiı̆, Belyi & Tsekanovskiı̆ (2011: Definition 6.3.4), see also (Belyi et al., 2006) for a
non-canonical version.

Definition 2.1. An array

Θ =

(
A K 1

H+ ⊂ H ⊂ H− C

)
(2.2)

is called an L-system if:

(1) T is a dissipative quasi-self-adjoint extension of a symmetric operator Ȧ with deficiency
indices (1, 1);

(2) A is a (∗)-extension of T ;

(3) ImA = KK∗, where K ∈ [C,H−] and K∗ ∈ [H+,C].

The operators T and A in the above definition are called the main and state-space operator, respec-
tively, of the L-system Θ, and K is called a channel operator. It is easy to see that the operator A of
the system (2.2) is such that ImA = (·, χ)χ, χ ∈ H− and pick Kc = c · χ, c ∈ C, see (Arlinskiı̆,
Belyi & Tsekanovskiı̆, 2011). The L-system Θ in (2.2) is called minimal if the operator Ȧ is a prime
operator in H, i.e., if there does not exist a non-trivial reducing invariant subspace of H on which
it induces a self-adjoint operator. Minimal L-systems of the form (2.2) with a one-dimensional
input-output space were also considered in Belyi, Makarov & Tsekanovskiı̆ (2015).

We associate with an L-system Θ the function

WΘ(z) = I − 2iK∗(A− zI)−1K, z ∈ ρ(T ),

which is called the transfer function of the L-system Θ. We also consider the function

VΘ(z) = K∗(ReA− zI)−1K, (2.3)

which is called the impedance function of an L-system Θ of the form (2.2). The transfer function
WΘ(z) of the L-system Θ and the impedance function VΘ(z) of the form (2.3) are connected by the
following relations valid for Im z 6= 0 and z ∈ ρ(T ):

VΘ(z) = i[WΘ(z) + I]−1[WΘ(z)− I],

WΘ(z) = (I + iVΘ(z))−1(I − iVΘ(z)).

An L-system Θ of the form (2.2) is called an accretive L-system if its state-space operator A is
accretive, that is Re (Af, f) ≥ 0 for all f ∈ H+, see (Belyi & Tsekanovskiı̆, 2008; Dovzhenko &

Tsekanovskiı̆, 1990). An accretive L-system is called sectorial if the operator A is sectorial, i.e., if
it satisfies (2.1) for some β ∈ (0, π/2) and all f ∈ H+.
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3 Sectorial classes and their realizations

A scalar function V (z) is called a Herglotz-Nevanlinna function if it is holomorphic on C \ R, sym-
metric with respect to the real axis, i.e., V (z)∗ = V (z̄), z ∈ C \ R, and satisfies the positivity
condition ImV (z) ≥ 0, z ∈ C+. The class of all Herglotz-Nevanlinna functions that can be real-
ized as impedance functions of L-systems and connections with Weyl-Titchmarsh functions can be
found in Arlinskiı̆, Belyi & Tsekanovskiı̆ (2011), Belyi, Makarov & Tsekanovskiı̆ (2015), Derkach,
Malamud & Tsekanovskiı̆ (1989), Gesztesy & Tsekanovskiı̆ (2000), and references therein. The
following definition can be found in Kac & Krein (1974): a scalar Herglotz-Nevanlinna function
V (z) is a Stieltjes function if it is holomorphic in Ext[0,+∞) and

Im [zV (z)]

Im z
≥ 0.

It is known that a Stieltjes function V (z) admits the following integral representation

V (z) = γ +

∞∫
0

dG(t)

t− z
, (3.1)

where γ ≥ 0 and G(t) is a non-decreasing function on [0,+∞) with
∫∞

0
dG(t)
1+t < ∞, see (Kac

& Krein, 1974). We are going to focus on the class S0(R) of scalar Stieltjes functions such that
the measure G(t) in the representation (3.1) is of unbounded variation, see (Belyi & Tsekanovskiı̆,
2008; Dovzhenko & Tsekanovskiı̆, 1990; Arlinskiı̆, Belyi & Tsekanovskiı̆, 2011). It was shown in
Arlinskiı̆, Belyi & Tsekanovskiı̆ (2011), see also (Belyi & Tsekanovskiı̆, 2008), that such a function
V (z) can be realized as the impedance function of an accretive L-system Θ of the form (2.2) with a
densely defined symmetric operator if and only if it belongs to the class S0(R).

Now we are going to consider sectorial subclasses of scalar Stieltjes functions introduced in Alpay
& Tsekanovskiı̆ (2000). Let β ∈ (0, π2 ). The sectorial subclass Sβ of Stieltjes functions consists of
all scalar functions V (z) for which

n∑
k,l=1

[
zkV (zk)− z̄lV (z̄l)

zk − z̄l
− (cotβ) V (z̄l)V (zk)

]
hkh̄l ≥ 0,

for arbitrary sequences of complex numbers {zk}, Im zk > 0, and {hk}. For 0 < β1 < β2 <
π
2 , we

have
Sβ1 ⊂ Sβ2 ⊂ S,

where S denotes the class of all Stieltjes functions (which corresponds to the case β = π
2 ). Let Θ

be a minimal L-system of the form (2.2) with a densely defined non-negative symmetric operator
Ȧ. Then the impedance function VΘ(z) defined by (2.3) belongs to the class Sβ if and only if the
operator A of the L-system Θ is β-sectorial, see (Arlinskiı̆, Belyi & Tsekanovskiı̆, 2011).

Let 0 ≤ β1 <
π
2 , 0 < β2 ≤ π

2 , and β1 ≤ β2. We say that a scalar Stieltjes function V (z) belongs to
the class S β1,β2 if

tanβ1 = lim
x→−∞

V (x) and tanβ2 = lim
x→−0

V (x).

The following connection between the classes S β and S β1,β2 can be found in Arlinskiı̆, Belyi &
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Tsekanovskiı̆ (2011). Let Θ be an L-system of the form (2.2) with a densely defined non-negative
symmetric operator Ȧ with deficiency numbers (1, 1) and let A be a β-sectorial (∗)-extension of T ,
then the impedance function VΘ(z), defined by (2.3), belongs to the class Sβ1,β2 , tanβ2 ≤ tanβ.
Moreover, the main operator T is (β2 − β1)-sectorial with the exact angle of sectoriality β2 − β1.
In the case when β is the exact angle of sectoriality of the operator T we have that VΘ(z) ∈ S0,β ,
see (Arlinskiı̆, Belyi & Tsekanovskiı̆, 2011). It also follows that, under this set of assumptions, the
impedance function VΘ(z) is such that γ = 0 in the representation (3.1).

Now let Θ be an L-system of the form (2.2), where A is a (∗)-extension of T and Ȧ is a closed
densely defined non-negative symmetric operator with deficiency numbers (1, 1). It was proved in
Arlinskiı̆, Belyi & Tsekanovskiı̆ (2011) that if the impedance function VΘ(z) belongs to the class
Sβ1,β2 and β2 6= π/2, then A is β-sectorial, where

tanβ = tanβ2 + 2
√

tanβ1(tanβ2 − tanβ1).

Let Θ be an L-system satisfying the above conditions. Then the operator A is a β-sectorial (∗)-
extension of a β-sectorial operator T with the exact angle β ∈ (0, π/2) if and only if VΘ(z) ∈ S0,β ,
see Arlinskiı̆, Belyi & Tsekanovskiı̆ (2011). Moreover, the angle β is determined by the formula

tanβ =

∫ ∞
0

dG(t)

t
,

where G(t) is the measure from integral representation (3.1) of VΘ(z).

4 L-systems with Schrödinger operator and their
impedance functions

Let H = L2[`,+∞), ` ≥ 0, and let l(y) = −y′′ + q(x)y, where q is a real locally summable
function on [`,+∞). Suppose that the symmetric operator{

Ȧy = −y′′ + q(x)y,

y(`) = y′(`) = 0,
(4.1)

has deficiency indices (1,1). LetD∗ be the set of functions y for which y and y′ are locally absolutely
continuous, and l(y) ∈ L2[`,+∞). Provide the spaceH+ = dom Ȧ∗ = D∗ with the scalar product

(y, z)+ =

∫ ∞
`

(
y(x)z(x) + l(y)l(z)

)
dx, y, z ∈ D∗.

LetH+ ⊂ L2[`,+∞) ⊂ H− be the corresponding triplet of Hilbert spaces. Consider the operators{
Thy = l(y) = −y′′ + q(x)y,

hy(`)− y′(`) = 0,
and

{
T ∗hy = l(y) = −y′′ + q(x)y,

hy(`)− y′(`) = 0,
(4.2)

where Imh > 0. Let Ȧ be a symmetric operator of the form (4.1) with deficiency indices (1,1)
generated by the differential expression l(y) = −y′′ + q(x)y. Moreover, let ϕk(x, λ), k = 1, 2, be
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the solutions of the following Cauchy problems:
l(ϕ1) = λϕ1,

ϕ1(`, λ) = 0,

ϕ′1(`, λ) = 1,

and


l(ϕ2) = λϕ2,

ϕ2(`, λ) = −1,

ϕ′2(`, λ) = 0.

It is well known that there exists a function m∞(λ) introduced by H. Weyl (1909; 1910) for which

ϕ(x, λ) = ϕ2(x, λ) +m∞(λ)ϕ1(x, λ)

belongs to L2[`,+∞), see (Naimark, 1968; Levitan, 1987). The function m∞(λ) is not a Herglotz-
Nevanlinna function, but −m∞(λ) and 1/m∞(λ) are.

Now we shall construct an L-system based on a non-self-adjoint Schrödinger operator Th with
Imh > 0. It was shown in Arlinskiı̆ & Tsekanovskiı̆ (2004) and Arlinskiı̆, Belyi & Tsekanovskiı̆
(2011) that the set of all (∗)-extensions of a non-self-adjoint Schrödinger operator Th of the form
(4.2) in L2[`,+∞) can be represented in the form

Aµ,h y = −y′′ + q(x)y − 1

µ− h
[y′(`)− hy(`)] [µδ(x− `) + δ′(x− `)],

A∗µ,h y = −y′′ + q(x)y − 1

µ− h
[y′(`)− hy(`)] [µδ(x− `) + δ′(x− `)].

(4.3)

Moreover, the formulas (4.3) establish a one-to-one correspondence between the set of all (∗)-
extensions of a Schrödinger operator Th of the form (4.2) and all µ ∈ [−∞,+∞]. One can easily
check that the (∗)-extension A in (4.3) of the non-self-adjoint dissipative Schrödinger operator Th,
Imh > 0, of the form (4.2) satisfies the condition

ImAµ,h =
Aµ,h − A∗µ,h

2i
= (·, gµ,h)gµ,h, (4.4)

where

gµ,h =
(Imh)

1
2

|µ− h|
[µδ(x− `) + δ′(x− `)]. (4.5)

Here δ(x − `) and δ′(x − `) are the delta-function and its derivative at the point `, respectively.
Furthermore,

(y, gµ,h) =
(Imh)

1
2

|µ− h|
[µy(`)− y′(`)],

where y ∈ H+, g ∈ H−, and H+ ⊂ L2[`,+∞) ⊂ H− is the triplet of Hilbert spaces discussed
above.

It was also shown in Arlinskiı̆, Belyi & Tsekanovskiı̆ (2011) that the quasi-kernel Âξ of ReAµ,h is
given by {

Âξy = −y′′ + q(x)y,

y′(`) = ξy(`),
where ξ =

µReh− |h|2

µ− Reh
. (4.6)

Let E = C and Kµ,hc = cgµ,h, where c ∈ C. Then it is clear that

K∗µ,hy = (y, gµ,h), y ∈ H+, (4.7)
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and ImAµ,h = Kµ,hK
∗
µ,h, see (4.4). Therefore the array

Θµ,h =

(
Aµ,h Kµ,h 1

H+ ⊂ L2[`,+∞) ⊂ H− C

)
(4.8)

is an L-system with the main operator Th, Imh > 0, of the form (4.2), the state-space operator
Aµ,h of the form (4.3), and with the channel operator Kµ,h of the form (4.7). It was established in
Arlinskiı̆ & Tsekanovskiı̆ (2004) and Arlinskiı̆, Belyi & Tsekanovskiı̆ (2011) that the transfer and
impedance functions of Θµ,h are

WΘµ,h(z) =
µ− h
µ− h

m∞(z) + h

m∞(z) + h

and

VΘµ,h(z) =
(m∞(z) + µ) Imh

(µ− Reh)m∞(z) + µReh− |h|2
,

respectively. It was shown in Arlinskiı̆, Belyi & Tsekanovskiı̆ (2011: Section 10.2) that if the pa-
rameters µ and ξ are related as in (4.6), then the two L-systems Θµ,h and Θξ,h of the form (4.8) have
the following properties

WΘµ,h(z) = −WΘξ,h(z), VΘµ,h(z) = − 1

VΘξ,h(z)
, with ξ =

µReh− |h|2

µ− Reh
.

5 Realizations of −m∞(z), 1/m∞(z), and mα(z)

It is known that the original Weyl-Titchmarsh function m∞(z) has the property that −m∞(z) is a
Herglotz-Nevanlinna function, see (Levitan, 1987; Naimark, 1968). The question whether−m∞(z)

can be realized as the impedance function of a Schrödinger L-system is answered in the following
theorem.

Theorem 5.1 (Belyi & Tsekanovskiı̆ (2021)). Let Ȧ be a symmetric Schrödinger operator of the
form (4.1) with deficiency indices (1, 1) inH = L2[`,∞). Ifm∞(z) is the Weyl-Titchmarsh function
of Ȧ, then the Herglotz-Nevanlinna function −m∞(z) can be realized as the impedance function of
a Schrödinger L-system Θµ,h of the form (4.8) with µ = 0 and h = i.

Conversely, let Θµ,h be a Schrödinger L-system of the form (4.8) with the symmetric operator Ȧ
such that VΘµ,h(z) = −m∞(z) for all z ∈ C± and µ ∈ R ∪ {∞}. Then the parameters µ and h
defining Θµ,h are given by µ = 0 and h = i.

A similar result was proved for the function 1/m∞(z).

Theorem 5.2 (Belyi & Tsekanovskiı̆ (2021)). Let Ȧ be a symmetric Schrödinger operator of the
form (4.1) with deficiency indices (1, 1) inH = L2[`,∞). Ifm∞(z) is the Weyl-Titchmarsh function
of Ȧ, then the Herglotz-Nevanlinna function 1/m∞(z) can be realized as the impedance function of
a Schrödinger L-system Θµ,h of the form (4.8) with µ =∞ and h = i.

Conversely, let Θµ,h be a Schrödinger L-system of the form (4.8) with the symmetric operator Ȧ
such that VΘµ,h(z) = 1

m∞(z) for all z ∈ C± and µ ∈ R ∪ {∞}. Then the parameters µ and h
defining Θµ,h are given by µ =∞ and h = i.
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We note that both L-systems Θ0,i and Θ∞,i, obtained in Theorems 5.1 and 5.2, share the same main
operator {

Ti y = −y′′ + q(x)y,

y′(`) = i y(`).
(5.1)

Now we recall the definition of the Weyl-Titchmarsh functions mα(z). Let Ȧ be a symmetric
operator of the form (4.1) with deficiency indices (1,1) generated by the differential expression
l(y) = −y′′ + q(x)y. Moreover, let ϕα(x, z) and θα(x, z) be the solutions of the following Cauchy
problems: 

l(ϕα) = zϕα,

ϕα(`, z) = sinα,

ϕ′α(`, z) = − cosα,

and


l(θα) = zθα,

θα(`, z) = cosα,

θ′α(`, z) = sinα.

Then it is known that there exists a function mα(z), analytic in C±, for which

ψ(x, z) = θα(x, z) +mα(z)ϕα(x, z) (5.2)

belongs to L2[`,+∞), see (Danielyan, 1990; Naimark, 1968; Titchmarsh, 1962). It is easy to see
that if α = π, then mπ(z) = m∞(z). The functions mα(z) and m∞(z) are connected by

mα(z) =
sinα+m∞(z) cosα

cosα−m∞(z) sinα
, (5.3)

see (Danielyan, 1990; Titchmarsh, 1962). We know that for any real α the function −mα(z) is
a Herglotz-Nevanlinna function, see (Naimark, 1968; Titchmarsh, 1962). Also, modifying (5.3)
slightly, we obtain

−mα(z) =
sinα+m∞(z) cosα

− cosα+m∞(z) sinα
=

cosα+ 1
m∞(z) sinα

sinα− 1
m∞(z) cosα

. (5.4)

The following realization theorem for the Herglotz-Nevanlinna functions−mα(z) is similar to The-
orem 5.1.

Theorem 5.3 (Belyi & Tsekanovskiı̆ (2021)). Let Ȧ be a symmetric Schrödinger operator of the
form (4.1) with deficiency indices (1, 1) in H = L2[`,∞). If mα(z) is the function of Ȧ described
in (5.2), then the Herglotz-Nevanlinna function −mα(z) can be realized as the impedance function
of a Schrödinger L-system Θµ,h of the form (4.8) with

µ = tanα and h = i. (5.5)

Conversely, let Θµ,h be a Schrödinger L-system of the form (4.8) with the symmetric operator Ȧ
such that

VΘµ,h(z) = −mα(z),

for all z ∈ C± and µ ∈ R ∪ {∞}. Then the parameters µ and h defining Θµ,h are given by (5.5).

In case α = π we obtain µα = 0, mπ(z) = m∞(z), and the realizing Schrödinger L-system Θ0,i

is described in Belyi & Tsekanovskiı̆ (2021: Section 5). In case α = π/2, then we obtain µα =∞,
−mα(z) = 1/m∞(z), and the realizing Schrödinger L-system is Θ∞,i, see (Belyi & Tsekanovskiı̆,
2021: Section 5). Assuming that α ∈ (0, π] and neither α = π nor α = π/2, we give the description
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of a Schrödinger L-system Θµα,i realizing −mα(z) as follows:

Θtanα,i =

(
Atanα,i Ktanα,i 1

H+ ⊂ L2[`,+∞) ⊂ H− C

)
, (5.6)

where

Atanα,i y = l(y)− 1

tanα− i
[y′(`)− iy(`)][(tanα)δ(x− `) + δ′(x− `)],

A∗tanα,i y = l(y)− 1

tanα+ i
[y′(`) + iy(`)][(tanα)δ(x− `) + δ′(x− `)],

(5.7)

and Ktanα,i c = c gtanα,i, c ∈ C, with

gtanα,i = (tanα)δ(x− `) + δ′(x− `).

Also,
VΘtanα,i

(z) = −mα(z),

WΘtanα,i
(z) =

tanα− i
tanα+ i

· m∞(z)− i
m∞(z) + i

= (−e2αi)
m∞(z)− i
m∞(z) + i

.

The realization theorem for the Herglotz-Nevanlinna function 1/mα(z) is similar to Theorem 5.2
and can be found in Belyi & Tsekanovskiı̆ (2021).

6 Non-negative Schrödinger operators and sectorial
L-systems

Now let us assume that Ȧ is a densely defined non-negative symmetric operator of the form (4.1)
with deficiency indices (1,1) generated by the differential expression l(y) = −y′′ + q(x)y.

Theorem 6.1 (Tsekanovskiı̆ (1980; 1981; 1987)). Let Ȧ be a nonnegative symmetric Schrödinger
operator of the form (4.1) with deficiency indices (1, 1) inH = L2[`,∞) and let the operator Th be
given by (4.2). Then the following statements hold:

(1) the operator Ȧ has more than one non-negative self-adjoint extension, i.e., the Friedrichs
extension AF and the Kreı̆n-von Neumann extension AK do not coincide, if and only if
m∞(−0) <∞;

(2) the operator Th, h = h̄, coincides with the Kreı̆n-von Neumann extension AK if and only if
h = −m∞(−0);

(3) the operator Th is accretive if and only if Reh ≥ −m∞(−0);

(4) the operator Th, h 6= h̄, is β-sectorial if and only if Reh > −m∞(−0);

(5) the operator Th, h 6= h̄, is accretive, but not β-sectorial for any β ∈ (0, π2 ) if and only if
Reh = −m∞(−0);

(6) if the operator Th, Imh > 0, is β-sectorial, then the exact angle β can be calculated via

tanβ =
Imh

Reh+m∞(−0)
. (6.1)
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For the remainder of this paper we assume that m∞(−0) < ∞. Then, according to Theorem 6.1
above, the operator Th, Imh > 0, is accretive and/or sectorial, see also (Arlinskiı̆ & Tsekanovskiı̆,
2009; Tsekanovskiı̆, 1980; 1992). It was shown in Arlinskiı̆, Belyi & Tsekanovskiı̆ (2011) that if
Th, Imh > 0, is an accretive Schrödinger operator of the form (4.2), then for all real µ satisfying
the following inequality

µ ≥ (Imh)2

m∞(−0) + Reh
+ Reh, (6.2)

the formulas (4.3) define the set of all accretive (∗)-extensions Aµ,h of the operator Th. Moreover, an
accretive (∗)-extension Aµ,h of a sectorial operator Th with exact angle of sectoriality β ∈ (0, π/2)

also preserves the same exact angle of sectoriality if and only if µ = +∞ in (4.3), see (Belyi &

Tsekanovskiı̆, 2019: Theorem 3). Also, Aµ,h is an accretive (∗)-extension of Th that is not β-
sectorial for any β ∈ (0, π/2) if and only if in (4.3)

µ =
(Imh)2

m∞(−0) + Reh
+ Reh, (6.3)

see (Belyi & Tsekanovskiı̆, 2019: Theorem 4). An accretive operator Th has a unique accretive
(∗)-extension A∞,h if and only if Reh = −m∞(−0). Then this unique (∗)-extension has the form

A∞,hy = −y′′ + q(x)y + [hy(`)− y′(`)] δ(x− `),
A∗∞,hy = −y′′ + q(x)y + [hy(`)− y′(`)] δ(x− `).

(6.4)

Now consider the functionsmα(z) described by (5.2)-(5.3) and associated with the non-negative op-
erator Ȧ above. The parameter α in the definition of mα(z) affects the L-system realizing −mα(z)

as follows: if the non-negative symmetric Schrödinger operator satisfies m∞(−0) ≥ 0, then the
L-system Θtanα,i of the form (5.6) realizing the function −mα(z) is accretive if and only if

tanα ≥ (m∞(−0))−1, (6.5)

see (Belyi & Tsekanovskiı̆, 2021: Theorem 6.3). Note that if m∞(−0) = 0 in (6.5), then α = π/2

and −mπ
2

(z) = 1/m∞(z). Also, from Belyi & Tsekanovskiı̆ (2021: Theorem 6.2) we know that if
m∞(−0) ≥ 0, then 1/m∞(z) is realized by an accretive system Θ∞,i.

Having established criteria for an L-system realizing−mα(z) to be accretive, we can look into more
of its properties. There are two choices for an accretive L-system Θtanα,i: it is either (1) accretive
sectorial or (2) accretive extremal. In the case (1) the operator Atanα,i of the form (5.7) is β1-
sectorial with some angle of sectoriality β1 that can only exceed the exact angle of sectoriality β of
Ti. In the case (2) the state-space operator Atanα,i is extremal (not sectorial for any β ∈ (0, π/2))
and is a (∗)-extension of Ti that itself can be either β-sectorial or extremal. These possibilities were
described in detail in Belyi & Tsekanovskiı̆ (2021: Theorem 6.4). In particular, it was shown that
for the accretive L-system Θtanα,i realizing the function −mα(z) the following is true:

(1) If m∞(−0) = 0, then there exists only one accretive L-system Θ∞,i realizing−mα(z). This
L-system is extremal and its main operator Ti is extremal as well.

(2) If m∞(−0) > 0, then Ti is β-sectorial for β ∈ (0, π/2) and

(a) if tanα = 1/m∞(−0), then Θtanα,i is extremal;

(b) if 1
m∞(−0) < tanα < +∞, then Θtanα,i is β1-sectorial with β1 > β;

(c) if tanα = +∞, then Θ∞,i is β-sectorial.
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Figure 1. Accretive L-systems Θµ,i.

Figure 1 above describes the dependence of the properties of L-systems realizing −mα(z) on the
value of µ and, hence, on α. The bold part of the real line depicts values of µ = tanα that produce
accretive L-systems Θµ,i.

Additional analytic properties of the functions −m∞(z), 1/m∞(z), and −mα(z) were described
in Belyi & Tsekanovskiı̆ (2021: Theorem 6.5). It was proved there that under the current set of
assumptions we have:

(1) The function 1/m∞(z) is a Stieltjes function if and only if m∞(−0) ≥ 0.

(2) The function −m∞(z) is never a Stieltjes function.†

(3) The function −mα(z) given by (5.3) is a Stieltjes function if and only if

0 <
1

m∞(−0)
≤ tanα.

As the case that the realizing L-system Θtanα,i is accretive maximal does not require any further
elaboration, we will now restrict ourselves to the case when it is accretive sectorial. To begin with, let
Θ be an L-system of the form (4.8), where A is a (∗)-extension (4.3) of the accretive Schrödinger op-
erator Th. Here we summarize and list some known facts about possible accretivity and sectoriality
of Θ:

• The operator Aµ,h of Θµ,h is accretive if and only if (6.2) holds, see (Arlinskiı̆, Belyi &

Tsekanovskiı̆, 2011).

• If an accretive operator Th, Imh > 0, is β-sectorial, then (6.1) holds, see Theorem 5.1.
Conversely, if Imh > 0 and Reh > −m∞(−0), then the operator Th of the form (4.2) is
β-sectorial and β is given by (6.1).

• The operator Th is accretive but not β-sectorial for any β ∈ (0, π/2) if and only if the equality
Reh = −m∞(−0) holds.

• If Θµ,h is such that µ = +∞, then VΘ∞,h(z) belongs to the class S0,β . In the case when
µ 6= +∞ we have VΘµ,h(z) ∈ Sβ1,β2 , see (Belyi, 2011).

• The operator Aµ,h is a β-sectorial (∗)-extension of the operator Th (with the same angle of
sectoriality) if and only if µ = +∞ in (4.3), see (Arlinskiı̆, Belyi & Tsekanovskiı̆, 2011;
Belyi & Tsekanovskiı̆, 2019).

†It will be shown in an forthcoming paper that if m∞(−0) ≥ 0, then the function −m∞(z) is actually an
inverse Stieltjes function.
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• If the operator Th is β-sectorial with the exact angle of sectoriality β, then it admits only one
β-sectorial (∗)-extension Aµ,h with the same angle of sectoriality β. Consequently, µ = +∞
and Aµ,h = A∞,h has the form (6.4).

• A (∗)-extension Aµ,h of the operator Th is accretive but not β-sectorial for any β ∈ (0, π/2)

if and only if the value of µ in (4.3) is defined by (6.3).

Note that it follows from the above that any β-sectorial operator Th with the exact angle of sec-
toriality β ∈ (0, π/2) admits only one accretive (∗)-extension Aµ,h that is not β-sectorial for any
β ∈ (0, π/2). This extension takes the form (4.3) with µ given by (6.3).

Now let us consider a function −mα(z) and a Schrödinger L-system Θtanα,i of the form (5.6) that
realizes it. According to Belyi & Tsekanovskiı̆ (2021: Theorem 6.4 & Theorem 6.5) this L-system
Θtanα,i is sectorial if and only if

tanα >
1

m∞(−0)
. (6.6)

Furthermore, if the L-system Θtanα,i is assumed to be β-sectorial, then its impedance function
VΘtanα,i

(z) = −mα(z) belongs to Sβ . The following theorem provides more refined properties of
−mα(z) for this case.

Theorem 6.2. Let Θtanα,i be the accretive L-system of the form (5.6) realizing the function−mα(z)

associated with the non-negative operator Ȧ, and let Atanα,i be a β-sectorial (∗)-extension of Ti
defined by (5.1). Then the function −mα(z) belongs to the class Sβ1,β2 , where tanβ2 ≤ tanβ, and

tanβ1 = cotα and tanβ2 =
tanα+m∞(−0)

(tanα)m∞(−0)− 1
. (6.7)

Moreover, the operator Ti is (β2 − β1)-sectorial with the exact angle of sectoriality β2 − β1.

Proof. First recall from (5.3) that

−mα(z) =
sinα+m∞(z) cosα

− cosα+m∞(z) sinα
=

tanα+m∞(z)

(tanα)m∞(z)− 1
. (6.8)

Since Θtanα,i is β-sectorial, (6.6) holds and its impedance function VΘtanα,i
(z) = −mα(z) belongs

to Sβ and to Sβ1,β2 . In order to prove (6.7), pass to the limits in (6.8)

tanβ1 = lim
x→−∞

(−mα(x)) = lim
x→−∞

tanα
m∞(x) + 1

tanα− 1
m∞(x)

= cotα,

where we used limx→−∞m∞(x) = +∞, see (Arlinskiı̆, Belyi & Tsekanovskiı̆, 2011: Section
10.3), and

tanβ2 = lim
x→−0

(−mα(x)) =
tanα+m∞(−0)

(tanα)m∞(−0)− 1
.

In order to show the rest, we apply (Arlinskiı̆, Belyi & Tsekanovskiı̆, 2011: Theorem 9.8.4): if A
is a β-sectorial (∗)-extension of a main operator T of an L-system Θ, then the impedance function
VΘ(z) belongs to the class Sβ1,β2 , tanβ2 ≤ tanβ, and T is (β2−β1)-sectorial with the exact angle
of sectoriality β2 − β1. It can also be checked directly that (6.7) (under condition (6.6)) implies
0 < β2 − β1 < π/2 and, hence, the definition of (β2 − β1)-sectoriality applies correctly.
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Now we state and prove the following.

Theorem 6.3. Let Θtanα,i be an accretive L-system of the form (5.6) that realizes −mα(z), where
Atanα,i is a (∗)-extension of a θ-sectorial operator Ti with exact angle of sectoriality θ. Moreover,
let α∗ ∈ (arctan

(
1

m∞(−0)

)
, π2 ) be a fixed value that defines Atanα∗,i via (4.3), and assume that

−mα(z) ∈ Sβ1,β2 . Then a (∗)-extension Atanα,i of Ti is β-sectorial for any α ∈ [α∗, π/2) with

tanβ = tanβ1 + 2
√

tanβ1 tanβ2, tanβ > tan θ. (6.9)

Moreover, if α = π/2, then

β = β2 − β1 = θ = arctan

(
1

m∞(−0)

)
.

Proof. First note that the conditions imply that tanα∗ ∈ ( 1
m∞(−0) ,+∞). Thus, according to Be-

lyi & Tsekanovskiı̆ (2021: Theorem 6.4; part 2(c)) a (∗)-extension Atanα,i is β-sectorial for some
β ∈ (0, π/2). Then we can apply Theorem 6.2 to confirm that −mα(z) ∈ Sβ1,β2 , where β1 and
β2 are described by (6.7). The equality in (6.9) follows from Belyi & Tsekanovskiı̆ (2019: Theo-
rem 8) applied to the L-system Θtanα,i with µ = tanα, see also (Arlinskiı̆, Belyi & Tsekanovskiı̆,
2011: Theorem 9.8.7). Since Atanα,i is a β-sectorial extension of a θ-sectorial operator Ti, we
have tanβ ≥ tan θ with equality possible only when µ = tanα = ∞, see (Arlinskiı̆, Belyi &

Tsekanovskiı̆, 2011; Belyi & Tsekanovskiı̆, 2019). Since we chose α ∈ [α∗, π/2), it follows that
tanα 6=∞ and, hence, tanβ > tan θ, which confirms the second part of (6.9).

If we assume that α = π/2, then −mα(z) = 1/m∞(z) is realized by the L-system Θ∞,i (see The-
orem 5.2) that preserves the angle of sectoriality of its main operator Ti, see (Belyi & Tsekanovskiı̆,
2021: Theorem 6.4) and Figure 1. Therefore, β = θ. If we combine this fact with−mα(z) ∈ Sβ1,β2

and apply Theorem 6.2 we also obtain that β = β2 − β1. Finally, since Ti is θ-sectorial, (6.1) yields
tan θ = 1

m∞(−0) .

0
α

tanβ

tan θ

α∗ π
2

α0

Figure 2. Angle of sectoriality β. Here α0 = arctan
(

1
m∞(−0)

)
.

Note that Theorem 6.3 provides us with a value β which serves as a universal angle of sectoriality
for the entire indexed family of (∗)-extensions Atanα,i of the form (5.6) as depicted in Figure 2.
That figure clearly shows that if α = π/2, then tanβ = tan θ.
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7 Example

We conclude this paper with a simple illustration. Consider the differential expression with the
Bessel potential

lν = − d2

dx2
+
ν2 − 1/4

x2
, x ∈ [1,∞),

in the Hilbert spaceH = L2[1,∞) and assume that ν > 0. The minimal symmetric operator Ȧ in{
Ȧ y = −y′′ + ν2−1/4

x2 y,

y(1) = y′(1) = 0,

has defect numbers (1, 1). Let ν = 3/2. It is known that in this case

m∞(z) = −
iz − 3

2

√
z − 3

2 i√
z + i

− 1

2
=

√
z − iz + i√
z + i

= 1− iz√
z + i

and m∞(−0) = 1, see (Arlinskiı̆, Belyi & Tsekanovskiı̆, 2011). The minimal symmetric operator
then becomes {

Ȧ y = −y′′ + 2
x2 y,

y(1) = y′(1) = 0.
(7.1)

The main operator Th of the form (4.2) is written for h = i as{
Ti y = −y′′ + 2

x2 y,

y′(1) = i y(1).
(7.2)

It will be shared by the whole family of L-systems realizing the functions −mα(z) described by
(5.2)-(5.3). This operator is accretive and β-sectorial due to Reh = 0 > −m∞(−0) = −1. Its
exact angle of sectoriality is given by

tanβ =
Imh

Reh+m∞(−0)
=

1

0 + 1
= 1 or β =

π

4
,

see (6.1). A family of L-systems Θtanα,i of the form (5.6) that realizes −mα(z) described by
(5.2)–(5.4) as

−mα(z) =
(
√
z − iz + i) cosα+ (

√
z + i) sinα

(
√
z − iz + i) sinα− (

√
z + i) cosα

,

was constructed in Belyi & Tsekanovskiı̆ (2021). According to Belyi & Tsekanovskiı̆ (2021: Theo-
rem 6.3) the L-systems Θtanα,i in (5.6) are accretive if

1 =
1

m∞(−0)
≤ tanα < +∞.

Using Belyi & Tsekanovskiı̆ (2021: Theorem 6.4; part (2c)), we get that the realizing L-system
Θtanα,i in (5.6) preserves the angle of sectoriality and becomes π

4 -sectorial if µ = tanα = +∞ or
α = π/2. Therefore the L-system

Θ∞,i =

(
A∞,i K∞,i 1

H+ ⊂ L2[1,+∞) ⊂ H− C

)
,
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where

A∞,i y = −y′′ + 2

x2
y − [y′(1)− iy(1)] δ(x− 1),

A∗∞,i y = −y′′ + 2

x2
y − [y′(1) + iy(1)] δ(x− 1),

and K∞,ic = cg∞,i, c ∈ C, with g∞,i = δ(x− 1), realizes −mπ
2

(z) = 1/m∞(z). Furthermore,

VΘ∞,i(z) = −mπ
2

(z) =
1

m∞(z)
=

√
z + i√

z − iz + i
,

WΘ∞,i(z) = (−eπi) m∞(z)− i
m∞(z) + i

=
(1− i)

√
z − iz + 1 + i

(1 + i)
√
z − iz − 1 + i

.

(7.3)

This L-system Θ∞,i is clearly accretive according to Belyi & Tsekanovskiı̆ (2021: Theorem 6.2),
which can also be independently confirmed by direct evaluation

(ReA∞,i y, y) = ‖y′(x)‖2L2 + 2‖y(x)/x‖2L2 ≥ 0.

Moreover, according to Belyi & Tsekanovskiı̆ (2021: Theorem 6.4), see also (Arlinskiı̆, Belyi
& Tsekanovskiı̆, 2011: Theorem 9.8.7), the L-system Θ∞,i is π

4 -sectorial. Taking into account
that (ImA∞,i y, y) = |y(1)|2, see formula (4.5), we obtain inequality (2.1) with β = π

4 , that is
(ReA∞,i y, y) ≥ |(ImA∞,i y, y)|, or

‖y′(x)‖2L2 + 2‖y(x)/x‖2L2 ≥ |y(1)|2.

In addition, we have shown that the β-sectorial form (Tiy, y) defined on dom Ti can be extended
to the β-sectorial form (A∞,i y, y) defined on H+ = dom Ȧ∗, see (7.1)–(7.2), having the exact
angle of sectoriality β = π/4 (i.e., exact for both forms). A general problem of extending sectorial
sesquilinear forms to sectorial ones was mentioned by T. Kato (1966). It can be easily seen that the
function −mπ

2
(z) in (7.3) belongs to the sectorial class S0,π4 of Stieltjes functions.
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PT -SYMMETRIC HAMILTONIANS AS COUPLINGS OF
DUAL PAIRS

Volodymyr Derkach, Philipp Schmitz, and Carsten Trunk

Dedicated to our friend and colleague Seppo Hassi on the occasion of his 60th birthday

1 Introduction

In the seminal paper (Bender & Boettcher, 1998) a new view of quantum mechanics was proposed.
This new view differs from the old one in that the restriction on the Hamiltonian to be Hermitian is
relaxed: now the Hamiltonian isPT -symmetric. HereP is parity and T is time reversal. Since 1998,
PT -symmetric Hamiltonians have been analyzed intensively by many authors. In Mostafazadeh
(2002) PT -symmetry was embedded into the more general mathematical framework of pseudo-
Hermiticity or, what is the same, self-adjoint operators in Kreı̆n spaces, see (Langer & Tretter, 2004;
Azizov & Trunk, 2012; Hassi & Kuzhel, 2013; Leben & Trunk, 2019). For a general introduction to
PT -symmetric quantum mechanics we refer to the overview paper of Mostafazadeh (2010) and to
the books of Moiseyev (2011) and Bender (2019).

A prominent class consists of the PT -symmetric Hamiltonians

H :=
1

2
p2 − (iz)N+2,

where N is a positive integer, see (Bender, Brody & Jones, 2002). The associated eigenvalue prob-
lem is defined on a contour Γ in the complex plane which is contained in a specific area in the
complex plane, the so-called Stokes wedges, see (Bender & Boettcher, 1998),

−y′′(z)− (iz)N+2y(z) = λy(z), z ∈ Γ, (1.1)

where λ ∈ C is the eigenvalue parameter. Recall that a Stokes wedge Sk, k = 0, . . . , N + 3, is an
open sector in the plane with vertex zero,

Sk :=

{
z ∈ C : − N + 2

2N + 8
π +

2k − 2

4 +N
π < arg(z) < − N + 2

2N + 8
π +

2k

4 +N
π

}
,

see (Bender et al., 2006). The boundary of Sk consists of two rays from the origin, the so-called
Stokes lines. PT -symmetry forces Γ to lie in two Stokes wedges, which are symmetric with respect
to the imaginary axis.

In Mostafazadeh (2005) the contour Γ in equation (1.1) was parameterized by a real parameter. In
Bender et al. (2006) and in Jones & Mateo (2006) this approach was extended to different parame-
terizations and contours. Here we choose, for simplicity, Γ to be a wedge-shaped contour,

Γ := {xeiφ sgn x : x ∈ R}, (1.2)

for some angle φ ∈ (−π/2, π/2), see Figure 1.
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Figure 1. The complex contour Γ.

Let z : R → C parameterize Γ via z(x) := xeiφ sgn x. Then y solves (1.1) for z 6= 0 if and only if
the pair of functions u+ and u−, given by u±(x) := y(z(x)), x ∈ R±, solves

a−[u−] = λu−, x ∈ R−, a+[u+] = λu+, x ∈ R+, (1.3)

where the differential expressions a± are given by

a±[u+] = −e∓2iφu′′± − (ix)N+2e±i(N+2)φu±. (1.4)

In what follows we assume that Γ lies in Stokes wedges and then, by Leben & Trunk (2019), the
differential expressions a± are in the limit-point case at±∞ according to the classification in Brown
et al. (1999), which is a refinement of the classification in Sims (1957). We mention, that the limit-
circle case can be treated in a similar way as in Azizov & Trunk (2010; 2012).

The theory of PT -symmetry claims that the main object, the Hamiltonian, commutes under the joint
action of the parity P and the time reversal T ,

(Pf)(x) := f(−x), (T f)(x) := f(x). (1.5)

The time reversal T applied to the differential expressions a± gives rise to new differential expres-
sions b± = T a±T defined on R±

b±[v±] = −e±2iφv′′± − (−ix)N+2e∓i(N+2)φv±. (1.6)

In Section 3 we introduce the minimal operators A± and B± associated with a± and b± in L2(R±)

and show that

〈A±f, g〉± = 〈f,B±g〉±, for all f ∈ dom A±, g ∈ dom B±. (1.7)

Here 〈., .〉± stands for the usual inner products in the Hilbert spaces L2(R±). Condition (1.7) shows
that the pairs (A+, B+) and (A−, B−) form dual pairs, see Section 2.1 for details. An extension the-
ory for dual pairs based on the boundary triple technique was developed by Malamud & Mogilevskiı̆
(2002). This is a generalization of the boundary triple approach to the extension theory of symmet-
ric operators which was developed by Calkin (1939); Kočhubeı̆ (1975); Gorbachuk & Gorbachuk
(1991); Derkach & Malamud (1991), and others. For recent developments of the method of bound-
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ary triples and its application to the extension theory of differential operators, see the monographs
by Derkach & Malamud (2017) and by Behrndt, Hassi & de Snoo (2020).

Following this approach, we construct in Theorem 3.1 boundary triples for dual pairs (A+, B+)

and (A−, B−). As our interest is focused on the Hamiltonian in L2(R) and not on the differential
expressions a± and b±, which are defined on the semi-axes, we extend the coupling method for
symmetric operators from Derkach et al. (2000) to the case of dual pairs and create a new dual pair
(A,B) of operators defined on R. This dual pair (A,B) is called the coupling of the dual pairs
(A+, B+) and (A−, B−), see Theorem 2.5 and Definition 2.6 below.

We show that the operator PT intertwines the dual pairs (A+, B+) and (A−, B−), i.e.,

PT A+ = A−PT and PT B+ = B−PT .

Due to our construction of the coupling, these relations imply that the operator A is PT -symmetric

PT A = APT .

Moreover, the operator A turns out to be P-symmetric in the Kreı̆n space (H, [·, ·]) with the funda-
mental symmetry P in H = L2(R). In Leben & Trunk (2019) it was shown that the extension H0 of
A, defined as a restriction of the adjoint A+ to the domain

dom H0 =
{
u+ ⊕ u− ∈ dom A+ : u+(0)− u−(0) = e−2iφu′+(0)− e2iφu′−(0) = 0

}
,

is a PT -symmetric and P-selfadjoint operator in the Kreı̆n space (H, [·, ·]). Here A+ stands for the
adjoint with respect to the Kreı̆n space inner product [., .]. In Theorem 3.2 below, which is the main
result of this note, we find a one-parameter family {Hα}α∈R of PT -symmetric and P-selfadjoint
extensions of A in the Kreı̆n space (H, [·, ·]) with domain

dom Hα =
{
u+ ⊕ u− ∈ dom A+ : u+(0)− u−(0) = 0, e−2iφu′+(0)− e2iφu′−(0) = αu+(0)

}
.

Theorem 3.2 is based on the abstract construction of the coupling (A,B) of two dual pairs (A+, B+)

and (A−, B−) in Theorem 2.5 and the description of allPT -symmetric andP-selfadjoint extensions
of A given in Theorem 2.14.

Summing up, the results presented here promote the use of boundary triple techniques for dual pairs
and techniques from Sturm–Liouville theory for complex potentials in the study of PT -symmetric
quantum mechanics. This is in line with Leben & Trunk (2019) and it is, to some extent, a surprise
that in the physical literature the techniques presented here were never exploited. It is the aim
of this paper to recall those techniques and, hence, provide a mathematically sound setting of the
(nowadays) classical Bender–Boettcher-theory.

2 Coupling of dual pairs and parity

In this section we recall known facts about dual pairs of linear operators, their boundary triples and
corresponding Weyl functions, and coupling from Malamud & Mogilevskiı̆ (2002). However, our
notations differ slightly from that paper; we mainly follow the notations of Baidiuk, Derkach &
Hassi (2021).



58 Acta Wasaensia

Moreover, throughout this paper we use the following notations. By R+ and R− we denote the set
of all positive and negative reals, respectively. For z ∈ C, z denotes the complex conjugate of z.
All operators in this paper are densely defined linear operators in some Hilbert spaces. For such
operators T , we use the common notation dom T , ran T , and kerT for the domain, the range, and
the null-space, respectively, of T . Moreover, as usual, ρ(T ), σ(T ), and σp(T ) stand for the resolvent
set, the spectrum, and the point spectrum, respectively, of T . The inner product in a Hilbert space
is usually denoted by 〈., .〉 and the adjoint of the operator T by T ∗. The set of all bounded and
everywhere defined operators in a Hilbert space H is denoted by L(H).

2.1 Dual pairs of linear operators and Weyl functions

Definition 2.1. A pair (A,B) of densely defined closed linear operators A and B in a Hilbert space
(H, 〈., .〉) is called a dual pair, if

〈Af, g〉 − 〈f,Bg〉 = 0 for all f ∈ dom A, g ∈ dom B. (2.1)

The equality (2.1) means that
A ⊂ B∗ and B ⊂ A∗.

Clearly, if (A,B) is a dual pair, then (B,A) is also a dual pair.

Definition 2.2. Let (A,B) be a dual pair in a Hilbert space H, let H1, H2 be auxiliary Hilbert
spaces, and let

ΓB =

(
ΓB1
ΓB2

)
: dom B∗ → H1 ×H2 and ΓA =

(
ΓA1
ΓA2

)
: dom A∗ → H1 ×H2 (2.2)

be linear operators. Then the triple (H1 ×H2,Γ
A,ΓB) is called a boundary triple for the dual pair

(A,B) if:

(1) the mappings ΓB and ΓA in (2.2) are surjective;

(2) the following identity holds for every f ∈ dom B∗, g ∈ dom A∗,

〈B∗f, g〉 − 〈f,A∗g〉 = 〈ΓB1 f,ΓA1 g〉H1 − 〈ΓB2 f,ΓA2 g〉H2 .

It is easily seen that if a triple (H1 ×H2,Γ
A,ΓB) is a boundary triple for a dual pair (A,B), then

the following identity also holds

〈A∗g, f〉 − 〈g,B∗f〉 = 〈ΓA2 g,ΓB2 f〉H2
− 〈ΓA1 g,ΓB1 f〉H1

, f ∈ dom B∗, g ∈ dom A∗, (2.3)

and, hence, the triple

(H2 ×H1, (Γ
B)T , (ΓA)T ) :=

(
H2 ×H1,

(
ΓB2
ΓB1

)
,

(
ΓA2
ΓA1

))
(2.4)

is a boundary triple for the dual pair (B,A). The boundary triple (2.4) is called transposed with
respect to the boundary triple (H1 ×H2,Γ

A,ΓB).
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A linear operator Ã is called a proper extension of a dual pair (A,B) if

A ⊂ Ã ⊂ B∗.

The proper extension A2 of A is defined as the restriction of B∗ to the set

dom A2 = {f ∈ dom B∗ : ΓB2 f = 0}. (2.5)

Similarly, the proper extension B1 of B is defined as the restriction of A∗ to the set

dom B1 = {f ∈ dom A∗ : ΓA1 f = 0}. (2.6)

For every z ∈ ρ(A2) the following decomposition holds

dom B∗ = dom A2 uNz(B
∗), where Nz(B

∗) := ker (B∗ − zI),

and, consequently, the mapping ΓB2 |Nz(B∗) : Nz(B
∗)→ H2 is boundedly invertible, see (Malamud

& Mogilevskiı̆, 2002) for details. In a similar way, for every z ∈ ρ(B1) the following decomposition
holds

dom A∗ = dom B1 uNz(A
∗), where Nz(A

∗) := ker (A∗ − zI),

and, hence, the mapping ΓA1 |Nz(A∗) : Nz(A
∗)→ H1 is boundedly invertible for z ∈ ρ(B1).

Moreover, in light of (2.3), (2.5), and (2.6), one has that B1 = A∗2 and, hence, in particular the
following identity holds

ρ(B1) = ρ(A2).

Definition 2.3. The operator functions

γ(z) := (ΓB2 |Nz(B∗))
−1 and M(z) := ΓB1 (ΓB2 |Nz(B∗))

−1, z ∈ ρ(A2),

are called the γ-field and the Weyl function, respectively, of the dual pair (A,B), corresponding to
the boundary triple Π = (H1 ×H2,Γ

A,ΓB).

Clearly, the operator functions

γT (z) := (ΓA1 |Nz(A∗))
−1 and MT (z) := ΓA2 (ΓA1 |Nz(A∗))

−1, z ∈ ρ(B1),

are the γ-field and the Weyl function, respectively, of the dual pair (B,A), corresponding to the
transposed boundary triple (H2 ×H1, (Γ

B)T , (ΓA)T ), cf. (2.4). Notice that

MT (z) = M(z̄)∗, z ∈ ρ(B1) = ρ(A2).

Let Θ be a linear relation from H1 to H2, i.e., a subspace of H1 × H2, see, e.g., Arens (1961).
Consider the restriction AΘ of B∗ to the subspace

dom AΘ = {f ∈ dom B∗ : ΓBf ∈ Θ}.

The following statement describes some spectral properties of the extension AΘ.

Lemma 2.4. Let (A,B) be a dual pair in a Hilbert space H, let (H1 ×H2,Γ
A,ΓB) be a boundary

triple for the dual pair (A,B), let M be the corresponding Weyl function, let Θ be a linear relation
fromH1 toH2, and let z ∈ ρ(A2). Then the following statements hold:
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(i) A∗Θ is the restriction of A∗ to

dom A∗Θ = {f ∈ dom A∗ : ΓAf ∈ Θ∗}.

(ii) z ∈ σp(AΘ) if and only if 0 ∈ σp(IH2
−ΘM(z)). In this case

ker (AΘ − zI) = γ(z)ker (IH2 −ΘM(z)).

(iii) z ∈ ρ(AΘ) if and only if 0 ∈ ρ(IH2
−ΘM(z)).

2.2 Coupling of dual pairs

Theorem 2.5. Let (A+, B+) and (A−, B−) be dual pairs in Hilbert spaces H+ and H−, respec-
tively, let (H1 × H2,Γ

A± ,ΓB±) be a boundary triple for the dual pair (A±, B±), and let M± be
the corresponding Weyl function. Denote by A∗ and B∗ the restrictions of the operators A∗+ ⊕ A∗−
and B∗+ ⊕B∗− to the domains

dom A∗ = {g+ ⊕ g− : g± ∈ dom A∗±, Γ
A+

1 g+ = Γ
A−
1 g−} (2.7)

and
dom B∗ = {f+ ⊕ f− : f± ∈ dom B∗±, Γ

B+

2 f+ = Γ
B−
2 f−}, (2.8)

respectively. Then the following statements hold:

(i) The operators A := (A∗)∗ and B := (B∗)∗ are restrictions of the operators B∗ and A∗,
respectively, to the domains

dom A = {f+ ⊕ f− : f± ∈ dom B∗±,Γ
B+

2 f+ = Γ
B−
2 f− = Γ

B+

1 f+ + Γ
B−
1 f− = 0}, (2.9)

dom B = {g+⊕g− : g± ∈ dom A∗±,Γ
A+

1 g+ = Γ
A−
1 g− = Γ

A+

2 g+ +Γ
A−
2 g− = 0}, (2.10)

and (A,B) is a dual pair in H+ ⊕ H−.

(ii) The triple Π = (H1 ×H2,Γ
A,ΓB) with

ΓAg =

(
Γ
A+

1 g+

Γ
A+

2 g+ + Γ
A−
2 g−

)
and ΓBf =

(
Γ
B+

1 f+ + Γ
B−
1 f−

Γ
B+

2 f+

)
,

f ∈ dom B∗,
g ∈ dom A∗,

is a boundary triple for the dual pair (A,B).

(iii) The Weyl function M(z) corresponding to the boundary triple Π = (H1 × H2,Γ
A,ΓB) is

given by
M(z) = M+(z) +M−(z), z ∈ ρ(A2), (2.11)

where A2 is defined by (2.5).

Proof. The proof of this theorem consists of three parts: (i) and (ii) are established in (a) and (b),
and (iii) is proven in (c).
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(a) Let f = f+ ⊕ f− ∈ dom (B∗+ ⊕ B∗−), g = g+ ⊕ g− ∈ dom (A∗+ ⊕ A∗−). Then it follows from
the equalities

〈B∗+f+, g+〉 − 〈f+, A
∗
+g+〉 = 〈ΓB+

1 f+,Γ
A+

1 g+〉H1
− 〈ΓB+

2 f+,Γ
A+

2 g+〉H2
,

〈B∗−f−, g−〉 − 〈f−, A∗−g−〉 = 〈ΓB−1 f−,Γ
A−
1 g−〉H1

− 〈ΓB−2 f−,Γ
A−
2 g−〉H2

,

that

〈(B∗+ ⊕B∗−)f, g〉 − 〈f, (A∗+ ⊕A∗−)g〉 = 〈ΓB+

1 f+,Γ
A+

1 g+〉H1
− 〈ΓB+

2 f+,Γ
A+

2 g+〉H2

+ 〈ΓB−1 f−,Γ
A−
1 g−〉H1

− 〈ΓB−2 f−,Γ
A−
2 g−〉H2

.
(2.12)

The equality (2.9) follows from (2.12) since the mappings ΓA± : dom A∗± → H1 ×H2 are surjec-
tive. Similarly, (2.10) follows from (2.12) since the mappings ΓB± : dom B∗± → H1 × H2 are
surjective.

(b) Next, for f ∈ dom B∗ and g ∈ dom A∗ the equation (2.12) takes the form

〈B∗f, g〉 − 〈f, (A∗)g〉 = 〈ΓB+

1 f+ + Γ
B−
1 f−,Γ

A+

1 g+〉H1 − 〈Γ
B+

2 f+,Γ
A+

2 g+ + Γ
A−
2 g−〉H2 .

This proves that (A,B) is a dual pair in H+ ⊕ H− and that (ii) holds.

(c) It follows from (2.8) that the γ-field of (A,B) corresponding to the boundary triple Π takes the
form

γ(z) = γ+(z)⊕ γ−(z),

where γ±(z) are γ-fields of (A±, B±) corresponding to the boundary triples (H1×H2,Γ
A± ,ΓB±).

Now formula (2.11) follows from the definition of the Weyl function, see Definition 2.3.

Definition 2.6. The dual pair (A,B) constructed in (2.9) and (2.10) is called the coupling of the
dual pairs (A+, B+) and (A−, B−) relative to the triples

(H1 ×H2,Γ
A+ ,ΓB+) and (H1 ×H2,Γ

A− ,ΓB−).

2.3 Real dual pairs and real boundary triples

Let T be a conjugation (time reversal) operator in a Hilbert space (H, 〈., .〉), i.e., T is antilinear,
T 2 = IH, and

〈T f, T g〉 = 〈g, f〉 for all f, g ∈ H.

In what follows, we suppose thatH1 andH2 coincide: H1 = H2 = H.

Definition 2.7. Let T and jH be conjugations in H and H, respectively. A dual pair (A,B) in H is
called T -real if

T dom A = dom B and T A = BT . (2.13)

A boundary triple (H2,ΓA,ΓB) for (A,B) is called (jH, T )-real if

jHΓB1 = ΓA2 T and jHΓB2 = ΓA1 T .
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Observe that the conditions (2.13) are clearly equivalent to

T dom A∗ = dom B∗ and T A∗ = B∗T .

Lemma 2.8. Let (A,B) be a T -real dual pair and let (H2,ΓA,ΓB) be a (jH, T )-real boundary
triple for (A,B). Then the corresponding Weyl function M(z) satisfies the condition

M(z) = jHM(z)∗jH, z ∈ ρ(A2).

In what follows we consider a Hilbert space H decomposed into an orthogonal sum

H = H+ ⊕ H− (2.14)

of two subspaces H± with conjugations T± ∈ L(H±). Then the orthogonal sum

T = T+ ⊕ T− (2.15)

is a conjugation in H.

Theorem 2.9. Let a Hilbert space H and a conjugation T in H be such that (2.14) and (2.15)
hold. Moreover, let (A±, B±) be T±-real dual pairs in the Hilbert spaces H±. Finally, with jH a
conjugation inH, let (H2,ΓA± ,ΓB±) be (jH, T )-real boundary triples for (A±, B±), and let

A0 := A+ ⊕A− and B0 := B+ ⊕B−.

Then the following statements hold:

(i) The dual pair (A0, B0) is T -real and the boundary triple ((H⊕H)2,ΓA0 ,ΓB0) with

ΓA0 = ΓA+ ⊕ ΓA− and ΓB0 = ΓB+ ⊕ ΓB−

is (jH⊕H, T )-real, where jH⊕H := jH ⊕ jH.

(ii) The coupling (A,B) of the dual pairs (A+, B+) and (A−, B−), constructed in (2.9) and
(2.10) is T -real.

(iii) The boundary triple (H2,ΓA,ΓB) from Theorem 2.5 is (jH, T )-real.

2.4 Parity and P-selfadjoint operators

Definition 2.10. Let H± be Hilbert spaces and H = H+ ⊕ H−. An operator P ∈ L(H) will be
called an (abstract) parity operator if

P = P∗, P2 = IH, and PH± = H∓.

Now consider a Hilbert space H = H+⊕H− with a parity operator P and a conjugation T ∈ L(H),
such that

T P = PT and T H± = H±. (2.16)
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The conditions (2.16) mean that the operator T admits the representation as an orthogonal sum
T = T+ ⊕ T− of two conjugations T+ and T− in Hilbert spaces H+ and H−, respectively.

Lemma 2.11. Let P be a parity operator in H = H+ ⊕ H− and let T be a conjugation in H such
that (2.16) holds. Let (A±, B±) be T±-real dual pairs in the Hilbert spaces H±, such that

PA+ = B−P and PB+ = A−P. (2.17)

Then the following statements hold:

(i) PT dom A+ = dom A−, PT dom B+ = dom B−, and

PT A+ = A−PT , PT B+ = B−PT ; (2.18)

(ii) P dom A∗+ = dom B∗−, P dom B∗+ = dom A∗−, and

PA∗+ = B∗−P, PB∗+ = A∗−P.

Proof. (i) Since the dual pairs (A±, B±) are real with respect to T±, one has

T+A+ = B+T+, T−A− = B−T−. (2.19)

Let f+ ∈ dom A+. Then by (2.19) T f+ ∈ dom B+ and B+T f+ = T A+f+. Next by (2.17)

PT f+ ∈ dom A− and A−PT f+ = PB+T f+ = PT A+f+.

The proofs of the inclusionPT dom A− ⊆ dom A+ and of the second equality in (2.18) are similar.

(ii) Applying P to the left and right of the equalities in (2.17) and using the identity P2 = IH yields
A+P = PB− and B+P = PA−. From these identities the assertions in (ii) are immediate.

Definition 2.12. A closed linear operator A in H is said to be PT -symmetric if for all f ∈ dom A

we have
PT f ∈ dom A and PT Af = APT f.

Consider the Kreı̆n space (H, [·, ·]) with an indefinite inner product given by

[f, g] := 〈Pf, g〉H. (2.20)

For the definition of a Kreı̆n space we refer to the books of Azizov & Iokhvidov (1989) and Bognar
(1974). Recall that a densely defined linear operator A in H is called P-symmetric if

[Af, g] = [f,Ag] for all f, g ∈ dom A.

Denote by A+ the adjoint operator in (H, [·, ·]), i.e., A+ = PA∗P . For a P-symmetric operator A
one has A ⊆ A+. The operator A is called P-selfadjoint if A = A+. The following definition of a
boundary triple for the P-symmetric operator A was presented in Derkach (1995).

Definition 2.13. LetH be an auxiliary Hilbert space and let Γ1,Γ2 be linear operators from dom A+

to H. The triple (H,Γ1,Γ2) is called a boundary triple for the P-symmetric operator A if the
following conditions are satisfied:
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(i) the mapping Γ :=

(
Γ1

Γ2

)
from dom A+ toH2 is surjective;

(ii) the following identity holds for every f, g ∈ dom A+

[A+f, g]− [f,A+g] = 〈Γ1f,Γ2g〉H − 〈Γ2f,Γ1g〉H.

In the next theorem we show that the coupling operator A is P-symmetric and PT -symmetric, and
describe the set of all P-selfadjoint and PT -symmetric extensions of the operator A.

Theorem 2.14. Let P be a parity operator in H = H+ ⊕ H−, let T be a conjugation in H such
that (2.16) holds, and let (A±, B±) be T±-real dual pairs in the Hilbert spaces H± such that
(2.17) holds. With jH a conjugation in H, let (H2,ΓA± ,ΓB±) be (jH, T )-real boundary triples
for (A±, B±), such that(

Γ
B+

1

Γ
B+

2

)
f+ =

(
Γ
A−
2

Γ
A−
1

)
Pf+ and

(
Γ
B−
1

Γ
B−
2

)
f− =

(
Γ
A+

2

Γ
A+

1

)
Pf−, f± ∈ dom B∗±. (2.21)

Moreover, let (A,B) be the coupling of the dual pairs (A+, B+) and (A−, B−) given by (2.9),
(2.10), and let Θ be a linear relation inH. Then the following statements hold:

(i) The operator A is PT -symmetric, P-symmetric, and A+ = B∗.

(ii) The triple (H,ΓB1 ,ΓB2 ) is a boundary triple for the P-symmetric operator A.

(iii) The extension AΘ of the operator A, given by

dom AΘ =

{
f ∈ dom B∗ :

(
Γ1f

Γ2f

)
∈ Θ

}
, AΘ = B∗|domAΘ

,

is P-selfadjoint if and only if Θ = Θ∗.

(iv) AΘ is PT -symmetric if and only if Θ = jHΘjH.

3 PT -symmetric Hamiltonians

Here we return to the investigation of the non-Hermitian PT -invariant Hamiltonians presented in
the introduction, that is, we study equation (1.1) on the wedge shaped contour Γ, cf. (1.2). By
substituting z(x) := xeiφ sgn x into (1.1) one obtains the two differential expressions given by (1.3)
and (1.4). Assume that the differential expressions a± in (1.4) are in the limit point case at ±∞. As
presented in Section 1, this is the case if and only if the angle φ of the wedge satisfies

φ 6= − N + 2

2N + 8
π +

2k

4 +N
π for k = 0, . . . , N + 3. (3.1)

Then by Leben & Trunk (2019: Lemma 1) the differential expressions b± in (1.6) are also in the
limit point case at ±∞. Define the operators A± and B± associated with a± and b± in L2(R±) as

A±f± := a±[f±] and B±g± := b±[g±] for f± ∈ dom A±, g± ∈ dom B±,
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respectively, with the domains

dom A± := {u± ∈ L2(R±) : a±[u±] ∈ L2(R±), u′± ∈ ACloc(R±), u±(0±) = u′±(0±) = 0},

dom B± := {v± ∈ L2(R±) : b±[v±] ∈ L2(R±), v′± ∈ ACloc(R±), v±(0±) = v′±(0±) = 0}.

These operators are in some sense the minimal operators. It follows from Leben & Trunk (2019:
Proposition 1 & Theorem 3) that the (maximal) operators A∗± and B∗± are generated by differential
expressions in L2(R±) where the roles of a± and b± are switched in the sense that the differential
expressions a± are now related to B∗± and the differential expressions b± are related to A∗±:

B∗±f± := a±[f±] and A∗±g± := b±[g±] for f± ∈ dom B∗±, g± ∈ dom A∗±,

with
dom B∗± := {u± ∈ L2(R±) : a±[u±] ∈ L2(R±), u′± ∈ ACloc(R±)},

dom A∗± := {v± ∈ L2(R±) : b±[v±] ∈ L2(R±), v′± ∈ ACloc(R±)}.

Theorem 3.1. The pairs (A−, B−) and (A+, B+) are dual pairs. The triple (C2,ΓA+ ,ΓB+),

ΓB+u+ =

(
e−2iφu′+(0)

u+(0)

)
and ΓA+v+ =

(
v+(0)

e2iφv′+(0)

)
,

u+ ∈ dom B∗+,
v+ ∈ dom A∗+,

is a boundary triple for the dual pair (A+, B+). The triple (C2,ΓA− ,ΓB−),

ΓB−u− =

(
−e2iφu′−(0)

u−(0)

)
and ΓA−v− =

(
v−(0)

−e−2iφv′−(0)

)
,

u− ∈ dom B∗−,
v− ∈ dom A∗−,

is a boundary triple for the dual pair (A−, B−).

Proof. Integration by parts and (Leben & Trunk, 2019: Proposition 1) show

〈A±u±, v±〉 = 〈u±, B±v±〉, u± ∈ dom A±, v± ∈ dom B±.

This proves the first statement. It follows from (Leben & Trunk, 2019: Proposition 1) that for
u+ ∈ dom B∗+ and v+ ∈ dom A∗+

〈B∗+u+, v+〉 − 〈u+, A
∗
+v+〉 = −e−2iφ

∫ ∞
0

u′′+(x)v+(x) dx+ e−2iφ

∫ ∞
0

u+(x)v′′+(x) dx

= e−2iφ(u′+(0)v+(0)− u+(0)v′+(0)).

Hence, (C2,ΓA+ ,ΓB+) is a boundary triple for the dual pair (A+, B+). The statement for the dual
pair (A−, B−) is shown in the same way.

Recall that the coupling (A,B) of the dual pairs (A+, B+) and (A−, B−) consists of a pair of
operators A = (B∗+ ⊕B∗−)|dom A and B = (A∗+ ⊕A∗−)|dom B with the domains

dom A = {u+ ⊕ u− : u± ∈ dom B∗±, u+(0) = u−(0) = e−2iφu′+(0)− e2iφu′−(0) = 0 }, (3.2)

dom B = {u+ ⊕ u− : u± ∈ dom A∗±, u+(0) = u−(0) = e2iφu′+(0)− e−2iφu′−(0) = 0 }, (3.3)

see Theorem 2.5.
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We define the parity P and time reversal T as in (1.5). The parity P gives rise to a new inner
product [·, ·] = 〈P·, ·〉 (see also (2.20)), which was considered in many papers, we mention only
(Mostafazadeh, 2010). It is easy to see that the parity P and the time reversal T satisfy (2.16),
where H± := L2(R±). Due to Theorem 2.14, the operator A is PT -symmetric and P-symmetric
in the Kreı̆n space (L2(R), [·, ·]) = (L2(R−) ⊕ L2(R+), [·, ·]). The (Kreı̆n space) adjoint A+ of A
coincides with B∗ = (B∗+ ⊕B∗−)|domB∗ , where

dom B∗ = {u+ ⊕ u− : u± ∈ dom B∗±, u+(0) = u−(0)}.

An application of Theorem 2.14 gives a one-parameter family {Hα}α∈R of PT -symmetric and
P-selfadjoint extensions of A in the Kreı̆n space (L2(R), [·, ·]). This is the main result of this note.

Theorem 3.2. Let the angle φ satisfies (3.1) and letA be the coupling operator constructed in (3.2).
Then the following statements are true:

(i) A boundary triple (C,Γ1,Γ2) for the P-symmetric operator A is given by

Γ1u = e−2iφu′+(0)− e2iφu′−(0) and Γ2u = u+(0), u = u+ ⊕ u− ∈ dom B∗.

(ii) The extension Hα of the operator A, defined as a restriction of A+ to the domain

dom Hα =
{
u+ ⊕ u− ∈ dom B∗ : e−2iφu′+(0)− e2iφu′−(0) = αu+(0)

}
,

is P-selfadjoint if and only if α ∈ R.

(iii) Hα is PT -symmetric if and only if α ∈ R.

Proof. By construction the dual pairs (A+, B+) and (A−, B−) are T±-real and the parity operator
P intertwines the operators A+, B− and A−, B+, that is, (2.17) holds. Moreover, the boundary
triples (C2,ΓA+ ,ΓB+) and (C2,ΓA− ,ΓB−) are also (jC, T )-real and satisfy the condition (2.21).
Here jC stands for the usual complex conjugation in C. Hence, all assumptions in Theorem 2.14 are
satisfied and the statements in Theorem 3.2 follow directly from Theorem 2.14.

In Leben & Trunk (2019) only the extension for the parameter value α = 0 was considered. More
precisely, there it was shown that H0 is an extension of A with domain

dom H0 =
{
u+ ⊕ u− : u± ∈ dom B∗±, u+(0)− u−(0) = e−2iφu′+(0)− e2iφu′−(0) = 0

}
which is PT -symmetric and P-selfadjoint. The family Hα, α ∈ R, of extensions obtained in Theo-
rem 3.2 is in some sense an analogue of the δ-interaction for the differential operation a.
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POSITIVE AND NEGATIVE EXAMPLES FOR THE RIESZ
BASIS PROPERTY OF INDEFINITE STURM-LIOUVILLE
PROBLEMS

Andreas Fleige

Dedicated to Seppo Hassi on the occasion of his 60th birthday

1 Introduction

We consider the indefinite Sturm-Liouville eigenvalue problem

−f ′′ = λrf on [−1, 1],

with a weight function r changing its sign at 0. It is known that, depending on the behavior of r and
on the type of the imposed self-adjoint boundary conditions, the so-called Riesz basis property of the
eigenfunctions in the Hilbert space L2

|r|[−1, 1] can be valid or not. More precisely, let r ∈ L1[−1, 1]

be a real function with a single so-called turning point, i.e., with a sign change, at 0, say

r(x) < 0 a.e. on [−1, 0), r(x) > 0 a.e. on (0, 1].

Due to the sign change of r we cannot expect that the eigenfunctions of the corresponding Sturm-
Liouville eigenvalue problem with self-adjoint boundary conditions form an orthonormal basis in
the Hilbert space L2

|r|[−1, 1] with the inner product

(f, g) =

∫ 1

−1

fḡ|r| dx, f, g ∈ L2
|r|[−1, 1].

However, the eigenfunctions may form a Riesz basis in this space, i.e., an orthonormal basis with
respect to some inner product equivalent to (·, ·). In this case, we say that the eigenvalue problem
has the Riesz basis property.

This Riesz basis property has been intensively studied during the last decades, see the overview paper
(Fleige, 2015). It was first observed by Binding and Ćurgus (2004) that the type of the boundary
conditions plays an important role. In fact, for the same weight function r, the eigenvalue problem
with Dirichlet boundary conditions

−f ′′ = λrf on [−1, 1], f(−1) = f(1) = 0, (1.1)

can have the Riesz basis property, while the eigenvalue problem with antiperiodic boundary condi-
tions

−f ′′ = λrf on [−1, 1], f(−1) + f(1) = 0, f ′(−1) + f ′(1) = 0. (1.2)

does not have the Riesz basis property, This result was sharpened in Ćurgus, Fleige & Kostenko
(2013: Theorem 4.10). Under a certain oddness condition a necessary and sufficient criterion on the
weight function r was presented for the Riesz basis property of an eigenvalue problem with quite
general boundary conditions. In case of the eigenvalue problem (1.1) this criterion only involves the
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behavior of r at the turning point, whereas in case of the eigenvalue problem (1.2) also the boundary
comes into play, see Theorem 2.4 below. In some sense the paper (Ćurgus, Fleige & Kostenko,
2013) was the endpoint of a number of papers improving the conditions for the Riesz basis property,
at least for the case of a regular differential expression, e.g., (Ćurgus & Langer, 1989; Parfenov,
2003; 2005; Pyatkov, 2005). Note that further developments were mainly concerned with singular
differential expressions and criteria involving the Titchmarsh-Weyl function, see e.g., (Kostenko,
2013; Ćurgus, Derkach & Trunk, 2020).

The present paper can be regarded as a certain addition to Ćurgus, Fleige & Kostenko (2013). The
main intention is a presentation of examples for the validity and non-validity of the Riesz basis prop-
erty of eigenvalue problems (1.1) and (1.2), illustrating the different arguments for various settings.

Finally, an outline of the paper is given. In Section 2 we recall some conditions concerning the
weight function r appearing in the eigenvalue problems (1.1) and (1.2) from the paper (Ćurgus,
Fleige & Kostenko, 2013; Parfenov, 2003; 2005; Pyatkov, 2005). In Section 3 all possible, positive
and negative, cases are obtained by certain modifications of the same "bad" weight function. Never-
theless, on the left of the turning point this "bad" weight always remains unchanged. Note that for
the proof of these examples also a new result had to be added to the general theory in Section 2.

2 Some known conditions and a slight extension of these
results

First of all, it should be mentioned that for the eigenvalue problems (1.1) and (1.2) there cannot
appear any root functions except the eigenfunctions. This follows, for example, by means of Kreı̆n
space methods. To see this let AD and Aa denote the operators in L2

|r|[−1, 1] associated with (1.1)
and (1.2). Thus, in other words, ADf = − 1

rf
′′, when f belongs to dom AD, defined by

dom AD =
{
f ∈ L2

|r|[−1, 1] :
1

r
f ′′ ∈ L2

|r|[−1, 1], f(−1) = f(1) = 0
}
,

and, likewise, Aaf = − 1
rf
′′, when f belongs to dom Aa, defined by

dom Aa = {f ∈ L2
|r|[−1, 1] :

1

r
f ′′ ∈ L2

|r|[−1, 1], f(−1) + f(1) = 0, f ′(−1) + f ′(1) = 0}.

Here is the above mentioned observation concerning the eigenvalue problems (1.1) and (1.2).

Lemma 2.1. Let λ ∈ C and assume that f ∈ dom A2
D and g ∈ dom A2

a satisfy

(AD − λ)2f = 0 and (Aa − λ)2g = 0.

Then f and g already satisfy

(AD − λ)f = 0 and (Aa − λ)g = 0.

Proof. Note that L2
|r|[−1, 1] is a Kreı̆n space with the inner product

[f, g] =

∫ 1

−1

fḡr dx, f, g ∈ L2
|r|[−1, 1],
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and that AD and Aa are self-adjoint and definitizable operators in this space; see (Ćurgus & Langer,
1989). Furthermore, observe that the operator AD is nonnegative, since

[ADf, f ] = −
∫ 1

−1

f ′′f̄ dx =

∫ 1

−1

|f ′|2 dx ≥ 0, f ∈ dom AD,

due to the boundary conditions. Likewise, one sees that Aa is nonnegative. Therefore, in both
cases, p(λ) = λ is a definitizing polynomial. By (Langer, 1982: Proposition II, 2.1) a Jordan chain
of length at least 2 can only appear for the zeros of the definitizing polynomial, i.e., for λ = 0.
However, λ = 0 is neither an eigenvalue for AD nor for Aa.

Note that the situation sketched in Lemma 2.1 is different in the case of periodic boundary condi-
tions; see (Ćurgus, Fleige & Kostenko, 2013: Example 4.12).

For convenience we now recall some definitions and known results about the Riesz basis property
which will be used in the subsequent examples. We start with some properties from the theory of
regularly varying functions studied at 0 rather than at ∞, see, e.g., (Bingham, Goldie & Teugels,
1987; Kostenko, 2013; Ćurgus, Derkach & Trunk, 2020). Let I be a nondecreasing function defined
on [0, b] with b > 0 such that

I(x) > 0, x ∈ (0, b], 0 = I(0) = lim
x↘0

I(x). (2.1)

Then the function I is said to be slowly varying if

lim
x↘0

I(tx)

I(x)
= 1, for all t > 0,

and is said to be positively increasing if

lim sup
x↘0

I(t0x)

I(x)
< 1, for some t0 ∈ (0, 1).

Of course, these properties exclude each other: a slowly varying function cannot be positively in-
creasing, and vice versa. Below, these properties will be checked for the functions

I+
0 (x) :=

∫ x

0

r dt and I−1 (x) :=

∫ 1

1−x
r dt, x ∈ [0, 1], (2.2)

obviously satisfying (2.1). Furthermore, some local oddness conditions on the weight function will
be used. A function r is called locally odd at the turning point if there exists ε > 0 such that the
restriction of r to (−ε, ε) is odd. Similarly, a function r is called locally odd at the boundary if there
exists ε > 0 such that r(−1 + x) = −r(1− x) for a.a. x ∈ (0, ε).

The following result, here formulated in the terminology of positively increasing functions as in
Ćurgus, Fleige & Kostenko (2013: Corollary 3.6), goes back to Parfenov (2003; 2005).

Theorem 2.2 (Parfenov (2003; 2005)). The following statements hold:

(i) If I+
0 is positively increasing, then the eigenvalue problem (1.1) has the Riesz basis property.

(ii) If r is locally odd at the turning point, then the eigenvalue problem (1.1) has the Riesz basis
property if and only if I+

0 is positively increasing.
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Originally, (ii) was formulated for the stronger case of odd weights. However, Pyatkov (2005:
Theorem 4.2) observed that only the local behaviour at the turning point is relevant for the Riesz
basis property of (1.1). Next we recall another aspect of Pyatkov’s result (Pyatkov, 2005: Theorem
4.2), again in the terminology of positively increasing functions as in Ćurgus, Fleige & Kostenko
(2013: Theorem 4.1).

Theorem 2.3 (Pyatkov (2005)). If I−1 is positively increasing, then the eigenvalue problem (1.2) has
the Riesz basis property if and only if the eigenvalue problem (1.1) has the Riesz basis property.

This result was improved in Ćurgus, Fleige & Kostenko (2013: Theorem 4.10) in the case when
certain oddness conditions are satisfied.

Theorem 2.4 (Ćurgus, Fleige & Kostenko (2013)). If r is locally odd at the turning point and at the
boundary, then the eigenvalue problem (1.2) has the Riesz basis property if and only if I+

0 and I−1
are both positively increasing.

Note that originally the last two results were formulated in a more general setting and they are now
applied in the present situation. Finally, we present a slight extension of these results, which will be
proved in a similar way as (Ćurgus, Fleige & Kostenko, 2013: Theorem 4.10).

Theorem 2.5. If r is locally odd at the boundary, then the eigenvalue problem (1.2) has the Riesz
basis property if and only if the eigenvalue problem (1.1) has the Riesz basis property and I−1 is
positively increasing.

Proof. By (Ćurgus, Fleige & Kostenko, 2013: Lemma 4.7) the Riesz basis property of (1.2) is
equivalent to the Riesz basis property of the shifted problem

−f ′′ = λr̃f on [ã, b̃], f(ã) + f (̃b) = 0, f ′(ã) + f ′(̃b) = 0, (2.3)

in L2
|r̃|[ã, b̃], where ã := −1 − ε and b̃ := 1 − ε for some ε ∈ (0, 1

2 ). Here the weight function r̃ is
given by

r̃(x) :=

{
r(x+ 2), x ∈ [ã,−1),

r(x), x ∈ [−1, b̃].

This function has two turning points, i.e., sign changes, at 0 and at−1. Thus we can apply (Pyatkov,
2005: Theorem 4.2) (using a criterion for an even number of turning points, see also (Ćurgus, Fleige
& Kostenko, 2013: Theorem 4.1)) and obtain the equivalence of the Riesz basis property of (2.3)
to the Riesz basis properties of two local problems with r̃ on [−δ, δ] and r̃ on [−1 − δ,−1 + δ],
both with Dirichlet boundary conditions. Here, δ ∈ (0, ε) can be chosen arbitrarily. By assumption,
the weight r̃ is locally odd at the turning point −1; i.e., r̃(−1 − x) = −r̃(−1 + x) for a.a. x in a
neighborhood of 0. Therefore, by Parfenov’s result, see Theorem 2.2 (ii), the Riesz basis property
for the problem on [−1− δ,−1 + δ] is equivalent to the condition that the function∫ −1

−1−x
r̃ dt = I−1 (x)

is positively increasing. Furthermore, again by (Pyatkov, 2005: Theorem 4.2), the Riesz basis prop-
erty for the problem on [−δ, δ] is equivalent to the Riesz basis property of (1.1).



Acta Wasaensia 73

Note that the arguments above also apply in a more general setting: Theorem 2.5 remains true with
(1.2) replaced by the eigenvalue problem

−f ′′ + qf = λrf, eitf(−1) = f(1), f ′(−1) = e−itf ′(1) + d f(−1),

with a real potential q ∈ L1[−1, 1], t ∈ [0, 2π), and d ∈ R, see also the proof of (Ćurgus, Fleige
& Kostenko, 2013: Proposition 4.9). However, in this case there may appear a Jordan chain as in
Ćurgus, Fleige & Kostenko (2013: Example 4.12). Therefore, as in Ćurgus, Fleige & Kostenko
(2013), for the Riesz basis property not only eigenfunctions but also root functions must be allowed.

3 Examples

We start with an example which combines the negative properties of (Ćurgus, Fleige & Kostenko,
2013: Example 3.17) (going back to (Parfenov, 2003)) and (Ćurgus, Fleige & Kostenko, 2013:
Example 4.12 (ii)). It is worse than each of these examples in the sense that the Riesz basis criteria
at the turning point and at the boundary are both violated simultaneously.

3.1 A weight with "bad" behavior at the turning point and at the boundary

First, consider the functions r0 and r1 belonging to L1[−1, 1] defined as

r0(x) :=
1

x(1− log |x|)2
and r1(x) :=

sgn(x)

(1− |x|)(1− log(1− |x|))2
, (3.1)

for x ∈ (−1, 1) \ {0}. Furthermore, define the function r as

r := r0 + r1. (3.2)

Lemma 3.1. For the weight function r from (3.2), the functions I+
0 and I−1 , as defined in (2.2),

coincide: I+
0 = I−1 . Moreover, this function I+

0 = I−1 is slowly varying.

Proof. First, note that for x ∈ (0, 1) we have that r1(x) = r0(1− x) and, hence,

I−1 (x) =

∫ 1

1−x
(r0 + r1) dt =

∫ x

0

(r0(1− s) + r1(1− s)) ds =

∫ x

0

(r1(s) + r0(s)) ds = I+
0 (x).

Now, observe that for t > 0 the following limits exist

lim
x↘0

t r0(tx)

r0(x)
= lim
x↘0

(1− log x)2

(1− log x− log t)2
= 1 and lim

x↘0

t r1(tx)

r0(x)
= 0.

In order to see that I+
0 is slowly varying use l’Hôpital’s rule:

lim
x↘0

I+
0 (tx)

I+
0 (x)

= lim
x↘0

t(r0(tx) + r1(tx))

r0(x) + r1(x)
= lim
x↘0

t( r0(tx)
r0(x) + r1(tx)

r0(x) )

1 + r1(x)
r0(x)

= 1.
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Since r is odd here, we can now conclude the following result from Lemma 3.1, Theorem 2.2 (ii),
and Theorem 2.4.

Proposition 3.2. For the weight function r as in (3.2) neither the eigenvalue problem (1.1) nor the
eigenvalue problem (1.2) has the Riesz basis property.

In the following we "smoothen" the weight function in (3.2) in some sense.

3.2 "Relaxing" the weight on the right of the turning point

Using again the functions r0 and r1 from (3.1), we now consider the weight function

r(x) :=

{
1, x ∈ [c, d],

r0(x) + r1(x), x ∈ [−1, 1] \ [c, d],
(3.3)

for some numbers 0 ≤ c < d ≤ 1. Obviously, this weight is not odd any more, but it is locally odd
at the turning point if c > 0, and locally odd at the boundary if d < 1.

Lemma 3.3. Let the weight function r be given by (3.3). Then the following statements hold:

(i) If 0 < c < d < 1, then the functions I+
0 and I−1 are slowly varying.

(ii) If 0 < c < d = 1, then I+
0 is slowly varying and I−1 is positively increasing.

(iii) If 0 = c < d < 1, then I+
0 is positively increasing and I−1 is slowly varying.

(iv) If c = 0 and d = 1, then the functions I+
0 and I−1 are positively increasing.

Proof. In some cases the functions I+
0 and I−1 coincide locally at 0 with the corresponding function

in Lemma 3.1. In these cases the functions are slowly varying by Lemma 3.1. In all other cases
these functions are linear near 0 and, hence, positively increasing.

Finally, the theorems from Section 2 lead to the following three different Riesz basis results in the
four cases of Lemma 3.3.

Proposition 3.4. Let the weight function r be given by (3.3). Then the following statements hold:

(i) If 0 < c < d < 1, then neither the eigenvalue problem (1.1) nor the eigenvalue problem (1.2)
has the Riesz basis property.

(ii) If 0 < c < d = 1, then neither the eigenvalue problem (1.1) nor the eigenvalue problem (1.2)
has the Riesz basis property.

(iii) If 0 = c < d < 1, then the eigenvalue problem (1.1) has the Riesz basis property but the
eigenvalue problem (1.2) does not.

(iv) If c = 0 and d = 1, then both eigenvalue problems (1.1) and (1.2) have the Riesz basis
property.
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Proof. As in Proposition 3.2, statement (i) follows from Theorem 2.2 (ii) and Theorem 2.4, since r
is in this case locally odd at the turning point and at the boundary. Similarly, we obtain statement
(ii) for problem (1.1) from Theorem 2.2 (ii), and then also for problem (1.2) from Theorem 2.3.
(Note that here we cannot apply Theorem 2.4, since r is no longer locally odd at the boundary.)
Statement (iii) follows from Theorem 2.2 (i) and Theorem 2.5. Here, we use the fact that r is in this
case locally odd at the boundary. Finally, statement (iv) can be obtained from Theorem 2.2 (i) and
Theorem 2.3.
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ON PARSEVAL J-FRAMES

Alan Kamuda and Sergii Kużel

This paper is dedicated to Seppo Hassi, to whom we would like to send our warmest wishes for his
60th birthday. All the best!

1 Introduction

Frame theory finds many applications in engineering, applied mathematics, and computer sciences.
It turns out to be useful because of its properties, which are unavailable for bases, e.g., non-unique
decompositions. For instance, frames have been shown to be useful in signal processing applications
when noisy channels are involved, because a frame allows one to reconstruct vectors (signals) even
if some of the frame coefficients are missing (or corrupted), see, e.g., (Christensen, 2016; Heil, 2011;
Mallat, 1999).

Usually, frames are defined in a Hilbert space setting. LetH be a Hilbert space with an inner product
(·, ·) and let J be the index set (countable or finite). Then a set of vectors

Fϕ = {ϕj : j ∈ J}

is called a frame forH if there exist constants (frame bounds) 0 < A ≤ B <∞ such that

A‖f‖2 ≤
∑
j∈J
|(f, ϕj)|2 ≤ B‖f‖2, f ∈ H. (1.1)

Furthermore, the set Fϕ is called a Parseval frame if the inequalities (1.1) hold for the constants
A = B = 1.

A frame Fψ = {ψj : j ∈ J} satisfying the condition

f =
∑
j∈J

(f, ψj)ϕj , f ∈ H, (1.2)

is called a dual frame of Fϕ. In general, dual frames are not determined uniquely and their proper
choice (i.e., one that fits the specific problem well) is of great importance. A description of dual
frames based on the Naimark dilation theorem is discussed in Kamuda & Kużel (2020).

Each Parseval frame Fϕ is dual to itself and the reconstruction formula (1.2) can be simplified

f =
∑
j∈J

(f, ϕj)ϕj , f ∈ H. (1.3)

There are several advantages in considering frames in the setting of Kreı̆n spaces, instead of Hilbert
spaces. For example, noise can be extracted from the signal in an easy way. Indeed, consider a signal
with two dominants (e.g., given by high and low frequency signals). Let the projection P inH be an
ideal low pass filter and let the projection I − P in H be an ideal high pass filter. A signal (vector)
ϕ ∈ H, for which the equality ‖Pϕ‖ = ‖(I − P )ϕ‖ holds, is considered as a noise. In other words,
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ϕ is considered to be a noise if its high frequency level is equal to its low frequency level. From a
practical perspective, it is convenient to fix ε > 0, and to say that ϕ is considered to be a noise if∣∣‖Pϕ‖2 − ‖(I − P )ϕ‖2

∣∣ < ε.

Every difference between the norms for ϕ below ε implies that ϕ is a noise. From a Hilbert space
view, one has to look at the decomposition ϕ = Pϕ+ (I − P )ϕ. Hence, it is necessary to consider
two frames {Pϕ} ∪ {(I − P )ϕ}. From a Kreı̆n space perspective one can, using P , introduce a
fundamental symmetry

J = P − (I − P ) = 2P − I,

and define an indefinite inner product

[f, g] = (Jf, g) = (Pf, Pg)− ((I − P )f, (I − Pg)), f, g ∈ H.

Thus ϕ is considered as a noise when |[ϕ,ϕ]| < ε (for a fixed ε). For more details about this
example, we encourage the reader to look at Giribet et al. (2012: Section 3).

In the present paper, we extend the concept of Parseval frames to the setting of Kreı̆n spaces, com-
bining the simplicity of the reconstruction formula (1.3) with the additional possibilities for the
reduction of noises offered by Kreı̆n spaces. In the last few years, several papers devoted to the
development of frame theory in Kreı̆n space have been published, e.g., (Acosta-Humánez, Esmeral
& Ferrer, 2015; Escobar, Esmeral & Ferrer, 2016; Esmeral, Ferrer & Wagner, 2015; Esmeral, Ferrer
& Lora, 2016; Giribet et al., 2012; Giribet, Maestripieri & Martínez Pería, 2018). A review of the
definitions for frames in Kreı̆n spaces is given in Kamuda & Kużel (2019).

Our definition of Parseval J-frames is based on the concept of dual quasi-maximal subspaces intro-
duced in Kamuda, Kuzhel & Sudilovskaja (2019) and discussed in Section 2. In Section 3 we define
Parseval J-frames and establish their principal properties. In Section 4 we show that eigenfunctions
of the harmonic oscillator H = − d2

dx2 + x2 + 2iax, associated with a PT -symmetric potential,
constitute a Parseval J-frame, where J is the space parity operator.

2 Dual quasi-maximal subspaces

Let H be a Hilbert space with inner product (·, ·) and let J be a non-trivial fundamental symmetry,
i.e., J = J∗, J2 = I , and J 6= ±I . The space H endowed with the indefinite inner product
(indefinite metric)

[f, g] = (Jf, g), f, g ∈ H,

is called a Kreı̆n space; it will be denoted by (H, [·, ·]). All of the following topological notions are
considered in the Hilbert space topology.

A closed subspaceL of the Kreı̆n space (H, [·, ·]) is called neutral, negative, or positive if all nonzero
elements f ∈ L are, respectively, neutral [f, f ] = 0, negative [f, f ] < 0, or positive [f, f ] > 0. A
subspace L of H is called definite if it is either positive or negative. Subspaces L± of H are called
dual if L+ is positive, L− is negative, and they are orthogonal with respect to the indefinite metric
(J-orthogonal), the latter meaning that [f+, f−] = 0 for all f± ∈ L±.
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In each of the above mentioned classes we can define maximal subspaces. For instance, a closed
positive subspace Lmax is called maximal positive if Lmax is not a proper subspace of a positive
subspace in the Kreı̆n space (H, [·, ·]). Similarly, subspaces Lmax

± are called dual maximal definite
if they are dual, Lmax

+ is maximal positive, and Lmax
− is maximal negative.

The pair of subspacesH+ = ker (I − J) andH− = ker (I + J) in the fundamental decomposition
of the Kreı̆n space

H = H+ [⊕]H− (2.1)

is an example of dual maximal definite subspaces; the brackets in (2.1) mean thatH± are orthogonal
with respect to [·, ·].

The next result follows from (Albeverio & Kuzhel, 2015; Kamuda, Kuzhel & Sudilovskaja, 2019).

Lemma 2.1. The subspaces Lmax
± are dual maximal definite if and only if there exists a self-adjoint

operator Q inH that anticommutes with J , i.e.,

QJf = −JQf, f ∈ D(Q),

such that
Lmax

+ = (I + tanhQ/2)H+ and Lmax
− = (I + tanhQ/2)H−. (2.2)

The self-adjoint strong contraction tanhQ/2 in (2.2) anticommutes with J and it characterizes
the "deviation" of the dual maximal definite subspaces Lmax

± with respect to H±. By a strong
contraction we mean an operator T such that ‖Tf‖ < ‖f‖ for nonzero f .

In view of Lemma 2.1, a self-adjoint operator Q can be considered as a parameter describing all
possible pairs of dual maximal definite subspaces Lmax

± . This fact allows one to associate with Lmax
±

a new Hilbert spaceH−Q, which is determined as the completion of the direct sum

Dmax = Lmax
+ [+̇]Lmax

− (2.3)

with respect to the norm ‖ · ‖−Q =
√

(·, ·), generated by the inner product

(f, g)−Q = (e−Qf, g), f, g ∈ Dmax.

If Q is bounded, then Dmax = H, the space H−Q coincides with H (as the set of elements), and
(·, ·)−Q is equivalent to the initial inner product (·, ·).

Let L± be a pair of dual definite subspaces such that their J-orthogonal sum

L+ [+̇]L− (2.4)

is dense inH. Due to the Phillips result (Phillips, 1961: Theorem 2.1), the pair L± can be extended
to dual maximal definite subspaces Lmax

± . In general, this extension is not determined uniquely, see
(Kamuda, Kuzhel & Sudilovskaja, 2019; Langer, 1970).

Definition 2.2. The dual definite subspaces L± are called quasi-maximal if their direct sum (2.4) is
dense in H and there exists extensions L± → Lmax

± to dual maximal definite subspaces Lmax
± such

that (2.4) is a dense set in the Hilbert spaceH−Q associated with Lmax
± .

The next technical result was proved in Kamuda, Kuzhel & Sudilovskaja (2019: Lemma 4.7).
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Lemma 2.3. Let L+ and L− be a pair of dual definite subspaces and let Lmax
+ and Lmax

− be their
extensions to the dual maximal definite subspaces, respectively. Moreover, letM =M+ ⊕M− be
a subspace ofH, whereM± determine L± ⊂ Lmax

± in (2.2), i.e.,

L+ = (I + tanhQ/2)M+, L− = (I + tanhQ/2)M−, M+ ⊂ H+, M− ⊂ H−. (2.5)

Then the direct sum (2.4) is dense in the Hilbert spaceH−Q, constructed by Lmax
± , if and only if

R(cosh−1Q/2) ∩ (H	M) = {0}.

The direct sum (2.4) allows one to define the operator

Sf = S(f+ + f−) = Jf+ − Jf−, f± ∈ L±.

with the domain D(S) = L+ [+̇]L−. It follows from (Kamuda, Kuzhel & Sudilovskaja, 2019) that
S is a densely defined symmetric operator inH and

(S(f+ + f−), f+ + f−) = [f+, f+]− [f−, f−] > 0.

Similarly, the direct sum (2.3) of dual maximal definite subspaces Lmax
± determines a positive self-

adjoint operator

Af = A(f+ + f−) = Jf+ − Jf−, f± ∈ Lmax
± , D(A) = Dmax, (2.6)

which is an extension of S when the pair Lmax
± is an extension of L±, see (Albeverio & Kuzhel,

2015; Kamuda, Kuzhel & Sudilovskaja, 2019).

From the construction it follows that L± = (I ± JS)D(S). Therefore, S determines the subspaces
L± and one can expect that the quasi-maximality of L± can be characterized in terms of self-adjoint
extensions of S. For this reason, we recall from Arlinskiĭ et al. (2001) that a nonnegative self-adjoint
extension A of S is called an extremal extension if

inf
f∈D(S)

(A(φ− f), (φ− f)) = 0 for all φ ∈ D(A). (2.7)

The Friedrichs extension and the Kreı̆n-von Neumann extension are examples of extremal extensions
of S.

Theorem 2.4. The dual definite subspaces L± are quasi-maximal if and only if there exists an
extremal extension A = e−Q of S, where Q anticommutes with J .

Proof. Let L± be quasi-maximal subspaces and let Lmax
± be the corresponding dual maximal def-

inite subspaces as in Definition 2.2. Due to Lemma 2.1, the spaces Lmax
± are defined by (2.2).

Therefore, vectors f± ∈ Lmax
± have the form f± = (I + tanhQ/2)x±, with x± ∈ H±, and the

operator A defined by (2.6) acts as follows:

A(f+ + f−) = (I − tanhQ/2)x+ + (I − tanhQ/2)x− = e−Q(f+ + f−). (2.8)

Here we used the relations Jx± = ±x±, e−Q(I + tanhQ/2) = I − tanhQ/2, and the fact that
tanhQ/2 anticommutes with J . Therefore A = e−Q is a self-adjoint extension of S. Now we
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should prove that A is an extremal extension. To do that, we rewrite (2.7) with the use of ‖ · ‖−Q,

inf
f∈D(S)

(A(φ− f), (φ− f)) = inf
f∈D(S)

‖φ− f‖2−Q = 0 for all φ ∈ D(e−Q),

and take into account that D(S) is dense in the Hilbert spaceH−Q.

The converse statement is obvious: the required dual maximal definite subspaces Lmax
± in Definition

2.2 are determined by the formula Lmax
± = (I ± JA)D(A), where A = e−Q and Q anticommutes

with J .

3 Parseval J-frames

Definition 3.1. A set of vectors Fϕ = {ϕj : j ∈ J} is called a Parseval J-frame if there exists a
pair of dual quasi-maximal subspaces L± such that each vector ϕj ∈ Fϕ belongs either to L+ or
L−, and

|[f±, f±]| =
∑
j∈J
|[f±, ϕj ]|2 for all f± ∈ L±. (3.1)

Theorem 3.2. For each Parseval J-frame Fϕ there exists a self-adjoint operator Q which anticom-
mutes with J , such that Fϕ is a Parseval frame in a new Hilbert spaceH−Q.

Proof. Each Parseval J-frame is associated with certain dual quasi-maximal subspacesL±. Accord-
ing to Definition 2.2, there exists a self-adjoint operator Q which anticommutes with J and which is
such that the direct sum L+ + L− is dense in the Hilbert spaceH−Q. In view of (2.6) and (2.8),

e−Qf = e−Q(f+ + f−) = Jf+ − Jf−, f± ∈ Lmax
± .

This means that the subspaces Lmax
± are orthogonal with respect to the inner product (·, ·)−Q of

H−Q. Moreover,

‖f±‖2−Q = |[f±, f±]|, (f±, g±)−Q = ±[f±, g±], f±, g± ∈ L±. (3.2)

Taking these relations into account, we rewrite (3.1) as

‖f‖2−Q = ‖f+‖2−Q + ‖f−‖2−Q =
∑
j∈J
|(f±, ϕj)−Q|2 (3.3)

for f = f+ + f− ∈ L+ [+̇]L−. The relation (3.3) is extended to all f ∈ H−Q with the use of
(Christensen, 2016: Lemma 5.1.7).

By Theorem 3.2 every Parseval J-frame Fϕ turns out to be a Parseval frame in a suitably chosen
Hilbert spaceH−Q and the following reconstruction formula holds

f =
∑
j∈J

(f, ϕj)−Q ϕj , f ∈ H−Q, (3.4)

see (1.3), where the series converges inH−Q. Assuming that f = f+ + f− ∈ L+ [+̇]L− and using
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the second relation in (3.2) we obtain

(f, ϕj)−Q = (f+, ϕj)−Q = [f+, ϕj ] = [f, ϕj ], ϕj ∈ L+;

(f, ϕj)−Q = (f−, ϕj)−Q = −[f−, ϕj ] = −[f, ϕj ], ϕj ∈ L−.

Therefore, for f ∈ L+ [+̇]L−, the series (3.4) takes the form

f =
∑
j∈J

δj [f, ϕj ]ϕj , δj = sgn([ϕj , ϕj ]).

The obtained relation leads to the conclusion that

[f, f ] =
∑
j∈J

δj |[f, ϕj ]|2.

As was mentioned above, one of the characteristic properties of J-frames is the possibility to in-
terpret the signal f as a noise if its indefinite metric [f, f ] is close to 0. Given that fact, a Parseval
J-frame Fϕ turns out to be useful. The above formula allows one to extract vectors f , which repre-
sent a noise by evaluation of the indefinite metric coefficients [f, ϕj ]. The next statement shows that
Parseval J-frames can be easily constructed.

Theorem 3.3. Let Fϕ = {ϕj : j ∈ J} be a complete set in a Hilbert space H. Then the following
statements are equivalent:

(i) Fϕ is a Parseval J-frame.

(ii) There exist a, not necessarily bounded, self-adjoint operator Q in H, which anticommutes
with J , and a Parseval frame Fe = {ej : j ∈ J} consisting of eigenfunctions of the operator
J , i.e., Jej = ej or Jej = −ej , such that

ϕj = eQ/2ej , j ∈ J. (3.5)

Proof. (i)⇒ (ii) In view of Theorem 3.2, there exists a self-adjoint operator Q in H that anticom-
mutes with J and Fϕ is a Parseval frame in the Hilbert spaceH−Q. Setting f ∈ D(e−Q/2) ⊂ H−Q
in (3.4) and taking into account that ϕj ∈ L+ [+̇]L− ⊂ D(e−Q) we arrive at the conclusion that

‖γ‖2 =
∑
j∈J
|(γ, e−Q/2ϕj)|2,

for all γ = e−Q/2f in the setR(e−Q/2) which is dense inH. By Christensen (2016: Lemma 5.1.9)
the obtained equality can be extended to the whole spaceH. Hence, Fe = {ej = e−Q/2ϕj : j ∈ J}
is a Parseval frame inH and the relation (3.5) holds.

The definition of ej gives us that ej ∈ D(eQ/2) ∩ D(e−Q/2), since ϕj ∈ D(e−Q). Therefore, it
belongs to the domain of definition of the operator coshQ/2 = 1

2 (eQ/2 + e−Q/2). Moreover,

(I + tanhQ/2) coshQ/2 ej = (coshQ/2 + sinhQ/2) ej = eQ/2 ej = ϕj ∈ L±. (3.6)

Comparing the above relation with (2.2) and taking into account that ker (I + tanhQ/2) = {0}
(since tanhQ/2 is a strong contraction) we arrive at the conclusion that

coshQ/2 ej ∈ H+ or coshQ/2 ej ∈ H−. (3.7)
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Since coshQ/2 commutes with J , one has

J coshQ/2 = J
1

2

(
eQ/2 + e−Q/2

)
=

1

2

(
e−Q/2 + eQ/2

)
J = coshQ/2 J.

Therefore formula (3.7) implies that ej ∈ H+ = ker (I − J) or ej ∈ H− = ker (I + J).

(ii)⇒ (i) In view of (3.5),

[ϕj , ϕi] = (JeQ/2ej , e
Q/2ei) = (e−Q/2Jej , e

Q/2ei)

= (Jej , ei) =


(ej , ei), ej , ei ∈ H+,

−(ej , ei), ej , ei ∈ H−,
0, ej ∈ H±, ei ∈ H∓.

This means that each non-zero vector f ∈ span {ϕn = eQ/2en : en ∈ H+} is positive, because

[f, f ] =
[∑

j

cjϕj ,
∑
k

ckϕk

]
=
∑
j,k

cjck(ej , ek) =
(∑

j

cjej ,
∑
k

ckek

)
= ‖e−Q/2f‖2.

Similarly, vectors g ∈ span {ϕj = eQ/2ej : ej ∈ H−} are negative. Obviously, [f, g] = 0.

Denote by L± the completion of span {ϕj = eQ/2ej : ej ∈ H±} inH. By the construction, L± are
dual definite subspaces. Furthermore, for each f ∈ L+,

[f, ϕj ] = (Jf, eQ/2ej) = (f, JeQ/2ej) = (f, e−Q/2Jej) = (e−Q/2f, ej).

Taking into account that Fe = {ej : j ∈ J} is a Parseval frame, we get∑
j∈J
|[f, ϕj ]|2 =

∑
j∈J
|(e−Q/2f, ej)|2 = ‖e−Q/2f‖2 = (f, f)−Q = [f, f ], f ∈ L+.

Similarly, for f ∈ L−, [f, ϕj ] = −(e−Q/2f, ej) and∑
j∈J
|[f, ϕj ]|2 =

∑
j∈J
|(e−Q/2f, ej)|2 = ‖e−Q/2f‖2 = (f, f)−Q = −[f, f ].

This analysis leads to the conclusion that (3.1) holds. To complete the proof, it suffices to verify that
the spaces L± are quasi-maximal. To this end, we show that L+ [+̇]L− is a dense set inH−Q.

Taking into account that the spaces L± are defined as completions of span{ϕj}, as above, and com-
paring the formulas (2.5) and (3.6) we arrive at the conclusion thatM coincides with the completion
of span {coshQ/2 ej : j ∈ J}. Hence,

H	M = H	 span {coshQ/2 ej}.

Assume that L+ [+̇]L− is not dense in H−Q. Then, in view of Lemma 2.3, there exists a vector
p = cosh−1Q/2u 6= 0, such that p ∈ H 	M, i.e.,

0 = (p, coshQ/2 ej) = (cosh−1Q/2u, coshQ/2 ej) = (u, ej) for all ej ∈ Fe.

Since Fe is a Parseval frame in H, this means that u = 0 and ,hence, p = 0; a contradiction.
Consequently, L+ [+̇]L− is a dense set inH−Q.
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4 Harmonic oscillator with PT -symmetric potential

In the spaceH = L2(R) we consider the fundamental symmetry J = P , where Pf(x) = f(−x) is
the space parity operator. The subspaces H± of the fundamental decomposition (2.1) coincide with
the subspaces of even and odd functions of L2(R).

The Hermite functions

ej(x) =
1√

2jj!
√
π
Hj(x)e−x

2/2, Hj(x) = ex
2/2

(
x− d

dx

)j
e−x

2/2, j ∈ J = N ∪ {0},

are eigenfunctions, H0ej = (2j + 1)ej , of the harmonic oscillator

H0 = − d2

dx2
+ x2, D(H0) = {f ∈W 2

2 (R) : x2f ∈ L2(R)}

and they form an orthonormal basis Fe = {ej : j ∈ J} of L2(R). The functions ej are even or odd
for j being even or odd, respectively. This means that ej ∈ H+ or ej ∈ H−. Since the functions
ej(x) are entire functions on C, their complex shift can be defined:

ϕj(x) := ej(x+ ia), a ∈ R \ {0}, j = 0, 1, 2, . . .

The set Fϕ = {ϕj : j ∈ J} is complete in L2(R), see (Mityagin, Siegl & Viola, 2017: Lemma
2.5); in the following the dependence on a will not be explicitly indicated. Applying the Fourier
transform

Ff =
1√
2π

∫ ∞
−∞

e−ixξf(x) dx

to ϕj , we obtain Fϕj = e−aξFej . Therefore, ϕj = F−1e−aξFej . The last relation can be rewritten
as

ϕj = eQ/2ej ,

where Q = 2ai ddx , D(Q) = W 1
2 (R), is a self-adjoint operator in L2(R) that anticommutes with

J = P in L2(R). By virtue of Theorem 3.3, the set Fϕ is a Parseval J-frame.

The set Fϕ cannot be a Schauder basis in L2(R). Indeed, assume that Fϕ is a Schauder basis. Then,
by Heil (2011: Theorem 4.13),

1 ≤ ‖ϕj‖ ‖ψj‖ ≤ C, j ∈ J,

where Fψ = {ψj : j ∈ J} is the bi-orthogonal sequence for Fϕ. It is easy to see that

ψj = sgn([ϕj , ϕj ])Jϕj .

Hence, the last inequalities take the form 1 ≤ ‖ϕj‖2 ≤ C. On the other hand, by (Mityagin, Siegl
& Viola, 2017: Theorem 2.6)

lim
j→∞

1√
j

log ‖ϕj‖2 = 23/2|a|,

which contradicts the inequality ‖ϕj‖2 ≤ C. Hence, Fϕ cannot be a Schauder basis.

The functions of the Parseval J-frame Fϕ are simple eigenfunctions, Hϕj = (2j + 1 + a2)ϕj , of
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the non-self-adjoint operator:

H = − d2

dx2
+ x2 + 2iax, D(H) = D(H0),

see (Mityagin, Siegl & Viola, 2017: Lemma 2.4). The operatorH can be considered as a perturbation
of the harmonic oscillator H0 by a PT -symmetric potential V (x) = 2iax, i.e., H = H0 + V . The
PT -symmetry of V (x) means that PT V (x) = V (x)PT , where T is the complex conjugation
operator, i.e., T f = f .
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IDEMPOTENT RELATIONS, SEMI-PROJECTIONS, AND
GENERALIZED INVERSES

Jean-Philippe Labrousse, Adrian Sandovici, Henk de Snoo, and
Henrik Winkler

Dedicated to our friend Seppo Hassi on the occasion of his sixtieth birthday

1 Introduction

As a motivation for this paper, consider the identities

ABA = A and BAB = B, (1.1)

where A ∈ B(H,K) and B ∈ B(K,H) for Hilbert spaces H and K, which have been studied in the
literature in much detail. Clearly, if (1.1) holds, then the operatorsBA ∈ B(H) andAB ∈ B(K) are
both idempotent. IfA is invertible, i.e.,A−1 ∈ B(K,H), thenB = A−1 makes (1.1) valid. However,
given any A ∈ B(H,K) with ran A closed in K, there are also candidates for B ∈ B(K,H), so that
(1.1) is satisfied and so that, in addition,

(BA)∗ = BA and (AB)∗ = AB; (1.2)

thus BA and AB are orthogonal projections. In the matrix case, all this goes back to E.H. Moore
(1920), A. Bjerhammar (1951), and R. Penrose (1955); see also, for instance, (Ben-Israel & Greville,
2003; Campbell & Meyer, 1991; Nashed, 1976; Rao & Mitra, 1971). An extension to the case that
the operators A andB are unbounded can be found in Labrousse & M’Bekhta (1992) and Labrousse
(1992). The purpose of the present paper is to look at the formal aspects of the identities in (1.1) and
(1.2) in the wider context of linear relations, but in the absence of any topology, and to give a survey
of the characteristic results.

In order to consider the identities (1.1) in an algebraic setting, let H and K be linear spaces, let A be
a linear relation from H to K, and let B be a linear relation from K to H. Products of linear relations
will be in the sense of relations. When the identities (1.1) are satisfied by linear relations A and B,
then it is clear that the products BA and AB are idempotent relations in H and K, respectively; cf.
Definition 5.1. In the present general context the conditions in (1.2) are replaced by

ran BA ⊂ dom BA and ran AB ⊂ dom AB, (1.3)

i.e., BA and AB are semi-projections; cf. Definition 5.3. The notions of idempotent relation and
semi-projection go back to Labrousse (2003). Note, in particular, that if B = A−1, the formal
inverse ofA, then the linear relationsA−1A andAA−1 are indeed semi-projections; cf. (2.1). There
are various other possibilities to satisfy (1.1) and (1.3) by considering, instead of A−1, specific
choices for an algebraic operator part of A−1.

Here is an outline of the contents of this paper. Some useful properties are recalled in Section 2.
As a preparation there are several modifications of the notion of idempotent relation that will be
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considered in Section 3 and Section 4. Idempotent relations and semi-projections are discussed in
Section 5. Also the geometric meaning of semi-projections is explained there. Section 6 contains a
resolvent identity for semi-projections. In Sections 7, 8, and 9 the cases A ⊂ ABA, ABA ⊂ A, and
A = ABA are considered, respectively; they serve as illustrations for the earlier sections. In Section
10 the previous cases are characterized in terms of set inclusions between A and B−1. The notion
of generalized inverse for linear relations is introduced in Section 11. It is shown in Section 12 that
one may choose an operator part for A−1, so that it serves as a generalized inverse. In Section 13
the results from Sections 3 and Section 4 are augmented.

2 Preliminaries

Let H and K be linear spaces and let A be a linear relation from H to K. Recall that a linear relation
A is defined as a linear subspace of the product space H×K, with dom A, ran A, kerA, and mul A

being the domain, range, kernel, and multivalued part of A; cf. (Arens, 1961; Sandovici, de Snoo &
Winkler, 2007); see also (Behrndt, Hassi & de Snoo, 2020). The inverse of a relation A is given by

A−1 := {{g, f} : {f, g} ∈ A},

which is a linear relation from K to H. It is not difficult to see that the following componentwise sum
decompositions hold

A−1A = IdomA +̂ ({0} × kerA) = IdomA +̂ (kerA× {0}),
AA−1 = IranA +̂ (mul A× {0}) = IranA +̂ ({0} ×mul A),

(2.1)

cf. (Behrndt, Hassi & de Snoo, 2020). Here, and in the following, all such products are meant in the
sense of linear relations. In particular, it is useful to observe that for any linear relation A one has
the identities

AA−1A = A and A−1AA−1 = A−1, (2.2)

as can be easily verified by means of the identities in (2.1). Note that (2.1) shows that the terminology
of inverse relation is a rather formal way of speaking.

Let L and R be linear relations from H to K such that L ⊂ R. If C is a linear relation from K to K′,
then CL ⊂ CR, while if C is a linear relation from H′ to H, then LC ⊂ RC; cf. (Arens, 1961).

Next a number of useful statements will follow.

Lemma 2.1. Let H and K be linear spaces, and let L and R be linear relations from H to K. Then
the following statements are equivalent:

(i) L ⊂ R and dom L ⊃ dom R;

(ii) R = L +̂ ({0} ×mul R).

Moreover, the following statements are equivalent:

(iii) L ⊂ R and ran L ⊃ ran R;

(iv) R = L +̂ (kerR× {0}).
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Proof. By symmetry it suffices to show the equivalence between (i) and (ii).

(i) ⇒ (ii) It suffices to show that R ⊂ L +̂ ({0} × mul R). For this purpose, let {h, h′} ∈ R.
Since h ∈ dom R ⊂ dom L, there exists an element k′ ∈ K such that {h, k′} ∈ L. Hence, with
ϕ′ = h′ − k′, it follows that

{h, h′} = {h, k′}+ {0, ϕ′},

and thus {0, ϕ′} ∈ R or ϕ′ ∈ mul R. Hence (ii) follows.

(ii)⇒ (i) This implication is trivial.

Corollary 2.2. Let H and K be linear spaces, and let L and R be linear relations from H to K. Then
the following statements are equivalent:

(i) L = R;

(ii) L ⊂ R, dom L ⊃ dom R, and mul L ⊃ mul R;

(iii) L ⊂ R, ran L ⊃ ran R, and kerL ⊃ kerR.

Corollary 2.3. Let H and K be linear spaces, and let L and R be linear relations from H to K. Then
the following statements hold:

(a) If L ⊂ R, dom L = H, and mul R = {0}, then L = R.

(b) If L ⊂ R, ran L = K, and kerR = {0}, then L = R.

Definition 2.4. Let H and K be linear spaces, and let L and R be linear relations from H to K. The
relation L is said to be an algebraic operator part of R if

(a) L ⊂ R;

(b) dom L = dom R;

(c) mul L = {0}.

As a consequence of Lemma 2.1 (ii), the following characterization of the algebraic operator part
holds.

Corollary 2.5. Let H and K be linear spaces, and let L and R be linear relations from H to K. Then
L is an algebraic operator part of R if and only if

R = L +̂ ({0} ×mul R), direct sum.

Definition 2.6. Let H and K be linear spaces, and letR be a linear relation from H to K. The relation
R is said to be decomposable if there exists an algebraic operator part L of R.

In order to characterize the notion of a decomposable relation, it is helpful to introduce projections.
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Definition 2.7. Let H be a linear space with linear subspaces X, Y, and Z, and assume the direct
sum decomposition

X = Y + Z.

The projection P from X onto Z, parallel to Y, associated with this decomposition, is defined by
Px := z, when x = y + z, x ∈ X, y ∈ Y, and z ∈ Z.

Clearly, P is a well-defined linear operator in H, which is idempotent. Moreover, one sees that

dom P = X, ran P = Z, and kerP = Y.

It is clear that a relation R is decomposable if and only if there exists a projection P such that

P : ran R→ mul R.

Let L be an algebraic operator part of R, in other words, R = L +̂ ({0}×mul R), direct sum. Then
the projection P from R onto {0} ×mul R has the property kerP = L. Conversely, any projection
P from R onto {0} ×mul R leads to an algebraic operator part of R.

Lemma 2.8. Let H and K be linear spaces, let R be a linear relation from H to K, and let P be a
projection from ran R onto mul R. Then

P{x, y} = {0, Py}, {x, y} ∈ R, (2.3)

defines a projection P from R onto {0} ×mul R.

Lemma 2.9. Let H and K be linear spaces, and let P be a projection from R onto {0} × mul R.
Then P is of the form (2.3), for some projection P from ran R to mul R, if and only if

P{x, 0} = {0, 0}, {x, 0} ∈ R. (2.4)

Proof. Assume that the projection P is of the form (2.3). Then the property (2.4) follows from
property (2.3).

For the converse, let P be the projection from R onto {0} ×mul R. Then for {x, y} ∈ R one has

{x, y} = {u, v}+ {0, ϕ} with {u, v} ∈ kerP and {0, ϕ} = P{x, y}.

It is clear that with this decomposition

P = {{y, ϕ} : {u, v} ∈ R, {0, ϕ} ∈ {0} ×mul R}

defines a linear relation from ran R onto mul R. Moreover, P is the graph of a linear operator, in
fact of a projection, if the projection P satisfies (2.4). In this case ϕ = Py and P is of the form
(2.3).

The discussion of operator parts in the presence of topologies is interesting. For the case of Hilbert
spaces, see, for instance, (Hassi, de Snoo & Szafraniec, 2009).
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3 Linear relations included in a product

Let H and K be linear spaces and let P be a linear relation from H to K. If Q is a linear relation in H,
then one can consider the product relation PQ, while if Q is a linear relation in K one can consider
the product relation QP .

First consider the case that Q is a linear relation in H. Then PQ is a linear relation from H to K and
it is clear that dom PQ ⊂ dom Q and ran PQ ⊂ ran P . Hence, the following implication holds

P ⊂ PQ ⇒
{

dom P ⊂ dom PQ ⊂ dom Q,

ran P = ran PQ.
(3.1)

Therefore, Lemma 2.1 shows that

P ⊂ PQ ⇔ PQ = P +̂ (kerPQ× {0}). (3.2)

Such relations have some useful properties.

Lemma 3.1. Let H and K be linear spaces, and let P be a linear relation from H to K. Assume that
Q is a linear relation in H such that P ⊂ PQ. Then

dom P ⊂ kerP + ran Q. (3.3)

As a consequence the following equivalences hold:

kerP ⊂ ran Q ⇔ dom P ⊂ ran Q, (3.4)

and
dom P = kerP + ran Q ⇔ ran Q ⊂ dom P. (3.5)

Proof. To see (3.3), let x ∈ dom P . Then {x, y} ∈ P for some y ∈ K. Since P ⊂ PQ there exists
an element z ∈ H such that {x, z} ∈ Q and {z, y} ∈ P . Hence

{x− z, 0} = {x, y} − {z, y} ∈ P,

which shows that x − z ∈ kerP . Thus one concludes x = (x − z) + z ∈ kerP + ran Q. This
shows (3.3). Clearly, the equivalences in (3.4) and (3.5) are consequences of (3.3).

Next consider the case that Q is a linear relation in K. Then QP is a linear relation from H to K and
it is clear that dom QP ⊂ dom P and ran QP ⊂ ran Q. Hence, it follows that

P ⊂ QP ⇒
{

ran P ⊂ ran QP ⊂ ran Q,

dom P = dom QP.

Therefore, Lemma 2.1 shows that

P ⊂ QP ⇔ QP = P +̂ ({0} ×mul QP ). (3.6)

Such relations have some useful properties; cf. Lemma 3.1.
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Lemma 3.2. Let H and K be linear spaces, and let P be a linear relation from H to K. Assume that
Q is a linear relation in K such that P ⊂ QP . Then

ran P ⊂ mul P + dom Q.

As a consequence the following equivalences hold:

mul P ⊂ dom Q ⇔ ran P ⊂ dom Q,

and
ran P = mul P + dom Q ⇔ dom Q ⊂ ran P.

4 Linear relations containing a product

Let H and K be linear spaces and let P be a linear relation from H to K. As in the previous section
the interplay between P and another linear relation Q is considered.

First consider the case that Q is a linear relation in H. Then PQ is a linear relation from H to K and
it is clear that kerQ ⊂ kerPQ and mul P ⊂ mul PQ. Hence it follows that

PQ ⊂ P ⇒
{

kerQ ⊂ kerPQ ⊂ kerP,

mul PQ = mul P.
(4.1)

The relations that satisfy PQ ⊂ P have some useful properties.

Lemma 4.1. Let H and K be linear spaces, and let P be a linear relation from H to K. Assume that
Q is a linear relation in H such that PQ ⊂ P . Then

dom P ∩mul Q ⊂ kerP. (4.2)

As a consequence the following equivalences hold:

mul Q ⊂ dom P ⇔ mul Q ⊂ kerP, (4.3)

and
dom P ∩mul Q = kerP ⇔ kerP ⊂ mul Q. (4.4)

Proof. To see (4.2), let x ∈ dom P ∩mul Q. Then {x, y} ∈ P for some y ∈ K, and {0, x} ∈ Q.
Hence {0, y} ∈ PQ ⊂ P and therefore {x, 0} = {x, y}−{0, y} ∈ P , which shows that x ∈ kerP .
This shows (4.2). Clearly, the equivalences in (4.3) and (4.4) are consequences of (4.2).

Next consider the case that Q is a linear relation in K. Then QP is a linear relation from H to K and
it is clear that kerP ⊂ kerQP and mul Q ⊂ mul QP . Hence it follows that

QP ⊂ P ⇒
{

mul Q ⊂ mul QP ⊂ mul P,

kerQP = kerP.

The linear relations that satisfy QP ⊂ P have some useful properties; cf. Lemma 4.1.



Acta Wasaensia 93

Lemma 4.2. Let H and K be linear spaces, and let P be a linear relation from H to K. Assume that
Q is a linear relation in K such that QP ⊂ P . Then

ran P ∩ kerQ ⊂ mul P.

As a consequence the following equivalences hold:

kerQ ⊂ ran P ⇔ kerQ ⊂ mul P,

and
ran P ∩ kerQ = mul P ⇔ mul P ⊂ kerQ.

5 Idempotent linear relations and semi-projections

In this section the notions of idempotent linear relation and semi-projection are introduced. These
definitions and corresponding lemmas go back to Labrousse (2003). The main aim of this section is
to characterize semi-projections in terms of various equivalent conditions.

Definition 5.1. Let P be a linear relation in a linear space H. Then P is said to be idempotent if
P 2 = P .

Lemma 5.2. Let P be a linear relation in a linear space H. Then P is idempotent if and only if
I − P is idempotent.

Proof. It suffices to assume that P is idempotent and to prove that I−P is idempotent, i.e., to show
that (I − P ) = (I − P )2.

(⊂) Let {x, y} ∈ I − P , then {x, x − y} ∈ P = P 2, so that {x, z} ∈ P and {z, x − y} ∈ P for
some z ∈ H . Hence {x+ z, x+ z − y} ∈ P or {x+ z, y} ∈ I − P , so that

{x− z, y} = {2x, 2y} − {x+ z, y} ∈ I − P.

Together with {x, x− z} ∈ I − P , this gives {x, y} ∈ (I − P )2. Thus I − P ⊂ (I − P )2.

(⊃) Let {x, y} ∈ (I−P )2, then {x, z} ∈ I−P and {z, y} ∈ I−P for some z ∈ H . Consequently,
{x, x − z} ∈ P and {z, z − y} ∈ P , so that {x − z, x + y − 2z} ∈ P . Thus one also has
{x, x+ y − 2z} ∈ P 2 = P , so that {x, 2z − y} ∈ I − P . This leads to

{x, y} = {2x, 2z} − {x, 2z − y} ∈ I − P.

Thus (I − P )2 ⊂ I − P .

Definition 5.3. Let P be a linear relation in a linear space H. Then P is said to be a semi-projection
if P is idempotent and ran P ⊂ dom P .

Lemma 5.4. Let P be a linear relation in a linear space H. Then P is a semi-projection if and only
if I − P is a semi-projection.
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Proof. It suffices to show that with P also I −P is a semi-projection. For this purpose, assume that
P is a semi-projection; thus P is idempotent and satisfies ran P ⊂ dom P . Consequently I − P is
idempotent by Lemma 5.2 and from the inclusion ran P ⊂ dom P follows that

ran (I − P ) ⊂ dom P + ran P = dom P = dom (I − P ).

Thus I − P is a semi-projection.

Observe that P is idempotent if and only if P ⊂ P 2 and P 2 ⊂ P . Hence the results from Section 3
and Section 4 (with Q = P ) may be applied.

Proposition 5.5. Let P be an idempotent relation in a linear space H. Then the following statements
are equivalent:

(i) dom P = kerP + ran P ;

(ii) ran P ⊂ dom P ;

(iii) mul P ⊂ kerP ;

(iv) kerP ∩ ran P = mul P .

Consequently, P is a semi-projection if and only if one of the preceding conditions holds.

Proof. (i)⇔ (ii) This follows from Lemma 3.1 with K = H and Q = P .

(ii)⇒ (iii) The assumption ran P ⊂ dom P implies mul P ⊂ dom P . Consequently, the equiva-
lence in (4.3) of Lemma 4.1 with K = H and Q = P yields that mul P ⊂ kerP .

(iii) ⇒ (ii) The assumption mul P ⊂ kerP implies mul P ⊂ dom P . Consequently, the first
equivalence in Lemma 3.2 with K = H and Q = P yields that ran P ⊂ dom P .

(iii)⇔ (iv) This follows from Lemma 4.2 with K = H and Q = P .

Furthermore, it is useful to note that with P also P−1 is idempotent, which leads to the following
proposition.

Proposition 5.6. Let P be an idempotent relation in a linear space H. Then the following statements
are equivalent:

(i) ran P = mul P + dom P ;

(ii) dom P ⊂ ran P ;

(iii) kerP ⊂ mul P ;

(iv) dom P ∩mul P = kerP .

Consequently, P−1 is a semi-projection if and only if one of the preceding conditions holds.
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Proof. Since with P also the inverse P−1 is idempotent, the equivalence of the items (i)–(iv) follows
from applying Proposition 5.5 to the relation P−1.

The notion of semi-projection has a simple geometric interpretation; cf. Definition 2.7. This geo-
metric explanation goes back to discussions with Seppo Hassi.

Proposition 5.7. Let H be a linear space. Let X, Y, and Z be linear subspaces of H, and assume
that

X = Y + Z. (5.1)

Then the linear relation P in H, defined by

P = {{x, z} : x = y + z, x ∈ X, y ∈ Y, z ∈ Z}, (5.2)

is a semi-projection with the properties

dom P = X, ran P = Z, kerP = Y, and mul P = Y ∩ Z. (5.3)

Moreover, every semi-projection in H is of this form.

Proof. Assume that (5.1) is satisfied. Then it is clear thatP in (5.2) is a well-defined linear relation in
H. Furthermore, P is idempotent. To see thatP ⊂ P 2, observe that {x, z} ∈ P implies {x, z} ∈ P 2,
since {z, z} ∈ P . Likewise, to see that P 2 ⊂ P , let {x, z} ∈ P 2. Then {x, ψ} ∈ P and {ψ, z} ∈ P
for some ψ ∈ Z, and consequently, with some ϕ ∈ Y and ρ ∈ Y one has

x = ϕ+ ψ and ψ = ρ+ z.

Therefore x = ϕ+ ρ+ z with ϕ+ ρ ∈ Y and, hence, {x, z} ∈ P . Consequently, P is idempotent.
In addition, one sees that (5.3) is satisfied. Thus, it follows from Proposition 5.5 that P in (5.2) is a
semi-projection.

Now let P be any semi-projection in H, so that P is idempotent and dom P = kerP + ran P ; cf.
Proposition 5.5. Let {x, z} ∈ P . Then, by assumption, x = α+ β with α ∈ kerP and β ∈ ran P ,
i.e., {α, 0} ∈ P and {γ, β} ∈ P for some γ ∈ H. Note that

{x, z} = {α, 0}+ {β, z},

which implies that {β, z} ∈ P . As {γ, β} ∈ P , one also sees that {γ, z} ∈ P 2 = P , so that
β − z ∈ mul P . Since mul P = kerP ∩ ran P ⊂ kerP by Proposition 5.5, it follows that

x = α+ β = α+ β − z + z, where α+ β − z ∈ kerP.

Thus the assertion follows with X = dom P , Y = kerP , and Z = ran P .

In the context of Proposition 5.7 one can view P as a multivalued projection from X onto Z, parallel
to Y, associated with the not necessarily direct decomposition (5.1).
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6 A resolvent formula for semi-projections

This section contains a formula for the resolvent relation of a semi-projection in H. It may be
convenient to first remember that for any linear relation P in H and any λ ∈ C the linear relation
(λI − P )−1 is called the resolvent relation of P

(λI − P )−1 = {{λx− y, x} : {x, y} ∈ P}.

Then it is clear that
{x, y} ∈ P ⇔ {λx− y, x} ∈ (λI − P )−1, (6.1)

and setting y = λx in (6.1) gives the equivalence

{x, λx} ∈ P ⇔ {0, x} ∈ (λI − P )−1. (6.2)

Now let P be a semi-projection in a linear space H, so that ran P ⊂ dom P or, equivalently,
mul P ⊂ kerP , see Proposition 5.5. Then the following observations are straightforward.

Lemma 6.1. Let P be a semi-projection in a linear space H. Then for λ ∈ C \ {0, 1}

{x, λx} ∈ P ⇒ x ∈ mul P, (6.3)

while for all λ ∈ C
x ∈ mul P ⇒ {x, λx} ∈ P. (6.4)

Proof. Assume that {x, λx} ∈ P for some λ ∈ C. Then, since P is idempotent, {x, λ2x} ∈ P ,
and hence {0, λ(λ− 1)x} ∈ P . Thus (6.3) has been verified. Since mul P ⊂ kerP , it is clear that
x ∈ mul P implies that {x, λx} ∈ P . Thus (6.4) has been verified.

As a consequence of (6.4), it can be noted that semi-projections, that are not operators, have non-
trivial singular chains; cf. (Sandovici, de Snoo & Winkler, 2004) and (Berger, de Snoo, Trunk
& Winkler, 2021). In the general case of semi-projections, the resolvent identity in the following
proposition is an identity between linear relations.

Proposition 6.2. Let P be a semi-projection in a linear space H and let λ ∈ C \ {0, 1}. Then

(λI − P )−1 =

(
1

λ
I +

1

λ(λ− 1)
P

)
+̂ ({0} ×mul P ). (6.5)

Proof. Assume that P is a semi-projection and that λ ∈ C. If x ∈ mul P , then {x, λx} ∈ P by
Lemma 6.1. Hence, by (6.2), it follows that {0, x} ∈ (λI − P )−1. Consequently, one sees that

mul P ⊂ mul (λI − P )−1, λ ∈ C. (6.6)

Moreover, by (6.1), every element in (λI − P )−1 is of the form {λx − y, x} for some {x, y} ∈ P .
Thus, thanks to ran P ⊂ dom P , it therefore follows that

dom (λI − P )−1 ⊂ dom P, λ ∈ C. (6.7)
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Now the restriction λ ∈ C \ {0, 1} will be assumed and the following inclusion will be established:

((λ− 1)I + P ) +̂ ({0} ×mul P ) ⊂ λ(λ− 1)(λI − P )−1. (6.8)

Observe that (6.6) gives mul P ⊂ mul λ(λ− 1)(λI − P )−1, and thus

({0} ×mul P ) ⊂ λ(λ− 1)(λI − P )−1.

Hence, in order to establish (6.8), it remains to show that

((λ− 1)I + P ) ⊂ λ(λ− 1)(λI − P )−1.

For this, observe that every element in (λ − 1)I + P is of the form {x, (λ− 1)x+ y} for some
{x, y} ∈ P . Hence, the required inclusion follows, once it is recalled that {x, y} ∈ P implies that
x− y ∈ kerP . Thus the inclusion (6.8) has been established.

The inclusion in (6.7) guarantees that in (6.8) the domain of the right-hand side is contained in the
domain of the left-hand side when λ ∈ C \ {0, 1}. Thanks to the equivalence (i)⇔ (ii) in Lemma
2.1, one concludes that there is equality in (6.8). It is clear that equality in (6.8) is equivalent to
(6.5).

7 The inclusion A ⊂ ABA

Let H and K be linear spaces, let A be a linear relation from H to K, and let B be a linear relation
from K to H. Observe that the inclusion A ⊂ ABA can be written as

A ⊂ A(BA) or A ⊂ (AB)A. (7.1)

Hence, the inclusion A ⊂ ABA leads to some automatic identities.

Lemma 7.1. Assume that A ⊂ ABA. Then

(a) dom A = dom ABA = dom BA;

(b) ran A = ran ABA = ran AB.

Proof. To see (a) apply the first conclusion in (3.1) with P = A and Q = BA, then

dom A ⊂ dom ABA ⊂ dom BA,

and note that dom BA ⊂ dom A. To see (b) apply the second conclusion in (3.1) with P = A and
Q = BA, then

ran A = ran ABA,

and note that ran ABA ⊂ ran AB ⊂ ran A.

Due to the first inclusion in (7.1), Lemma 3.1 implies the following lemma.
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Lemma 7.2. Assume that A ⊂ ABA. Then

dom A ⊂ kerA+ ran BA.

As a consequence the following equivalences hold:

kerA ⊂ ran BA ⇔ dom A ⊂ ran BA,

and
dom A = kerA+ ran BA ⇔ ran BA ⊂ dom A.

Due to the second inclusion in (7.1), Lemma 3.2 implies the following lemma.

Lemma 7.3. Assume that A ⊂ ABA. Then

ran A ⊂ mul A+ dom AB.

As a consequence the following equivalences hold:

mul A ⊂ dom AB ⇔ ran A ⊂ dom AB,

and
ran A = mul A+ dom AB ⇔ dom AB ⊂ ran A.

8 The inclusion ABA ⊂ A

Let H and K be linear spaces, let A be a linear relation from H to K, and let B be a linear relation
from K to H. Observe that the inclusion ABA ⊂ A can be written as

A(BA) ⊂ A or (AB)A ⊂ A. (8.1)

Hence, the inclusion ABA ⊂ A leads to some automatic identities.

Lemma 8.1. Assume that ABA ⊂ A. Then

(a) kerBA = kerA = kerABA;

(b) mul AB = mul A = mul ABA.

Proof. To see (a) apply the first conclusion in (4.1) with P = A and Q = BA, then

kerBA ⊂ kerABA ⊂ kerA.

Hence, (a) holds, because kerA ⊂ kerBA. To see (b) apply the second conclusion in (4.1) with
P = A and Q = BA, then

mul ABA = mul A,

and note that mul A ⊂ mul AB ⊂ mul ABA.
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Due to the first inclusion in (8.1), Lemma 4.1 implies the following lemma.

Lemma 8.2. Assume that ABA ⊂ A. Then

dom A ∩mul BA ⊂ kerA.

As a consequence the following equivalences hold:

mul BA ⊂ dom A ⇔ mul BA ⊂ kerA,

and
dom A ∩mul BA = kerA ⇔ kerA ⊂ mul BA.

Due to the second inclusion in (7.1), Lemma 4.2 implies the following lemma.

Lemma 8.3. Assume that ABA ⊂ A. Then

ran A ∩ kerAB ⊂ mul A.

As a consequence the following equivalences hold:

kerAB ⊂ ran A ⇔ kerAB ⊂ mul A,

and
ran A ∩ kerAB = mul A ⇔ mul A ⊂ kerAB.

9 The identity A = ABA

Let H and K be linear spaces, let A be a linear relation from H to K, and let B be a linear relation
from K to H. The identity A = ABA leads to some automatic identities, which can be seen by
combining Lemma 7.1 and Lemma 8.1 for the inclusions A ⊂ ABA and ABA ⊂ A, respectively.

Lemma 9.1. Assume that A = ABA. Then

(a) dom BA = dom A;

(b) ran AB = ran A;

(c) kerBA = kerA;

(d) mul AB = mul A.

Furthermore, note that A = ABA implies that the products AB and BA are automatically idempo-
tent relations in H and K, respectively; cf. Definition 5.1. To see this, recall that an identity between
relations may be multiplied from the left or from the right remaining an identity; cf. (Arens, 1961).
An application of the equivalences in Proposition 5.5 and Proposition 5.6 for the products AB and
BA leads to the two following propositions giving necessary and sufficient conditions for AB and
BA to be semi-projections; cf. Definition 5.3. Note that the identities from Lemma 9.1 have been
used in the formulation of the following descriptions.
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Proposition 9.2. Assume that ABA = A. Then the following statements are equivalent:

(i) dom AB = kerAB + ran A;

(ii) ran A ⊂ dom AB;

(iii) mul A ⊂ kerAB;

(iv) kerAB ∩ ran A = mul A.

Consequently, the idempotent relation AB is a semi-projection if and only if one of the conditions
(i)-(iv) holds. Moreover, the following statements are equivalent:

(v) ran A = dom AB + mul A;

(vi) dom AB ⊂ ran A;

(vii) kerAB ⊂ mul A;

(viii) dom AB ∩mul A = kerAB.

Consequently, the idempotent relation (AB)−1 is a semi-projection if and only if one of the condi-
tions (v)-(viii) holds.

Proposition 9.3. Assume that ABA = A. Then the following statements are equivalent:

(i) dom A = kerA+ ran BA;

(ii) ran BA ⊂ dom A;

(iii) mul BA ⊂ kerA;

(iv) kerA ∩ ran BA = mul BA.

Consequently, the idempotent relation BA is a semi-projection if and only if one of the conditions
(i)-(iv) holds. Moreover, the following statements are equivalent:

(v) ran BA = dom A+ mul BA;

(vi) dom A ⊂ ran BA;

(vii) kerA ⊂ mul BA;

(viii) dom A ∩mul BA = kerA.

Consequently, the idempotent relation (BA)−1 is a semi-projection if and only if one of the condi-
tions (v)-(viii) holds.
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10 Characterizations of inclusions

Let H and K be linear spaces, let A be a linear relation from H to K, and let B be a linear relation
from K to H. First a simple but useful observation is presented.

Lemma 10.1. Let H and K be linear spaces, let A be a linear relation from H to K, and let B be a
linear relation from K to H. Then the following equivalences hold:

{0} ×mul A ⊂ (kerA× {0}) +̂B−1 ⇔ mul A ⊂ kerAB, (10.1)

and
kerA× {0} ⊂ B−1 +̂ ({0} ×mul A) ⇔ kerA ⊂ mul BA. (10.2)

Proof. By symmetry it suffices to show (10.1).

(⇒) Let ρ ∈ mul A. Then {0, ρ} = {x, 0}+ {−x, ρ} with x ∈ kerA and {ρ,−x} ∈ B. Hence, it
follows that ρ ∈ kerAB.

(⇐) Let ρ ∈ mul A. Then ρ ∈ kerAB implies {ρ, x} ∈ B and {x, 0} ∈ A, which gives that
{0, ρ} = −{x, 0}+ {x, ρ}. Therefore {0} ×mul A ⊂ (kerA× {0}) +̂B−1.

Next it will be shown that each of the inclusions A ⊂ ABA and A ⊂ ABA gives a certain interplay
between A and B−1.

Lemma 10.2. Let H and K be linear spaces, let A be a linear relation from H to K, and let B be a
linear relation from K to H. Then the following statements are equivalent:

(i) A ⊂ ABA;

(ii) A ⊂ (kerA× {0}) +̂B−1 +̂ ({0} ×mul A).

Moreover, the following statements are equivalent:

(iii) A ⊂ ABA and mul A ⊂ kerAB;

(iv) A ⊂ (kerA× {0}) +̂B−1.

Finally, the following statements are equivalent:

(v) A ⊂ ABA and kerA ⊂ mul BA;

(vi) A ⊂ B−1 +̂ ({0} ×mul A).

Proof. (i) ⇒ (ii) Let {u, v} ∈ A. Then, by assumption, {u, v} ∈ ABA, and there exist elements
s ∈ K and t ∈ H such that

{u, s} ∈ A, {s, t} ∈ B, {t, v} ∈ A,
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which, since {u, v} ∈ A, implies that

{u− t, 0} ∈ A and {0, v − s} ∈ A.

Hence, it follows that

{u, v} = {u− t, 0}+ {t, s}+ {0, v − s} ∈ (kerA× {0}) +̂B−1 +̂ ({0} ×mul A).

Thus (ii) has been shown.

(ii) ⇒ (i) Let {u, v} ∈ A. Then, by assumption, there exist elements α ∈ kerA and β ∈ mul A,
such that

{u, v} = {α, 0}+ {u− α, v − β}+ {0, β},

where {v−β, u−α} ∈ B. Since {u, v−β} ∈ A and {u−α, v} ∈ A, it follows that {u, v} ∈ ABA.

(iii) ⇔ (iv) This follows from the equivalence (i) ⇔ (ii) and the equivalence (10.1) contained in
Lemma 10.1.

(v) ⇔ (vi) This follows from the equivalence (i) ⇔ (ii) and the equivalence (10.2) contained in
Lemma 10.1.

As a direct corollary of the equivalences of (i) and (ii) in Lemma 10.2 one obtains the following
characterization.

Corollary 10.3. Let H and K be linear spaces, let A be a linear relation from H to K, and let B be
a linear relation from K to H. Then the following statements are equivalent:

(i) A ⊂ ABA, mul A ⊂ kerB, and kerA ⊂ mul B;

(ii) A ⊂ B−1.

The converse inclusions lead to a similar result.

Lemma 10.4. Let H and K be linear spaces, let A be a linear relation from H to K, and let B be a
linear relation from K to H. Then the following statements are equivalent:

(i) ABA ⊂ A, ran B ⊂ dom A, and dom B ⊂ ran A;

(ii) B−1 ⊂ A.

Proof. (i) ⇒ (ii) Assume the inclusion in (i) and let {u, v} ∈ B. Then it follows by assumption
that there exist elements ϕ ∈ H and ψ ∈ K such that {ϕ, u} ∈ A and {v, ψ} ∈ A. Therefore one
sees that {ϕ,ψ} ∈ ABA ⊂ A. As a consequence it follows that {ψ,ϕ} ∈ A−1, which leads to
{v, u} ∈ AA−1A ⊂ A by (2.2), so that {u, v} ∈ A−1. Thus B ⊂ A−1 or B−1 ⊂ A.

(ii)⇒ (i) Assume the inclusion in (ii). Then also B ⊂ A−1 which implies that

ABA ⊂ AA−1A = A,

by means of (2.1).
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Combining Corollary 10.3 and Lemma 10.4 gives the following result.

Corollary 10.5. Let H and K be linear spaces, let A be a linear relation from H to K, and let B be
a linear relation from K to H. Then the following statements are equivalent:

(i) A = ABA, mul A ⊂ kerB, kerA ⊂ mul B, ran B ⊂ dom A, and dom B ⊂ ran A;

(ii) A = B−1.

11 Characterization of generalized inverses

Let H and K be linear spaces, let A be a linear relation from H to K, and let B be a linear relation
from K to H. Recall from Lemma 10.2 that

A ⊂ B−1 +̂ (kerA× {0}) ⇔ A ⊂ ABA and mul A ⊂ kerAB, (11.1)

and, by symmetry, one obtains

B ⊂ A−1 +̂ (kerB × {0}) ⇔ B ⊂ BAB and mul B ⊂ kerBA. (11.2)

It is convenient to have extra conditions in (11.1) and (11.2) that guarantee identities A = ABA and
B = BAB, respectively, instead of inclusions.

Lemma 11.1. Let H and K be linear spaces, let A be a linear relation from H to K, and let B be a
linear relation from K to H. Then the following statements are equivalent:

(i) A ⊂ B−1 +̂ (kerA× {0}) and dom A ∩mul B ⊂ kerA;

(ii) A = ABA and mul A ⊂ kerAB.

Similarly, the following statements are equivalent:

(iii) B ⊂ A−1 +̂ (kerB × {0}) and dom B ∩mul A ⊂ kerB;

(iv) B = BAB and mul B ⊂ kerBA.

Proof. By symmetry, only the first equivalence needs to be verified.

(i) ⇒ (ii) Due to the equivalence in (11.1), the first assumption in (i) implies that A ⊂ ABA and
mul A ⊂ kerAB. To conclude A = ABA, it suffices by Corollary 2.2 to show that

dom ABA ⊂ dom A and mul ABA ⊂ mul A.

The first inclusion follows from Lemma 7.1. For the second inclusion note that the established
inclusion mul A ⊂ kerAB implies the inclusion mul ABA ⊂ mul AB, while the assumption
dom A ∩mul B ⊂ kerA implies the inclusion mul AB ⊂ mul A.

(ii) ⇒ (i) The first statement in (i) is a consequence of A = ABA and mul A ⊂ kerAB by the
equivalence in (11.1). The assumption A = ABA implies by Lemma 8.2 the following inclusion
dom A ∩mul BA ⊂ kerA. This gives the second statement since mul B ⊂ mul BA.
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Note that the consequences of the identity A = ABA can be found in Section 9. In case B = BAB

one gets similar results by interchanging A and B. Let it suffice to mention that if A = ABA and
B = BAB, then

dom BA = dom A, ran AB = ran A, kerBA = kerA, mul AB = mul A,

dom AB = dom B, ran BA = ran B, kerAB = kerB, mul BA = mul B,
(11.3)

as follows from Lemma 9.1; cf. (Labrousse, 1992). One can proceed with Lemma 9.2 and Lemma
9.3 in a similar way. Also recall that both AB and BA are idempotent when A = ABA and
B = BAB. This leads to the following definition.

Definition 11.2. Let H and K be linear spaces, let A be a linear relation from H to K, and let B be a
linear relation from K to H. Then A and B are said to be generalized inverses (of each other) if

ABA = A, BAB = B,

and, in addition, BA and AB are semi-projections in H and K, respectively.

In the above definition the linear relations A and B play a symmetric role. One also uses the termi-
nology that B is a generalized inverse of A (or vice versa). Note that if B = A−1, then A and B
are generalized inverses. To see this, recall that AA−1A = A and A−1AA−1 = A−1, while A−1A

and AA−1 are semi-projections; cf. (2.1) and (2.2). In the above mentioned terminology one can
say that B = A−1 is a generalized inverse of A. The following theorem incorporates this special
situation; see also (Labrousse, 2021).

Theorem 11.3. Let H and K be linear spaces, let A be a linear relation from H to K, and let B be a
linear relation from K to H. Then A and B are generalized inverses of each other if and only if the
following statements hold:

A +̂ ({0} × kerB) = B−1 +̂ (kerA× {0}), (11.4)

mul B ⊂ kerA and mul A ⊂ kerB. (11.5)

Proof. Assume that A and B are generalized inverses of each other. Then the assumptions that
ABA = A and that BA is a semi-projection imply by Proposition 9.3 (iii) that mul BA ⊂ kerA.
Likewise, the assumptions that BAB = B and that AB is a semi-projection give mul AB ⊂ kerB.
Hence by (11.3) one sees that (11.5) is satisfied, which can also be written as

mul B ⊂ kerAB and mul A ⊂ kerAB.

Together with the assumption ABA = A this gives via Lemma 11.1 that

A ⊂ B−1 +̂ (kerA× {0}) and B ⊂ A−1 +̂ (kerB × {0}),

so that also

A +̂ ({0} × kerB) ⊂ B−1 +̂ (kerA× {0}) and B +̂ ({0} × kerA) ⊂ A−1 +̂ (kerB × {0}),

which gives (11.4).
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Conversely, assume that (11.4) and (11.5) hold. Then

A ⊂ B−1 +̂ (kerA× {0}) and mul B ⊂ kerA,

so that by Lemma 11.1 one has A = ABA and mul A ⊂ kerAB. Likewise, one concludes that
B = BAB and mul B ⊂ kerBA. Finally, Proposition 9.2 (iii) implies that AB and BA are
semi-projections.

As to Definition 11.2, the question arises if for a linear relation A from H to K one can choose a
generalized inverse with special properties. For instance, does there exist a generalized inverse of A
which is an operator?

12 Special generalized inverses

Let A be a linear relation from H to K. Then, in general, its (formal) inverse relation A−1 is not the
graph of an operator, since mul A−1 = kerA. However, any projection from dom A onto kerA

leads to an algebraic operator part of the relation A−1; cf. Section 2. It will be shown that any such
algebraic operator part will serve as a generalized inverse.

Let Q be a projection from dom A onto kerA. Then the following identity holds

A(I −Q) = A. (12.1)

To see this, observe that A(I − Q) = {{(I − Q)f, g} : {f, g} ∈ A} and that {Qf, 0} ∈ A when
{f, g} ∈ A. As a consequence of (12.1) one obtains

A−1 = {{g, (I −Q)f} : {f, g} ∈ A}. (12.2)

Note that if g = 0 in (12.2), then f = Qf ∈ kerA and (I − Q)f = 0. In light of these facts, the
following definition is natural.

Definition 12.1. Let A be a linear relation from H to K and let Q be a projection from dom A onto
kerA. Then the linear relation

(A−1)s = {{g, (I −Q)f} : {f, g} ∈ A}

is called the algebraic operator part of A−1 (relative to the projection Q).

Lemma 12.2. Let A be a linear relation from H to K and let (A−1)s be the algebraic operator part
of A−1. Then

(A−1)sA = I −Q (12.3)

and
A(A−1)s = IranA +̂ ({0} ×mul A). (12.4)

Proof. In order to verify (12.3) two inclusions will be shown.
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(⊂) Let {h, l} ∈ (A−1)sA. Then {h, ϕ} ∈ A and {ϕ, l} ∈ (A−1)s for some ϕ ∈ K. Note that

{ϕ, l} = {g, (I −Q)f} for some {f, g} ∈ A,

so that ϕ = g and l = (I − Q)f . In particular, it follows that {h, g} = {h, ϕ} ∈ A and thus
Q(f − h) = 0. Since l = (I − Q)f , one obtains l = (I − Q)h. Therefore it follows that
{h, l} = {h, (I −Q)h} ∈ I −Q. This shows (A−1)sA ⊂ I −Q.

(⊃) Let {h, l} ∈ I −Q, then h ∈ dom A and l = (I −Q)h. Thus there exists some g ∈ K so that
{h, g} ∈ A and also {(I − Q)h, g} ∈ A, i.e., {g, (I − Q)h} ∈ (A−1)s. Since l = (I − Q)h this
implies that {h, l} ∈ (A−1)sA. This shows the inclusion I −Q ⊂ (A−1)sA.

In order to verify (12.4) two inclusions will be shown.

(⊂) It follows from (12.2) and (2.1) that

A(A−1)s ⊂ AA−1 = IranA +̂ ({0} ×mul A).

(⊃) First observe that {0} ×mul A ⊂ A(A−1)s. Next it will be shown that IranA ⊂ A(A−1)s. To
see this, let k ∈ ran A. Then there exists h ∈ H such that {h, k} ∈ A and also {(I −Q)h, k} ∈ A.
Since {k, (I −Q)h} ∈ (A−1)s, it follows that {k, k} ∈ A(A−1)s. Hence IranA ⊂ A(A−1)s.

Corollary 12.3. Let A be a linear relation from H to K and let (A−1)s be the algebraic operator
part of A−1. Then

A(A−1)sA = A, (12.5)

and
(A−1)sA(A−1)s = (A−1)s. (12.6)

Proof. It follows from Lemma 12.2 that A(A−1)sA = A(I − Q). The statement in (12.5) now
follows from (12.1).

Likewise, it follows from Lemma 12.2 that (A−1)sA(A−1)s = (I − Q)(A−1)s. In order to show
(12.6), it suffices to show that

(I −Q)(A−1)s = (A−1)s. (12.7)

However, the identity (12.7) is clear, as it is a direct consequence of Definition 12.1 and the fact that
I −Q is an idempotent operator.

A combination of Definition 12.1, Lemma 12.2, and Corollary 12.3 leads to the following theorem.

Theorem 12.4. LetA be a linear relation from H to K and letB = (A−1)s be the algebraic operator
part of its inverse. Then A and the operator B are generalized inverses.

In the presence of topologies and under additional condition there exist generalized inverses as in
Definition 12.1; this goes beyond the context of this survey.
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13 Further characterizations

Let H and K be linear spaces, and let P be a linear relation from H to K. In Section 3 and Section 4
above, one can find results for the interplay with a second relation Q, either in H or K. Recall, in
particular, that the inclusions P ⊂ PQ and P ⊂ QP were characterized in terms of identities in
(3.2) and (3.6). In this section the various inclusions P ⊂ PQ, P ⊂ QP , PQ ⊂ P , and QP ⊂ P

will be characterized in terms of inclusions.

Lemma 13.1. Let H and K be linear spaces, let P be a linear relation from H to K, and let Q be a
linear relation in H. Then the following statements are equivalent:

(i) P ⊂ PQ;

(ii) dom P ⊂ dom Q and

Q �domP ⊂ IH +̂ (kerP × {0}) +̂ ({0} ×mul Q) .

Proof. (i)⇒ (ii) Assume that (i) holds. Then the first inclusion in (ii) is clear. To prove the second
inclusion let {x, t} ∈ Q �domP . Since x ∈ dom P it follows that {x, y} ∈ P for some y ∈ ran P

and thus {x, y} ∈ PQ by (i). Hence {x, z} ∈ Q and {z, y} ∈ P for some z ∈ H. Consequently,
x− z ∈ kerP and t− z ∈ mul Q. Therefore one sees that

{x, t} = {z, z}+ {x− z, 0}+ {0, t− z} ∈ IH +̂ (kerP × {0}) +̂ ({0} ×mul Q) .

Hence the second inclusion in (ii) has been shown.

(ii) ⇒ (i) Assume that (ii) holds and let {x, y} ∈ P . Since dom P ⊂ dom Q one observes that
{x, t} ∈ Q �domP for some t ∈ H. Then

{x, t} = {v, v}+ {u, 0}+ {0,m},

for some v ∈ H, u ∈ kerP , and m ∈ mul Q. Then x = u+ v, t = v +m so that

{v, y} = {x− u, y} = {x, y} − {u, 0} ∈ P,

and also,
{x, v} = {x, t−m} = {x, t} − {0,m} ∈ Q.

Consequently, {x, y} ∈ PQ. Hence (i) has been shown.

Lemma 13.2. Let H and K be linear spaces, let P be a linear relation from H to K, and let Q be a
linear relation in K. Then the following statements are equivalent:

(i) P ⊂ QP ;

(ii) dom P = dom QP , mul P ⊂ mul QP , and

Q �ranP ⊂ IK +̂ ({0} ×mul QP ) .
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Proof. (i)⇒ (ii) Assume that (i) holds. Then, clearly, dom P = dom QP and mul P ⊂ mul QP .
It remains to show the last inclusion in (ii). Let

{x, y} ∈ Q �ranP ∩domQ,

so that x ∈ ran P ∩ dom Q. Hence {z, x} ∈ P for some z ∈ dom P and thus {z, y} ∈ QP .
Furthermore observe that {z, x} ∈ P ⊂ QP by (i). Therefore, {0, y− x} = {z, y}− {z, x} ∈ QP ,
which further shows that

{x, y} = {x, x}+ {0, y − x} ∈ IK +̂ ({0} ×mul QP ) .

Hence the last inclusion in (ii) holds.

(ii)⇒ (i) Assume that (ii) holds. Let {x, y} ∈ P so that x ∈ dom P = dom QP by the identity
in (ii). Then {x, z} ∈ QP for some z ∈ ran QP ; and thus {x, t} ∈ P and {t, z} ∈ Q for some
t ∈ ran P ∩ dom Q. It follows from {t, z} ∈ Q and the last inclusion in (ii) that t− z ∈ mul QP .
This leads to

{x, t} = {x, z}+ {0, t− z} ∈ QP.

It follows from {x, y}, {x, t} ∈ P that y − t ∈ mul P ⊂ mul QP , due to the first inclusion in (ii).
Consequently,

{x, y} = {x, t}+ {0, y − t} ∈ QP.

Thus P ⊂ QP and (i) has been shown.

Lemma 13.3. Let H and K be linear spaces, let P be a linear relation from H to K, and let Q be a
linear relation in H. Then the following statements are equivalent:

(i) PQ ⊂ P ,

(ii) mul PQ = mul P , dom PQ ⊂ dom P , and

Q �domPQ⊂ IH +̂ (kerP × {0}) +̂ ({0} ×mul Q) .

Proof. (i)⇒ (ii) Assume that (i) holds. The identity and the first inclusion in (ii) are clear. Now let
{x, y} ∈ Q �domPQ, so that {x, t} ∈ PQ for some t ∈ ran PQ and {x, t} ∈ P by (i). Note that
{x, z} ∈ Q and {z, t} ∈ P for some z ∈ H. Consequently, x − z ∈ kerP and y − z ∈ mul Q.
Therefore one sees that

{x, y} = {z, z}+ {x− z, 0}+ {0, y − z} ∈ IH +̂ (kerP × {0}) +̂ ({0} ×mul Q) .

Hence (ii) has been shown.

(ii) ⇒ (i) Assume that (ii) holds and let {x, y} ∈ PQ. Then x ∈ dom PQ, {x, α} ∈ Q, and
{α, y} ∈ P for some α ∈ H. Since dom PQ ⊂ dom P it follows that {x, β} ∈ P for some β ∈ K.
By the second inclusion in (ii) one sees that

{x, α} = {u, u}+ {p, 0}+ {0,m},

for some u ∈ H, p ∈ kerP and m ∈ mul Q. Then x = p+ u, α = u+m, so that

{m, y − β} = −{p+ u, β}+ {u+m, y}+ {p, 0} ∈ P.
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Since {0,m} ∈ Q it follows that {0, y − β} ∈ PQ, so that y − β ∈ mul PQ = mul P by the
identity in (ii). This implies that

{x, y} = {x, β}+ {0, y − β} ∈ P.

Hence (i) has been shown.

Lemma 13.4. Let H and K be linear spaces, let P be a linear relation from H to K, and let Q be a
linear relation in K. Then the following statements are equivalent:

(i) QP ⊂ P ;

(ii) Q �ranP ⊂ IK +̂ ({0} ×mul P ).

Proof. (i) ⇒ (ii) Assume that (i) holds. Let {x, y} ∈ Q �ranP . Since x ∈ ran P it follows that
{z, x} ∈ P for some z ∈ dom P . Thus, {z, y} ∈ QP ⊂ P by (i). This implies that

{0, y − x} = {z, y} − {z, x} ∈ P,

so that y − x ∈ mul P . Consequently,

{x, y} = {x, x}+ {0, y − x} ∈ IK +̂ ({0} ×mul P ) .

Hence (ii) has been shown.

(ii)⇒ (i) Now assume that (ii) holds. Let {x, y} ∈ QP so that {x, z} ∈ P and {z, y} ∈ Q for some
z ∈ ran P ∩ dom Q. It follows from (ii) that

{z, y} = {z, z}+ {0, y − z},

with y − z ∈ mul P , which further leads to

{x, y} = {x, z}+ {0, y − z} ∈ P.

Hence QP ⊂ P which shows that (i)
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LIPSCHITZ PROPERTY OF EIGENVALUES AND
EIGENVECTORS OF 2× 2 DIRAC-TYPE OPERATORS

Anton Lunyov and Mark Malamud

Dedicated to our friend and colleague Seppo Hassi on the occasion of his sixtieth birthday

1 Introduction

Continuing our investigation (Lunyov & Malamud, 2016), this paper is concerned with the sta-
bility properties of different spectral characteristics of a boundary value problem associated in
L2([0, 1];C2) with the following first order system of differential equations

Ly = −iB−1y′ +Q(x)y = λy, y = col(y1, y2), x ∈ [0, 1], (1.1)

where

B =

(
b1 0

0 b2

)
, b1 < 0 < b2, and Q =

(
0 Q12

Q21 0

)
∈ L1([0, 1];C2×2).

If B =
(−1 0

0 1

)
, then the system (1.1) is equivalent to the Dirac system, see the classical mono-

graphs (Levitan & Sargsyan, 1991; Marchenko, 1986). Let us associate with the system (1.1) the
following linearly independent boundary conditions (BCs)

Uj(y) := aj1y1(0) + aj2y2(0) + aj3y1(1) + aj4y2(1) = 0, j ∈ {1, 2}. (1.2)

Moreover, denote by L(Q) := LU (Q) the operator in L2([0, 1];C2) associated with the boundary
value problem (BVP) (1.1)–(1.2); its action is defined by the differential expression L in (1.1) and
its domain is given by

dom (LU (Q)) = {f ∈ AC([0, 1];C2) : Lf ∈ L2([0, 1];C2), U1(f) = U2(f) = 0}. (1.3)

The above-mentioned stability properties refer to a perturbation of the potential Q→ Q̃.

The completeness property of the system of root vectors (SRV) of BVPs for general n× n systems
of the form (1.1) with a nonsingular diagonal n × n matrix B with complex entries and a potential
matrix Q(·) of the form

B = diag(b1, b2, . . . , bn) ∈ Cn×n and Q(·) =: (qjk(·))nj,k=1 ∈ L1([0, 1];Cn×n)

was established in Malamud & Oridoroga (2012) for a wide class of BVPs; note that for 2 × 2

Dirac systems with Q ∈ C([0, 1];C2×2) it was proved earlier in Marchenko (1986: Chapter 1.3).
In Malamud & Oridoroga (2012); Lunyov & Malamud (2014a; 2015) the authors also found com-
pleteness conditions for non-regular and even degenerate BCs. In Lunyov & Malamud (2015) the
Riesz basis property (with and without parentheses) of SRV was also established for different classes
of BVPs for n×n systems with arbitraryB andQ ∈ L∞([0, 1];Cn×n). Note also that BVPs for the
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2m× 2m Dirac equation, i.e., the case that B = diag(−Im, Im), were investigated in Mykytyuk &
Puyda (2013) (Bari-Markus property for Dirichlet BVP with Q ∈ L2([0, 1];C2m×2m) and in Kur-
banov & Abdullayeva (2018); Kurbanov & Gadzhieva (2020) (Bessel and Riesz basis properties on
an abstract level).

The Riesz basis property in L2([0, 1];C2) of BVP (1.1)–(1.2), i.e., of the operator LU (Q) defined
above, was investigated with various assumptions on the potential matrix Q in numerous papers,
see (Trooshin & Yamamoto, 2001; 2002; Hassi & Oridoroga, 2009; Djakov & Mityagin, 2010;
Baskakov, Derbushev & Shcherbakov, 2011; Djakov & Mityagin, 2012a;b;c; 2013; Lunyov & Mala-
mud, 2014b; Savchuk & Shkalikov, 2014; Lunyov & Malamud, 2016; Uskova, 2019) and references
therein. At that time the strongest result was obtained by P. Djakov and B. Mityagin (2010; 2012c),
and A. Baskakov, A. Derbushev, and A. Shcherbakov (2011). They proved under the assumption
Q ∈ L2([0, 1];C2×2) that SRV of the BVP (1.1)–(1.2) with strictly regular BCs forms a Riesz basis,
and with BCs that are only regular forms a Riesz basis with parentheses. Note, however, that the
methods of these papers substantially rely on L2-techniques (such as Parseval’s equality, Hilbert-
Schmidt operators, etc.) and cannot be applied to L1-potentials.

Later the case Q ∈ L1([0, 1];C2×2) was treated independently and with different methods by the
authors (Lunyov & Malamud, 2014b; 2016) on the one hand, and by A.M. Savchuk and A.A. Shka-
likov (2014) on the other hand. It was proved that a BVP (1.1)–(1.2) with Q ∈ L1([0, 1];C2×2) and
strictly regular boundary conditions has the Riesz basis property, while a BVP whose BCs are only
regular has the property of Riesz basis with parentheses.

Recall in this connection that the boundary conditions (1.2) are called regular if and only if they are
equivalent to the following conditions

Û1(y) = y1(0) + by2(0) + ay1(1) = 0, Û2(y) = dy2(0) + cy1(1) + y2(1) = 0, (1.4)

for certain a, b, c, d ∈ C satisfying ad− bc 6= 0. Recall also that regular BCs (1.2) are called strictly
regular if the sequence λ0 = {λ0

n}n∈Z of the eigenvalues of the unperturbed BVP (1.1)–(1.2) (of the
operator LU (0), i.e., Q = 0) is asymptotically separated. In particular, the eigenvalues {λ0

n}|n|>n0

are geometrically and algebraically simple.

It is well known that non-degenerate separated BCs are always strictly regular. Moreover, the con-
ditions (1.4) are strictly regular for the Dirac operator if and only if (a− d)2 6= −4bc. In particular,
antiperiodic (periodic) BC are regular but not strictly regular for Dirac systems, while they become
strictly regular for Dirac-type systems if −b1, b2 ∈ N and b2 − b1 is odd.

To describe our approach to the Riesz basis property used in Lunyov & Malamud (2014b; 2016), let
us denote by e±(·, λ) the solutions of the system (1.1) satisfying the initial conditions

e±(0, λ) =

(
1

±1

)
.

Our investigation in Lunyov & Malamud (2014b; 2016) substantially relies on the following repre-
sentation of the solutions e±(·, λ) by means of triangular transformation operators:

e±(x, λ) = (I +K±Q)e0
±(x, λ) = e0

±(x, λ) +

∫ x

0

K±Q (x, t)e0
±(t, λ) dt, (1.5)
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where e0
±(x, λ) = col

(
eib1λx,±eib2λx

)
and K±Q =

(
K±jk

)2
j,k=1

∈ X0,2
1,1 ∩X

0,2
∞,1; see (2.1) and (2.2)

for the definitions of these spaces.

Let us denote by ΛQ := ΛU,Q = {λQ,n}n∈Z := {λn}n∈Z the spectrum of the operator LU (Q).
Our main tool in the investigation of the asymptotic behavior of the eigenvalues is the characteristic
determinant ∆Q(·) = ∆Q,U (·). This function is an entire function whose zeros coincide with the
sequence ΛQ of eigenvalues counting multiplicities, see the formulas (4.1)–(4.4). The representa-
tion (1.5) immediately leads to the following key formula for the characteristic determinant ∆Q(·)
of the problem (1.1)–(1.2):

∆Q(λ) = ∆0(λ) +

∫ 1

0

g1,Q(t)eib1λtdt+

∫ 1

0

g2,Q(t)eib2λt dt, (1.6)

where gk,Q(·) ∈ L1[0, 1], k ∈ {1, 2}, are expressed via K±jk(1, ·), see (4.12) and (4.7). Recall that
∆0(·) = ∆0,U (·) is the characteristic determinant of the problem (1.1)–(1.2) with Q = 0, see the
identity (4.5).

Formula (1.6) immediately yields an estimate of the difference ∆Q(λ)−∆0(λ) from above. Com-
bining this estimate with the classical estimate of ∆0(·) from below and applying the Rouché theo-
rem one arrives at the asymptotic formula

λn = λ0
n + o(1), as n→∞, (1.7)

relating the eigenvalues Λ = {λn}n∈Z and Λ0 = {λ0
n}n∈Z of the operators LU (Q) and LU (0) (with

regular BCs), respectively; see (Lunyov & Malamud, 2014b; 2016) for details and also (Savchuk
& Shkalikov, 2014), where the formula (1.7) was obtained by another method. Note also that the
representation (1.6) for the determinant ∆Q(·) was substantially used in papers by A.S. Makin (2020;
2021).

In Lunyov & Malamud (2014b; 2016) we also applied the representation (1.5) to obtain asymptotic
formulas for the solutions of the equation (1.1) as well as for eigenfunctions of the BVP (1.1)–(1.2).
In the present paper we continue the investigation from (Lunyov & Malamud, 2014b; 2016) of the
BVP (1.1)–(1.2) and the transformation operators for the system (1.1). In Section 2 we prove the
Lipschitz property of the mappings Q→ K± on the balls

U2×2
p,r :=

{
F ∈ Lp([0, 1];C2×2) : ‖F‖p := ‖F‖Lp([0,1];C2×2) ≤ r

}
, r > 0, (1.8)

in Lp([0, 1];C2×2). Namely, our first main result reads as follows.

Theorem 1.1. For any p ∈ [1,∞) and r > 0, there exists C = C(B, p, r) > 0 such that the
following uniform estimate holds

‖K±Q −K
±
Q̃
‖X2
∞,p

+ ‖K±Q −K
±
Q̃
‖X2

1,p
≤ C ‖Q− Q̃‖p, Q, Q̃ ∈ U2×2

p,r . (1.9)

Here K±
Q̃

are the kernels from the representation (1.5) for the solutions ẽ± of (1.1), with Q̃ in place

of Q, and the spaces X2
∞,p and X2

1,p are as introduced in (2.1) and (2.2), respectively.

Combining the uniform estimate (1.9) with the representation (1.6) we obtain the following state-
ment concerning the Lipschitz property of the map Q→ gl,Q on Lp-balls. It will play a crucial role
in our approach to subsequent estimates.
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Proposition 1.2. Let Q, Q̃ ∈ U2×2
p,r with p ∈ [1,∞], and let gk := gk,Q − gk,Q̃, k ∈ {1, 2}, see

(4.12). Then gk ∈ Lp[0, 1], k ∈ {1, 2}, and the difference of characteristic determinants of the
problem (1.1)–(1.2) admits the following representation

∆Q(λ)−∆Q̃(λ) =

∫ 1

0

g1(t)eib1λt dt+

∫ 1

0

g2(t)eib2λt dt. (1.10)

Moreover, there exists a constant C = C(B, p, r) > 0 such that

‖g1‖p + ‖g2‖p = ‖g1,Q − g1,Q̃‖p + ‖g2,Q − g2,Q̃‖p ≤ C ‖Q− Q̃‖p. (1.11)

As an immediate application of Proposition 1.2 we complete the formula (1.7) by establishing the
c0-Lipschitz property of the spectrum ΛQ = {λQ,n}n∈Z on compact sets: if the boundary condi-
tions (1.2) are regular, then for each compact K (⊂ U2×2

1,r ) and any ε > 0 there exists Nε > 0, not
dependent on Q ∈ K, such that the following uniform relation holds

sup|n|>Nε
∣∣λQ,n − λ0

n

∣∣ ≤ ε, Q ∈ K. (1.12)

In the case of Dirac systems this result was established by Sadovnichaya (2016: Theorem 3).

As is evident from the representations (1.5) and (1.10), the stability of eigenvalues and eigenvec-
tors of the operator L(Q) reduces to certain properties of the Fourier transform and the "maximal"
Fourier transform

Fg(λ) :=

∫ 1

0

g(t)eiλt dt and Fg(λ) := supx∈[0,1]

∣∣∣∣∫ x

0

g(t)eiλt dt

∣∣∣∣ , λ ∈ C.

To this end, we generalize the classical Hausdorff-Young and Hardy-Littlewood theorems for Fourier
coefficients, see (Zigmund, 1959: Theorems XII.2.3 & XII.3.19). Throughout the paper p′ will
denote p/(p − 1), and the following notations with h > 0 and n ∈ Z will be used for strips in the
complex plane:

Πh := {z ∈ C : |Im z| ≤ h}, Πh,n := {z ∈ C : n ≤ Re z ≤ n+ 1, |Im z| ≤ h}. (1.13)

Moreover, note that the concept of an incompressible sequence with density d will be defined in
Definition 4.6.

Proposition 1.3. Let p ∈ (1, 2]. Then there exists a constant C = C(p, h, d) > 0 such that the
following estimates hold uniformly for g ∈ Lp[0, 1] and for incompressible sequences Λ = {µn}n∈Z
with density d contained in the strip Πh with h > 0:∑

n∈Z
|Fg(µn)|p

′
≤
∑
n∈Z

F p′

g (µn) ≤ C ‖g‖p
′

p , (1.14)

∑
n∈Z

(1 + |n|)p−2|Fg(µn)|p ≤
∑
n∈Z

(1 + |n|)p−2F p
g (µn) ≤ C ‖g‖pp. (1.15)

The proof of the inequalities in (1.14)–(1.15) involving the "maximal" Fourier transform Fg relies on
the deep Carleson-Hunt theorem, while the estimates of ordinary Fourier transforms are elementary
in character. Inequality (1.15) generalizes the Hardy-Littlewood theorem and coincides with it for
the ordinary Fourier transform when µn = 2πn. In turn, this inequality is an important ingredient in
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proving the estimate (1.19) below. By combining Propositions 1.2 and 1.3 we establish the Lipschitz
property of the mapping Q→ ΛQ in different norms.

Theorem 1.4. LetQ, Q̃ ∈ U2×2
p,r for some p ∈ (1, 2] and r > 0, and let the boundary conditions (1.2)

be strictly regular. Then there exists an enumeration of the spectra {λQ,n}n∈Z and {λQ̃,n}n∈Z of

the operators LU (Q) and LU (Q̃), respectively, and a set IQ,Q̃ ⊂ Z, such that with certain constants

C,C1, C2, N > 0, not dependent on Q and Q̃, the following uniform estimates hold:

card
(
Z \ IQ,Q̃

)
≤ N, (1.16)

C1

∣∣∣∆Q̃

(
λQ,n

)∣∣∣ ≤ |λQ,n − λQ̃,n| ≤ C2

∣∣∣∆Q̃

(
λQ,n

)∣∣∣ , n ∈ IQ,Q̃, (1.17)∑
n∈IQ,Q̃

∣∣λQ,n − λQ̃,n∣∣p′ ≤ C ‖Q− Q̃‖p′p , (1.18)

∑
n∈IQ,Q̃

(1 + |n|)p−2 ∣∣λQ,n − λQ̃,n∣∣p ≤ C ‖Q− Q̃‖pp. (1.19)

On a compact set K in Lp([0, 1];C2×2) the subsets IQ,Q̃ ⊂ Z can be chosen independent of the

pair {Q, Q̃} and, in view of (1.16), the summation in (1.18)–(1.19) takes the form
∑
|n|≥N1

. Here

N1 ∈ N does not depend on Q, Q̃ ∈ K.

Note also that the two-sided estimate (1.17) plays a crucial role in the proof of the estimates in
(1.18)–(1.19). On account of the representation (1.10), it reduces the Lipschitz property of the map
Q → ΛQ to the property that the generalized Fourier coefficients of g1 and g2 belong to certain
weighted `p-spaces.

Observe that in proving (1.18)–(1.19) we use only the evaluation of the ordinary Fourier transform
and we do not use the deep Carleson-Hunt result. In particular, the proof of (1.19) relies only on
the uniform estimate between the first and third terms in (1.15), i.e., it concerns only the ordinary F
and not the "maximal" F . This fact makes the proof of the estimates (1.18)–(1.19) elementary in
character.

Relation (1.12) is also valid for regular BCs and extends Theorem 3 from Sadovnichaya (2016) to
the case of Dirac-type systems (b1 6= −b2). When Q̃ = 0, then the estimates (1.18)–(1.19) give
`p-estimates (uniform on balls) of the remainder in the asymptotic formula (1.7) for the eigenvalues
of the strictly regular problem (1.2) for Dirac-type systems. For the Dirac operator (−b1 = b2 = 1)

the estimate (1.18) with Q̃ = 0 generalizes the corresponding result obtained first by Savchuk &
Shkalikov (2014: Theorem 4.3 & Theorem 4.5) with a constant C that depends on Q (i.e., for the
two points compact set K = {Q, 0}) and later in Savchuk & Sadovnichaya (2018) for arbitrary
compact sets K in L1([0, 1];C2×2).

Note in this connection that A. Gomilko and L. Rzepnicki (2020), and A. Gomilko (2020) ob-
tained new, sharp, asymptotic formulas for eigenfunctions of Sturm–Liouville operators with singu-
lar potentials, and for eigenvalues and eigenfunctions of Dirichlet BVPs for the Dirac system with
Q ∈ Lp([0, 1];C2×2), 1 ≤ p < 2.

The weighted estimate (1.19) is new even for the Dirac system with Q ∈ U2×2
p,r and Q̃ = 0, and even

for the trivial compact set K = {Q, 0}.
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Turning to the stability of the eigenvectors of the operator L(Q), we first investigate the Fourier
transform of the kernels K±Q of the transformation operators in the representation (1.5). Namely, in
Theorem 7.3 we estimate deviations∫ x

0

(
K±Q −K

±
Q̃

)
jk

(x, t)eibkλt dt

via "maximal" Fourier transforms of the deviations Q − Q̃ and ‖Q− Q̃‖1 Q̃. Furthermore, the
representation (1.5) leads to similar estimates for the fundamental matrix solution ΦQ(x, λ) of the
system (1.1), which in the case of Q̃ = 0 reads as follows.

Proposition 1.5. LetQ ∈ U2×2
1,r for some r > 0. Then there exists C = C(B, r) > 0, not dependent

on Q, such that the following uniform estimate holds for x ∈ [0, 1] and λ ∈ C,

|ΦQ(x, λ)− Φ0(x, λ)|C2×2

≤ 2
2∑

j,k=1

∣∣∣∣∫ x

0

K+
jk(x, t)eibkλt dt

∣∣∣∣+ 2
2∑

j,k=1

∣∣∣∣∫ x

0

K−jk(x, t)eibkλt dt

∣∣∣∣
≤ C e2(b2−b1)|Imλ|x∑

j 6=k
sups∈[0,x]

∣∣∣∣∫ s

0

Qjk(t)ei(bk−bj)λt dt

∣∣∣∣ .
Now we are ready to state `p-stability properties of eigenfunctions of the operators LU (Q). Assume
the spectrum ΛU,Q = {λQ,n}n∈Z of LU (Q) to be asymptotically simple, and introduce a sequence
{fQ,n}|n|>N of the corresponding normalized eigenfunctions: LU (Q)fQ,n = λQ,nfQ,n.

Theorem 1.6. Let Q, Q̃ ∈ U2×2
p,r , p ∈ (1, 2], p′ := p/(p − 1), and r > 0. Moreover, assume the

BCs {Uj}21 of the form (1.2) to be strictly regular. Then there exist enumerations of the spectra
{λQ,n}n∈Z and {λQ̃,n}n∈Z of the operators LU (Q) and LU (Q̃), respectively, and a set IQ,Q̃ ⊂ Z,

such that for some constants C,N > 0, not dependent on Q and Q̃, the following estimates hold∑
n∈IQ,Q̃

∥∥fQ,n − fQ̃,n∥∥p′∞ ≤ C ‖Q− Q̃‖p′p , (1.20)

∑
n∈IQ,Q̃

(1 + |n|)p−2
∥∥fQ,n − fQ̃,n∥∥p∞ ≤ C ‖Q− Q̃‖pp. (1.21)

On compact sets K in Lp the estimates (1.20)–(1.21) are simplified, since the subsets IQ,Q̃ ⊂ Z can

then be chosen to be independent of the pair {Q, Q̃}. Moreover, in view of (1.16), the summation
in (1.18)–(1.21) can in that case be replaced by

∑
|n|≥N1

. Here N1 ∈ N does not depend on Q and

Q̃. Inequality (1.21) generalizes the classical Hardy-Littlewood inequality for Fourier coefficients
(Zigmund, 1959: Theorem XII.3.19), see Remark 7.9.

Recall that antiperiodic boundary conditions could be strictly regular for Dirac-type operators as op-
posed to the Dirac case. Therefore, all the previous results imply the following surprising statement.

Corollary 1.7. Let Q, Q̃ ∈ U2×2
p,r , p ∈ (1, 2], and let −b1, b2 ∈ N and b2 − b1 be odd. Then

antiperiodic BCs are strictly regular and, hence, the operator LU (Q) has the Riesz basis prop-
erty. Moreover, the corresponding eigenvalues and eigenvectors satisfy the uniform Lipschitz type
estimates (1.18)–(1.19) and (1.20)–(1.21).

This result demonstrates a substantial difference between Dirac and Dirac-type operators.
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Observe in conclusion that periodic and antiperiodic (necessarily non-strictly regular) BVPs for
2 × 2 Dirac and Sturm-Liouville equations have also attracted attention during the last decade.
For instance, a criterion for SRV of the periodic BVP for 2 × 2 Dirac equation to contain a Riesz
basis (without parentheses!) was obtained by P. Djakov and B. Mityagin in (2012b), see also the
recent survey (Djakov & Mityagin, 2020) and the recent papers by A.S. Makin (2021; 2020), and
the references therein. It is also worth mentioning that F. Gesztesy and V.A. Tkachenko (2009;
2012), for q ∈ L2[0, π], and P. Djakov and B.S. Mityagin (2012b), for q ∈ W−1,2[0, π], established
by different methods a criterion for SRV to contain a Riesz basis for the Sturm-Liouville operator
− d2

dx2 + q(x) on [0, π], see also the survey (Makin, 2012).

The contents of the paper will now be briefly described. In Section 2 the Banach spaces X1,p and
X∞,p are studied. Section 3 is concerned with triangular transformation operators. The general
properties of a 2 × 2 Dirac-type BVP are discussed in Section 4. In Section 5 one can find Fourier
transform estimates. The stability properties of eigenvalues are discussed in Section 6 and the sta-
bility properties of eigenfunctions are discussed in Section 7.

2 The Banach spaces X1,p and X∞,p

Let p ∈ [1,∞]. Following (Malamud, 1994) denote by X1,p := X1,p(Ω) and X∞,p := X∞,p(Ω)

the linear spaces composed of (equivalent classes of) measurable functions defined on the triangular
set Ω := {(x, t) : 0 ≤ t ≤ x ≤ 1} satisfying

‖f‖pX1,p
:= ess sup

t∈[0,1]

∫ 1

t

|f(x, t)|p dx <∞, p <∞, (2.1)

‖f‖pX∞,p := ess sup
x∈[0,1]

∫ x

0

|f(x, t)|p dt <∞, p <∞, (2.2)

respectively, and ‖f‖X1,∞ = ‖f‖X∞,∞ := ess sup(x,t)∈Ω |f(x, t)|. It can easily be shown that
the spaces X1,p and X∞,p equipped with the norms (2.1) and (2.2) form Banach spaces that are
not separable. Denote by X0

1,p := X0
1,p(Ω) and X0

∞,p := X0
∞,p(Ω) the closures of the subspace of

continuous functionsC(Ω) inX1,p(Ω) andX∞,p(Ω), respectively. Clearly, the setC1(Ω) of smooth
functions is also dense in both spacesX0

1,p andX0
∞,p. Note also that the following embeddings hold

and are continuous

X1,p1 ⊂ X1,p2 ⊂ X1,1 and X∞,p1 ⊂ X∞,p2 ⊂ X∞,1, p1 > p2 ≥ 1.

The following simple property of the spaces X0
1,p and X0

∞,p will be important in the sequel.

Lemma 2.1. Let p ≥ 1. For each a ∈ [0, 1] the trace mappings

ia,∞ : C(Ω)→ C[0, a], ia,∞
(
N(x, t)

)
:= N(a, t),

ia,1 : C(Ω)→ C[a, 1], ia,1
(
N(x, t)

)
:= N(x, a),

admit continuous extensions, which are also denoted by ia,∞ and ia,1, to mappings from X0
∞,p(Ω)

onto Lp[0, a] and X0
1,p(Ω) onto Lp[a, 1], respectively.
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Going over to the vector case we denote for u = col(u1, . . . , un) ∈ Cn

|u|αα := |u1|α + . . .+ |un|α, 0 < α <∞, |u|∞ = max{|u1|, . . . , |un|}.

Furthermore, for A = (ajk)nj,k=1 ∈ Cn×n we define

|A|α→β := sup {|Au|β : u ∈ Cn, |u|α = 1}, α, β ∈ (0,∞].

Now we are ready to introduce the Banach spaces

Xn
1,p := X1,p(Ω;Cn×n) and Xn

∞,p := X∞,p(Ω;Cn×n),

consisting of n × n matrix-functions F = (Fjk)nj,k=1 with X1,p- and X∞,p-entries, respectively,
equipped with the norms

‖F‖pXn1,p := ess sup
t∈[0,1]

∫ 1

t

|F (x, t)|p1→p dx <∞, p ∈ [1,∞),

‖F‖pXn∞,p := ess sup
x∈[0,1]

∫ x

0

|F (x, t)|pp′→∞ dt <∞, p ∈ [1,∞).

Moreover, ‖F‖Xn1,∞ = ‖F‖Xn∞,∞ := ess sup(x,t)∈Ω |F (x, t)|1→∞. Besides, we introduce the sub-
spaces

X0,n
1,p := X0

1,p(Ω;Cn×n) and X0,n
∞,p := X0

∞,p(Ω;Cn×n),

which are separable parts of Xn
1,p and Xn

∞,p, respectively.

Furthermore, for brevity, throughout the section we use the following notation

Ls := Ls([0, 1];Cn), s ∈ [1,∞].

With each measurable matrix kernel N(·, ·) =
(
Njk(·, ·)

)n
j,k=1

on Ω one associates a Volterra type
operator N as follows

N : f 7→
∫ x

0

N(x, t)f(t) dt. (2.3)

Denote by ‖N‖α→β := ‖N‖Lα→Lβ , α, β ∈ [1,∞], the norm for bounded operators N acting from
Lα to Lβ .

The following result demonstrates the natural occurrence of the spaces Xn
1,p and Xn

∞,p in the study
of the integral operators acting from Lα to Lβ for special α and β. In particular, the third statement
sheds light on the interpolation role of these spaces, cf. (Malamud, 1994). This result substantially
complements Lemma 2.3 from (Lunyov & Malamud, 2016).

Recall that a Volterra operator on a Banach space is a compact operator with zero spectrum.

Proposition 2.2. LetN be a Volterra type operator given by (2.3) for a measurable matrix-function
N(·, ·) and let p ∈ [1,∞]. Then the following statements hold:

(i) The inclusion N ∈ B(L1, Lp) holds if and only if N ∈ Xn
1,p, in which case

‖N‖1→p = ‖N‖Xn1,p .
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Moreover, if N ∈ X0,n
1,p , then the operator N is compact from L1 to Lp and the following

relation holds

−N (I +N )−1 =: S ∈ B(L1, Lp), where S : f 7→
∫ x

0

S(x, t)f(t) dt with S ∈ X0,n
1,p ;

here (I +N )−1 is treated as an operator from B(L1, L1).

(ii) The inclusion N ∈ B(Lp
′
, L∞) holds if and only if N ∈ Xn

∞,p , in which case

‖N‖p′→∞ = ‖N‖Xn∞,p .

Moreover, if N ∈ X0,n
∞,p, then N maps Lp

′
to C := C([0, 1];Cn) and is compact. Let

NC : C → C be a restriction ofN to C, then (I+NC)−1 ∈ B(C, C) and the following relation
holds

−(I +NC)−1N =: S ∈ B(Lp
′
, C), where S : f 7→

∫ x

0

S(x, t)f(t) dt with S ∈ X0,n
∞,p.

(iii) Let N ∈ Xn
1,1 ∩Xn

∞,1 ⊂ Xn
1,p ∩Xn

∞,p. Then N ∈ B(Ls, Ls) for each s ∈ [1,∞], and

‖N‖s→s ≤ ‖N‖1/sXn1,1
‖N‖1−1/s

Xn∞,1
.

(iv) Let N ∈ X0,n
1,p ∩ X0,n

∞,p. Then N is a Volterra operator in Ls for each s ∈ [1,∞], and the
inverse operator (I +N )−1 is given by

(I +N )−1 =: I + S, where S : f 7→ f +

∫ x

0

S(x, t)f(t) dt with S ∈ X0,n
1,p ∩X0,n

∞,p.

Remark 2.3. In connection with Proposition 2.2, let us recall Theorems XI.1.5 and XI.1.6 from Kan-
torovich & Akilov (1977) concerning integral representations of bounded linear operators. Namely,
let p ∈ (1,∞], and let R and S be bounded linear operators from L1[0, 1] to Lp[0, 1] and Lp

′
[0, 1]

to C[0, 1], respectively. Then they admit the following integral representations:

(Rf)(x) =

∫ 1

0

R(x, t)f(t) dt, ‖R‖p1→p = ess sup
t∈[0,1]

∫ 1

0

|R(x, t)|p dx <∞,

(Sf)(x) =

∫ 1

0

S(x, t)f(t) dt, ‖S‖pp′→∞ = ess sup
x∈[0,1]

∫ 1

0

|S(x, t)|p dt <∞.

3 Triangular transformation operators

The existence of a triangular transformation operator for the system (1.1) with summable potential
matrix Q ∈ L1([0, 1];C2×2) was established in our previous paper (Lunyov & Malamud, 2016).
Moreover, the case B = B∗ ∈ Cn×n and Q ∈ L∞([0, 1];Cn×n) was treated earlier in Malamud
(1999).

The purpose of this section is to prove the Lipschitz property (in respective norms) for the kernels of
the transformation operators of Q ∈ Lp([0, 1];C2×2). We start with the following result from Lun-
yov & Malamud (2016).
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Theorem 3.1 (Lunyov & Malamud (2016: Theorem 2.5)). Let Q = codiag(Q12, Q21) belong to
L1([0, 1];C2×2). Assume that e±(·, λ) are the solutions of the system (1.1) satisfying the initial
conditions e±(0, λ) =

(
1
±1

)
. Then the solutions e±(·, λ) admit the following representation by

means of the triangular transformation operators K±Q =
(
K±jk

)2
j,k=1

∈ X0,2
1,1 ∩X

0,2
∞,1

e±(x, λ) = e0
±(x, λ) +

∫ x

0

K±Q (x, t)e0
±(t, λ) dt, e0

±(x, λ) =

(
eib1λx

±eib2λx

)
. (3.1)

It was shown in Malamud (1999) that if Q = codiag(Q12, Q21) ∈ C1([0, 1];C2×2), then the matrix
kernel in the triangular representation (3.1) is smooth, K± = K±Q =

(
K±jk

)2
j,k=1

∈ C1(Ω,C2×2),
and it is the unique solution of the following boundary value problem

B−1DxK
±(x, t) +DtK

±(x, t)B−1 + iQ(x)K±(x, t) = 0, (3.2)

K±(x, x)B−1 −B−1K±(x, x) = iQ(x), x ∈ [0, 1], (3.3)

K±(x, 0)B−1
(

1
±1

)
= 0, x ∈ [0, 1]. (3.4)

The proof of this result in Malamud (1999) was divided into two steps. First it was proved that there
exists the smooth unique solution RQ =

(
Rjk

)2
j,k=1

∈ C1(Ω,C2×2) of the problem (3.2)–(3.3),
satisfying, instead of (3.4), the following conditions:

R11(x, 0) = R22(x, 0) = 0, x ∈ [0, 1]. (3.5)

As the second step we defined the kernelsK±Q via the auxiliary matrix functionRQ by formula (3.7)
and showed that they have the required properties. By means of this result, the following proposition
was proved in Lunyov & Malamud (2016); it is the starting point of our investigation here. Note
also that for smooth kernels relation (3.7) was already exploited in Malamud (1999).

Proposition 3.2 (Lunyov & Malamud (2016)). Let Q ∈ L1([0, 1];C2×2) and let K±Q be the kernels
of the corresponding transformation operators from the representation (3.1). Then there exist

RQ = (Rjk)2
j,k=1 ∈ X

0,2
1,1 ∩X

0,2
∞,1 and P±Q = diag(P±1 , P

±
2 ) ∈ L1([0, 1];C2×2), (3.6)

such that

K±Q (x, t) = RQ(x, t) + P±Q (x− t) +

∫ x

t

RQ(x, s)P±Q (s− t) ds, 0 ≤ t ≤ x ≤ 1. (3.7)

Moreover, RQ(·, ·) is the unique solution of the following system for 0 ≤ t ≤ x ≤ 1,

Rkk(x, t) = −ibk
∫ x

x−t
Qkj(ξ)Rjk

(
ξ, ξ − x+ t

)
dξ, (3.8)

Rjk(x, t) = −ibjαjQjk(αkx+ αjt)− ibj
∫ x

αkx+αjt

Qjk(ξ)Rkk

(
ξ,
bj
bk

(ξ − x) + t
)
dξ, (3.9)

where αk :=
bj

bj−bk with j = 2/k for k ∈ {1, 2}.

Note that for smooth Q, i.e., for Q ∈ C1([0, 1];C2×2), the system (3.8)–(3.9) is equivalent to the
system (3.2)–(3.3), (3.5). To refine Theorem 3.1 in the Lp-case, we start by refining properties of
the auxiliary kernel RQ appearing in Proposition 3.2. In the following result we show that the (non-
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linear) mapping Q → R = RQ is Lipschitz in X2
1,p and X2

∞,p on each ball of radius r in Lp.
Proposition 2.2 can be used to establish part (ii) thereof.

Proposition 3.3. Let Q, Q̃ ∈ U2×2
p,r for some p ≥ 1 and r > 0. Then the following statements hold:

(i) The solutions RQ and RQ̃ of the system of integral equations (3.8)–(3.9) for Q and Q̃ respec-

tively, unique in X0,2
1,1 ∩ X

0,2
∞,1, belong to X0,2

1,p ∩ X0,2
∞,p and the following uniform estimate

holds
‖RQ −RQ̃‖X2

1,p
+ ‖RQ −RQ̃‖X2

∞,p
≤ C0 ‖Q− Q̃‖p,

where the constant C0 > 0 does not depend on Q, Q̃ ∈ U2×2
p,r .

(ii) The operator

RQ : f 7→
∫ x

0

RQ(x, t)f(t) dt, f ∈ Ls([0, 1],C2),

is a Volterra operator in every space Ls([0, 1],C2), s ∈ [1,∞]. Moreover, there exists a
constant C1 = C1(B, p, r) > 0, not dependent on s ∈ [1,∞] and Q, Q̃ ∈ U2×2

p,r , such that
the following uniform estimate holds

‖(I +RQ)−1 − (I +RQ̃)−1‖s→s ≤ C1 ‖Q− Q̃‖p,

Combining these properties of the kernel RQ(·, ·) with the convolution identity (3.7) allows us to
prove the main result of this section: the Lipschitz property of the mapping Q 7→ K±Q on the balls
in Lp

(
[0, 1];C2×2

)
.

Theorem 3.4. Let Q, Q̃ ∈ U2×2
p,r for some p ∈ [1,∞) and r > 0. Moreover, let K±Q and K±

Q̃
be the

kernels of the corresponding transformation operators from the representation (3.1) for Q and Q̃,
respectively. Then

K±Q ,K
±
Q̃
∈ X0,2

1,p ∩X0,2
∞,p,

and there exists a constantC = C(B, p, r) that does not depend onQ and Q̃, such that the following
estimate holds

‖K±Q −K
±
Q̃
‖X2
∞,p

+ ‖K±Q −K
±
Q̃
‖X2

1,p
≤ C ‖Q− Q̃‖p.

Remark 3.5. (i) For 2× 2 Dirac systems (B = diag(−1, 1)) with continuous potential Q the trian-
gular transformation operators have been constructed in Levitan & Sargsyan (1991: Chapter 10.3)
and Marchenko (1986: Chapter 1.2). For Q ∈ L1 these transformation operators were constructed
in Albeverio, Hryniv & Mykytyuk (2005) by an appropriate generalization of Marchenko’s method.

(ii) Let J : f →
∫ x

0
f(t) dt denote the Volterra integration operator on Lp[0, 1]. Note that the sim-

ilarity of the integral Volterra operators given by (2.3) to the simplest Volterra operator of the form
B ⊗ J acting in the spaces Lp([0, 1];C2) has been investigated in Malamud (1999); Romaschenko
(2008). The technique of investigating integral equations for the kernels of the transformation oper-
ators in the spaces X∞,1(Ω) and X1,1(Ω) goes back to the paper (Malamud, 1994).

4 General properties of a 2× 2 Dirac-type BVP

Consider the 2×2 Dirac-type equation (1.1) subject to the general boundary conditions (1.2) and the
corresponding operator L(Q) defined in (1.3). In this section we recall and extend some properties
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of this BVP from (Lunyov & Malamud, 2016). Let us set

A :=

(
a11 a12 a13 a14

a21 a22 a23 a24

)
, Ajk :=

(
a1j a1k

a2j a2k

)
, Jjk := det(Ajk), (4.1)

where j, k ∈ {1, . . . , 4}. Moreover, let

Φ(·, λ) =

(
ϕ11(·, λ) ϕ12(·, λ)

ϕ21(·, λ) ϕ22(·, λ)

)
=:
(
Φ1(·, λ) Φ2(·, λ)

)
, Φ(0, λ) =

(
1 0

0 1

)
, (4.2)

be a fundamental matrix solution of the system (1.1). The eigenvalues of the problem (1.1)–(1.2)
(counting multiplicity) are the zeros (counting multiplicity) of the characteristic determinant

∆Q(λ) := det

(
U1(Φ1(·, λ)) U1(Φ2(·, λ))

U2(Φ1(·, λ)) U2(Φ2(·, λ))

)
. (4.3)

Inserting (4.2) and (1.2) into (4.3), setting ϕjk(λ) := ϕjk(1, λ), and taking the notations in (4.1)
into account, we arrive at the following expression for the characteristic determinant

∆Q(λ) = J12 + J34e
i(b1+b2)λ + J32ϕ11(λ) + J13ϕ12(λ) + J42ϕ21(λ) + J14ϕ22(λ). (4.4)

Alongside the problem (1.1)–(1.2) we consider the same problem with Q̃ in place of Q. Denote
the corresponding fundamental matrix solution, its entries, and the corresponding characteristic de-
terminant as Φ̃(·, λ), ϕ̃jk(·, λ), j, k ∈ {1, 2}, and ∆̃(λ), respectively. If Q = 0, then we denote a
fundamental matrix solution as Φ0(·, λ). Clearly

Φ0(x, λ) =

(
eib1xλ 0

0 eib2xλ

)
=:
(
Φ0

1(x, λ) Φ0
2(x, λ)

)
, x ∈ [0, 1], λ ∈ C.

Here Φ0
k(·, λ) is the kth-column of Φ0(·, λ). In particular, the characteristic determinant ∆0(·)

becomes
∆0(λ) = J12 + J34e

i(b1+b2)λ + J32e
ib1λ + J14e

ib2λ. (4.5)

In the case of Dirac systems, i.e., when B = diag(−1, 1), this formula simplifies to

∆0(λ) = J12 + J34 + J32e
−iλ + J14e

iλ.

4.1 Representation of the characteristic determinant

Our investigation of the perturbation determinant relies on the following result, clarifying our Propo-
sition 3.1 from Lunyov & Malamud (2016) and coinciding with it for Q ∈ L1([0, 1];C2×2).

Lemma 4.1. Let Q ∈ Lp([0, 1];C2×2) for some p ∈ [1,∞). Then the functions ϕjk(·, λ), with
j, k ∈ {1, 2}, admit the following representations for x ∈ [0, 1] and λ ∈ C

ϕjk(x, λ) = δjke
ibkλx +

∫ x

0

Kj1,k(x, t)eib1λt dt+

∫ x

0

Kj2,k(x, t)eib2λt dt, (4.6)

where

Kjl,k := 2−1
(
K+
jl + (−1)l+kK−jl

)
∈ X0

1,p(Ω) ∩X0
∞,p(Ω), j, k, l ∈ {1, 2}. (4.7)
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Our study of the Lipschitz property of the eigenvalues and eigenfunctions is based on the following
simple corollary of Theorem 3.4.

Lemma 4.2. Let Q, Q̃ ∈ U2×2
p,r for some p ∈ [1,∞) and r > 0. Then the following representation

holds for x ∈ [0, 1] and λ ∈ C

ϕjk(x, λ)− ϕ̃jk(x, λ) =

∫ x

0

K̂j1,k(x, t)eib1λt dt+

∫ x

0

K̂j2,k(x, t)eib2λt dt, (4.8)

where
K̂jl,k := Kjl,k − K̃jl,k ∈ X0

1,p(Ω) ∩X0
∞,p(Ω), j, k, l ∈ {1, 2}. (4.9)

Moreover, for some C = C(p, r,B) the following uniform estimate holds

‖K̂jl,k‖X∞,p(Ω) + ‖K̂jl,k‖X1,p(Ω) ≤ C ‖Q− Q̃‖p, j, k, l ∈ {1, 2}. (4.10)

Considering next the properties of the characteristic determinant, we first refine (Lunyov & Mala-
mud, 2016: Lemma 4.1) in the Lp case. Note that the existence of trace values K±jk(1, ·) is implied
by Lemma 2.1 and the inclusions

K±jk ∈ X
0
1,p ∩X0

∞,p.

The later inclusions are important, because the weaker inclusions

K±jk ∈ (X1,p ∩X∞,p) \ (X0
1,p ∩X0

∞,p)

do not ensure the existence of such traces.

Lemma 4.3. Let Q ∈ Lp([0, 1];C2×2) for some p ∈ [1,∞). Then the characteristic determinant
∆Q(·) of the problem (1.1)–(1.2) is an entire function of exponential type and admits the following
representation

∆Q(λ) = ∆0(λ) +

∫ 1

0

g1,Q(t)eib1λt dt+

∫ 1

0

g2,Q(t)eib2λt dt, (4.11)

where for l ∈ {1, 2}

gl,Q(·) = J32K1l,1(1, ·) + J42K2l,1(1, ·) + J13K1l,2(1, ·) + J14K2l,2(1, ·) ∈ Lp[0, 1]. (4.12)

The next result is immediate by combining Lemma 4.3 with the estimate (4.10).

Lemma 4.4. Let Q, Q̃ ∈ U2×2
p,r for some p ∈ [1,∞) and r > 0. Then the following representation

holds

∆Q(λ)−∆Q̃(λ) =

∫ 1

0

ĝ1(t)eib1λt dt+

∫ 1

0

ĝ2(t)eib2λt dt, (4.13)

where ĝl := gQ,l−gQ̃,l ∈ L
p[0, 1], l ∈ {1, 2}. Moreover, for some Ĉ = Ĉ(p, r,B,A), the following

uniform estimate holds

‖ĝ1‖p + ‖ĝ2‖p = ‖gQ,1 − gQ̃,1‖p + ‖gQ,2 − gQ̃,2‖p ≤ Ĉ ‖Q− Q̃‖p, Q, Q̃ ∈ U2×2
p,r .
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4.2 Regular and strictly regular boundary conditions

Recall that Jjk = detAjk, see (4.1), and recall the following definitions.

Definition 4.5. The boundary conditions (1.2) are called regular if

J14J32 6= 0.

Definition 4.6 (cf. (Katsnel’son, 1971)). The sequence Λ := {λn}n∈Z ⊂ C is called an incompress-
ible sequence of density d ∈ N, if every rectangle [t− 1, t+ 1]× R ⊂ C contains at most d entries
of the sequence, i.e., if

card{n ∈ Z : |Reλn − t| ≤ 1} ≤ d, t ∈ R.

Let us recall certain important properties of the characteristic determinant ∆(·) in the case of regular
boundary conditions from Lunyov & Malamud (2016). Recall that Dr(z) ⊂ C denotes the disc of
radius r with center z.

Proposition 4.7 (Lunyov & Malamud (2016: Proposition 4.6)). Let the boundary conditions (1.2)
be regular and let ∆Q(·) be the characteristic determinant of the problem (1.1)–(1.2), given by (4.4).
Then the following statements hold:

(i) The characteristic determinant ∆Q(·) is a sine-type function with h∆(π/2) = −b1 and
h∆(−π/2) = b2. In particular, the function ∆Q(·) has infinitely many zeros Λ := {λn}n∈Z
counting multiplicities and Λ ⊂ Πh for some h ≥ 0, see (1.13).

(ii) The sequence Λ is incompressible.

(iii) For any ε > 0 there exists Cε > 0 such that the determinant ∆Q(·) admits the following
estimate from below

|∆Q(λ)| ≥ Cε(e−b1Imλ + e−b2Imλ), λ ∈ C \
⋃
n∈Z

Dε(λn).

Clearly, the conclusions of Proposition 4.7 are valid for the characteristic determinant ∆0(·) given
by (4.5). Let Λ0 = {λ0

n}n∈Z be the sequence of its zeros counting multiplicity. From now on, let us
order Λ0 in a (possibly non-unique) way such that

Reλ0
n ≤ Reλ0

n+1, n ∈ Z.

Let us recall an important result from Lunyov & Malamud (2014b; 2016) and Savchuk & Shkalikov
(2014) concerning the asymptotic behavior of eigenvalues.

Proposition 4.8 (Lunyov & Malamud (2016: Proposition 4.7)). Let Q ∈ L1([0, 1];C2×2) and let
the boundary conditions (1.2) be regular. Then the sequence Λ = {λn}n∈Z of zeros of ∆Q(·) can
be ordered in such a way that the following asymptotic formula holds

λn = λ0
n + o(1), as |n| → ∞, n ∈ Z. (4.14)

Let us refine this ordering to have some additional important properties.
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Proposition 4.9. Let Q ∈ L1([0, 1];C2×2) and let the boundary conditions (1.2) be regular. Then
the following statements hold:

(i) For any ε > 0 there exist Mε = Mε(Q,B,A) > 0 and Cε = Cε(B,A) > 0, such that

|∆Q(λ)−∆0(λ)| < |∆0(λ)|, λ /∈ Ω̃ε, (4.15)

|∆Q(λ)| > Cε
(
e−b1Imλ + e−b2Imλ

)
, λ /∈ Ω̃ε, (4.16)

where
Ω̃ε := DMε

(0) ∪ Ω0
ε, Ω0

ε :=
⋃
n∈Z

Dε(λ0
n). (4.17)

(ii) The sequence Λ = {λn}n∈Z can be ordered such that for any ε > 0 and n ∈ Z the values λn
and λ0

n belong to the same connected component of Ω̃ε. In addition, the relation (4.14) also
holds for this ordering.

Definition 4.10. Let Λ = {λn}n∈Z be the sequence of zeros of the characteristic determinant ∆Q(·)
of the Dirac-type operator LU (Q) with summable potential and regular boundary conditions. Let
Ω̃ε be defined in (4.17). The ordering of Λ for which λn and λ0

n belong to the same connected
component of Ω̃ε for all ε > 0 and n ∈ Z, is called a canonical ordering.

Observe that Proposition 4.9 implies the existence of a canonical ordering for each sequence of zeros
of the characteristic determinant ∆Q(·) of the Dirac-type operator LU (Q) with summable potential
and regular boundary conditions.

In the sequel we need the following definitions.

Definition 4.11. A sequence Λ := {λn}n∈Z of complex numbers is said to be separated if for some
τ > 0 the inequality |λj − λk| > 2τ holds whenever j 6= k. In particular, all entries of a separated
sequence are distinct. Furthermore, the sequence Λ is said to be asymptotically separated if for some
N ∈ N the subsequence {λn}|n|>N is separated.

Definition 4.12. The boundary conditions (1.2) are called strictly regular if they are regular, i.e.,
J14J32 6= 0, and the sequence of zeros λ0 = {λ0

n}n∈Z of the characteristic determinant ∆0(·) is
asymptotically separated.

In particular, if the boundary conditions (1.2) are strictly regular, then there exists n0 ∈ N such that
zeros {λ0

n}|n|>n0
of its characteristic determinant are geometrically and algebraically simple.

Observe that it follows from Proposition 4.8 that the sequence Λ = {λn}n∈Z of zeros of ∆Q(·) is
asymptotically separated if the boundary conditions are strictly regular.

Assuming the boundary conditions (1.2) to be regular, let us rewrite them in a more convenient form.
Since J14 6= 0, the inverse matrixA−1

14 exists. Therefore writing down the boundary conditions (1.2)
as the vector equation

(
U1(y)
U2(y)

)
= 0 and multiplying it by the matrix A−1

14 , they are transformed into
the following conditions {

Û1(y) = y1(0) + by2(0) + ay1(1) = 0,

Û2(y) = dy2(0) + cy1(1) + y2(1) = 0,
(4.18)
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for some a, b, c, d ∈ C. Now J14 = 1 and the boundary conditions (4.18) are regular if and only if
J32 = ad− bc 6= 0. Thus, the characteristic determinants ∆0(·) and ∆(·) take the form

∆0(λ) = d+ aei(b1+b2)λ + (ad− bc)eib1λ + eib2λ,

∆(λ) = d+ aei(b1+b2)λ + (ad− bc)ϕ11(λ) + ϕ22(λ) + cϕ12(λ) + bϕ21(λ).

Remark 4.13. Let us list some types of strictly regular boundary conditions (4.18). In all of these
cases, except 4 (b), the set of zeros of ∆0 is a union of a finite number of arithmetic progressions.

1. Regular BCs (4.18) for the Dirac operator (−b1 = b2 = 1) are strictly regular if and only if
(a− d)2 6= −4bc.

2. Separated BCs (a = d = 0, bc 6= 0) are always strictly regular.

3. Let b1/b2 ∈ Q. Without loss of generality we can assume that −b1, b2 ∈ N and that
gcd (−b1, b2) = 1. It is clear that the BCs (4.18) are strictly regular if and only if a cer-
tain polynomial of degree b2 − b1 does not have multiple roots. In addition, if ad 6= 0 and
bc = 0, then the BCs (4.18) are strictly regular if and only if

b1 ln |d|+ b2 ln |a| 6= 0 or b1 arg(−d) + b2 arg(−a) /∈ 2πZ.

In particular, antiperiodic BCs (a = d = 1, b = c = 0) are strictly regular if and only if
b1 − b2 is odd. Note that these BCs are not strictly regular in the case of a Dirac system.

4. Let α := −b1/b2 /∈ Q. Then the problem of strict regularity of BCs is generally much more
complicated. Let us list some known cases:

(a) Let ad 6= 0 and bc = 0. Then the BCs (4.18) are strictly regular if and only if

b1 ln |d|+ b2 ln |a| 6= 0.

(b) Let a = 0 and bc, d ∈ R \ {0}. Then the BCs (4.18) are strictly regular if and only if

d 6= −(α+ 1)
(
|bc|α−α

) 1
α+1 ,

see (Lunyov & Malamud, 2016: Proposition 5.6).

5 Fourier transform estimates

5.1 Generalizations of the Hausdorff-Young and Hardy-Littlewood theorems

To evaluate deviations of eigenvalues of the operators L(Q) and L(Q̃), we extend here the classical
Hausdorff-Young and Hardy-Littlewood interpolation theorems for Fourier coefficients (see (Zig-
mund, 1959: Theorem XII.2.3) and (Zigmund, 1959: Theorem XII.3.19), respectively) to the case
of arbitrary incompressible sequences Λ = {µn}n∈Z instead of Λ = {2πn}n∈Z.



Acta Wasaensia 127

For an efficient estimate of eigenvectors deviations in Section 7 we will use the following (sublinear)
Carleson transform (the maximal version of the classical Fourier transform)

Ef (λ) := supN>0

∣∣∣∣∣
∫ N

−N
Ff (t)e−iλt dt

∣∣∣∣∣ , λ ∈ R,

where Ff denotes the classical Fourier transform,

Ff (λ) = lim
N→∞

∫ N

−N
f(t)eiλt dt. (5.1)

Its most important property is contained in the following Carleson-Hunt theorem, see (Grafakos,
2009: Theorems 6.2.1 & 6.3.3).

Theorem 5.1. For any p ∈ (1,∞) the Carleson operator E is a bounded operator from Lp(R) to
itself, i.e., there exists a constant Cp > 0 such that

‖Ef‖Lp ≤ Cp‖f‖Lp , f ∈ Lp(R).

For our considerations it is more convenient to consider the following version of E

Fg(λ) := supx∈[0,1]

∣∣∣∣∫ x

0

g(t)eiλt dt

∣∣∣∣ , g ∈ Lp[0, 1], λ ∈ C.

For brevity we put F θ
g (λ) := (Fg(λ))

θ. Also recall that p′ = p/(p− 1).

Combining the Carleson-Hunt theorem (Theorem 5.1) and the Hausdorff-Young theorem leads to
the following result, see, e.g., (Savchuk, 2019) for details.

Proposition 5.2. For any p ∈ (1, 2] the maximal Fourier transform F maps Lp[0, 1] boundedly into
Lp
′
[0, 1], i.e., the following estimate holds∫ ∞

−∞
F p′

g (x) dx ≤ γp ‖g‖p
′

p , g ∈ Lp[0, 1], (5.2)

where γp > 0 does not depend on g ∈ Lp[0, 1].

In the sequel we will need the following lemma whose proof substantially relies on the estimate (5.2).
Recall the definition of Πh,n in (1.13).

Lemma 5.3. Let g ∈ Lp[0, 1] for some p ∈ (1, 2] and h ≥ 0, and let

gn := sup
{
Fg(λ) : λ ∈ Πh,n

}
.

Then the following inequality holds∑
n∈Z

gp
′

n ≤ Cp,h ‖g‖p
′

p , Cp,h := γp e
p′(h+1).

The proof of Lemma 5.3 extends the classical reasoning about estimates of Hardy space func-
tions and Lpσ-classes of entire functions, see (Levin, 1996: Lectures 20-21) and (Katsnel’son, 1971:
Lemma 2) for the case of the maximal Fourier transform.
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Now we are ready to state the main result of this section which is a generalization of the Hausdorff-
Young and Hardy-Littlewood theorems to the case of non-harmonic series with exponents forming
an incompressible sequence Λ = {µn}n∈Z instead of Λ = {2πn}n∈Z.

Theorem 5.4. Let p ∈ (1, 2]. Let Λ = {µn}n∈Z be an incompressible sequence of density d ∈ N
lying in the strip Πh, and let g ∈ Lp[0, 1]. Then there exists C = C(p, h, d) > 0 that does not
depend on Λ and g, such that the following estimates hold uniformly with respect to g and Λ:∑

n∈Z
|Fg(µn)|p

′
≤
∑
n∈Z

F p′

g (µn) ≤ C ‖g‖p
′

p , (5.3)

∑
n∈Z

(1 + |n|)p−2|Fg(µn)|p ≤
∑
n∈Z

(1 + |n|)p−2F p
g (µn) ≤ C ‖g‖pp. (5.4)

Estimate (5.3) is an immediate consequence of Lemma 5.3. The proof of (5.4) is based on the
Marcinkiewicz theorem (Zigmund, 1959: Theorem XII.4.6). Note also that the parts of the inequali-
ties (5.3)–(5.4) involving the classical Fourier transform Fg defined in (5.1) can be proved in a direct
way, which is elementary in character, because it does not involve the Carleson-Hunt theorem.

Corollary 5.5. Let Λ = {µn}n∈Z be a sequence of zeros of a sine-type function Φ(·). Then for any
p ∈ (1, 2] the estimates (5.3) and (5.4) hold uniformly in g ∈ Lp[0, 1].

Proof. The proof is immediate from Theorem 5.4 if one notes that the null set of a sine-type function
Φ(·) is always incompressible, see (Levin, 1961), (Katsnel’son, 1971), and Proposition 4.7(ii).

Inverse statements for the Hausdorff-Young and Hardy-Littlewood theorems also hold in the case of
non-harmonic exponential series with exponents Λ = {µn}n∈Z forming the null set of a sine-type
entire function instead of Λ = {2πn}n∈Z.

5.2 Uniform versions of the Riemann-Lebesgue lemma

Lemma 5.6, needed in the sequel, easily follows by combining Lemma 5.3 with Chebyshev’s in-
equality. It can be understood as a uniform version of the classical Riemann-Lebesgue lemma.

Lemma 5.6. Let g ∈ Up,r for some p ∈ (1, 2] and r > 0. Moreover, let b ∈ R \ {0}, let h ≥ 0,
and let p′ be such that 1/p′ + 1/p = 1. Then for any δ > 0 there exists a set Ig,δ ⊂ Z such that the
following inequalities hold uniformly with respect to g ∈ Up,r

card(Z \ Ig,δ) ≤ Nδ := C (r/δ)p
′
, (5.5)∣∣∣∣∫ 1

0

g(t)eibλt dt

∣∣∣∣ ≤ supx∈[0,1]

∣∣∣∣∫ x

0

g(t)eibλt dt

∣∣∣∣ < δ, λ ∈
⋃

n∈Ig,δ
Πh,n, (5.6)

where Πh,n is given by (1.13). Here C = C(p, h, b) > 0 does not depend on g, r, and δ.

Let us emphasize that "uniformity" in Lemma 5.6 does not relate to the set Ig,δ , but only to the "size"
of its complement, see (5.5). Note also that the part of estimate (5.6) involving the regular Fourier
transform

∫ 1

0
g(t)eibλt dt can be proved in an easier way without using the Carleson-Hunt theorem.
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Next we investigate the "maximal" Fourier transform defined on the space X∞,1(Ω) by

F [G](λ) := supx∈[0,1]

∣∣∣∣∫ x

0

G(x, t)eibλt dt

∣∣∣∣ , λ ∈ C, G ∈ X∞,1(Ω). (5.7)

The results in the rest of this section do not use the deep Carleson-Hunt theorem. First we present
the following "uniform" version of the Riemann-Lebesgue lemma for the space X0

∞,1(Ω). To this
end for any h ≥ 0 we set

C0(Πh) := {ϕ ∈ C(Πh) : lim
t→±∞

ϕ(t± iy) = 0 uniformly in y ∈ [−h, h]}.

Proposition 5.7. Let h ≥ 0 and let F be given by (5.7). Then the following statements hold:

(i) The nonlinear mapping F : X0
∞,1(Ω)→ C(Πh) is well-defined and is Lipschitz

‖F [G]−F [G̃]‖C(Πh) ≤ e|b|h ‖G− G̃‖X∞,1(Ω), G, G̃ ∈ X0
∞,1(Ω).

(ii) For any h ≥ 0 the mapping F maps X0
∞,1(Ω) continuously into C0(Πh).

(iii) For any compact set X in X0
∞,1(Ω) the following relation holds

lim
λ→∞

F [G](λ) = 0, (5.8)

uniformly in G ∈ X and λ ∈ Πh.

Proposition 5.7 (iii) contains as a special case the following "uniform" version of the classical
Riemann-Lebesgue lemma: for any compact set K in L1[0, 1] one has

supg∈K

∣∣∣∣∫ 1

0

g(t)eiλt dt

∣∣∣∣ = o(1) as λ→∞, uniformly in g ∈ K and λ ∈ Πh.

Next we complete Proposition 5.7 by evaluating the "maximal" Fourier transform F [G](·) in the
plane instead of a strip.

Lemma 5.8. Let X be a compact set in X0
∞,1(Ω), let b ∈ R \ {0}, and let δ > 0. Then there exists

a constant C = C(X , b, δ) > 0, such that the following estimate holds

F [G](λ) ≤ δ(e−bImλ + 1), |λ| > C, G ∈ X ,

uniformly in G ∈ X .

Finally, we apply Proposition 5.7 (i), Theorem 3.4, and Lemma 5.8 to transformation operators.

Corollary 5.9. LetK±Q be the kernel of the transformation operator from representation (3.1). Then
the composition

Q→ K±Q → F [K±Q ]

maps Lp([0, 1];C2×2) continuously into C0(Πh;C2×2), h ≥ 0, and it is a Lipschitz mapping on
balls in Lp([0, 1];C2×2), p ∈ [1,∞)

‖F [K±Q ]−F [K±
Q̃

]‖C(Πh) ≤ e|b|h C(B, p, r) ‖Q− Q̃‖Lp , Q, Q̃ ∈ U2×2
p,r . (5.9)
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The following statement will be useful in Section 6 when applying Rouché’s theorem; it is an im-
mediate consequence of Theorem 3.4 and Lemma 5.8.

Lemma 5.10. Let K be a compact set in L1([0, 1];C2×2), let Q ∈ K, and let K±Q = (K±jk)2
j,k=1 be

the kernel of the transformation operator from representation (3.1). Then for any δ > 0 there exists
a constant M = M(K, B, δ) > 0 such that the following estimate holds uniformly in Q ∈ K

F [K±jk](λ) = supx∈[0,1]

∣∣∣∣∫ x

0

K±jk(x, t)eibkλt dt

∣∣∣∣ ≤ δ(e−bkImλ + 1), |λ| > M, (5.10)

where j, k ∈ {1, 2}. In particular, for any h ≥ 0, one has

supQ∈K F [K±jk](λ)→ 0 as |λ| → ∞ and λ ∈ Πh.

Let us demonstrate Corollary 5.9 and Lemma 5.10 for concrete examples of compacts.

Corollary 5.11. Let K be a ball either in the Sobolev spaces W s
1 [0, 1] with s ∈ R+, in the Lipschitz

space Λα[0, 1] with α ∈ (0, 1], or in the space V [0, 1] of functions of bounded variation. Then the
relations (5.9) and (5.10) hold true uniformly in Q ∈ K.

Remark 5.12. Let us present a simple example of a non-compact set in Lp[0, 1] for which the
uniform relation (5.8) is violated. Define the following set of functions

G := {gµ(x) := g0(x)e−iµx : µ ∈ R},

where g0 ∈ Lp[0, 1] is such that c0 :=
∫ 1

0
g0(t) dt > 0. It is clear that

F [gµ](µ) ≥
∣∣∣∣∫ 1

0

g0(t)e−iµteiµt dt

∣∣∣∣ = c0 6= 0 and lim
|λ|→∞

F [gµ](λ) = 0. (5.11)

The last relation in (5.11) is satisfied not uniformly on G. Moreover, inequality (5.6) holds on sets
Igµ,δ = Z \ (µ − Nδ, µ + Nδ) that depend on gµ, and their complements "tend to infinity" when
µ → ∞, but have uniformly bounded "sizes": card(Z \ Igµ,δ) ≤ 2Nδ . We are indebted to V.P.
Zastavnyi who informed us about this example.

6 Stability property of eigenvalues

6.1 Uniform localization of spectrum

In this subsection we will obtain a version of the asymptotic formula (4.14) which is uniform with
respect to Q ∈ K, where K is either a compact set in L1([0, 1];C2×2) or K = U2×2

p,r for p ∈ (1, 2].
Recall that A is the matrix defined in (4.1) and composed from the coefficients of the linear forms
U1 and U2 as in (1.2) and that B = diag(b1, b2).

First, we enhance Proposition 4.8 to obtain uniform estimates for Q ∈ K, where K is compact in
L1([0, 1];C2×2). The following result generalizes (Sadovnichaya, 2016: Theorem 3) to the case
of Dirac-type systems with regular boundary conditions. Its proof is substantially based on the
representation (4.11), Lemma 5.10, and Rouché’s theorem.
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Proposition 6.1. Let K be compact in L1([0, 1];C2×2) and let Q ∈ K. Let the boundary con-
ditions (1.2) be regular, let ∆(·) := ∆Q(·) be the corresponding characteristic determinant, and
let Λ := ΛQ := {λQ,n}n∈Z be the canonically ordered sequence of its zeros. Moreover, let
Λ0 = {λ0

n}n∈Z be the sequence of zeros of ∆0. Then the following estimates hold:

(i) There exists M = M(K, B,A) > 0, that does not depend on Q, such that

supn∈Z
∣∣λQ,n − λ0

n

∣∣ ≤M, Q ∈ K.

In particular, there exist h = h(K, B,A) > 0 and d = d(K, B,A), that do not depend on Q,
such that ΛQ is an incompressible sequence of density d and lying in the strip Πh.

(ii) For any ε > 0 there exists a constant Nε = Nε(K, B,A) ∈ N, such that

sup|n|>Nε
∣∣λQ,n − λ0

n

∣∣ ≤ ε, Q ∈ K.

If, in addition, the boundary conditions (1.2) are strictly regular, then there exists a constant
ε0 = ε0(B,A), such that for any ε ∈ (0, ε0] the discs D2ε(λQ,n), |n| > Nε, are disjoint and
there exists a constant C̃ε = C̃ε(B,A) > 0, such that

min
|λ−λQ,n|=2ε

|∆Q(λ)| ≥ C̃ε, |n| > Nε, Q ∈ K.

Next we extend Proposition 6.1 to the case K = U2×2
p,r , p ∈ (1, 2]. Part (i) remains valid but the

assumption p > 1 is important. Part (ii) is based on Lemma 5.6 that involves only the classical
Fourier transform Fg without the use of the deep Carleson-Hunt theorem. It remains valid if we
replace the inequality |n| > Nε by an inclusion n ∈ IQ,ε, assuming that the complements of the
sets IQ,ε have uniformly bounded cardinalities for Q ∈ U2×2

p,r .

Proposition 6.2. Let Q ∈ U2×2
p,r for some p ∈ (1, 2] and some r > 0. Moreover, let the boundary

conditions (1.2) be regular, let ∆(·) := ∆Q(·) be the corresponding characteristic determinant, and
let Λ := ΛQ = {λQ,n}n∈Z be a canonically ordered sequence of its zeros. Then the following
statements hold:

(i) There exists a constant M = M(p, r, B,A) > 0, not dependent on Q, such that

supn∈Z
∣∣λQ,n − λ0

n

∣∣ ≤M, Q ∈ U2×2
p,r .

In particular, there exist h = h(p, r,B,A) ≥ 0 and d = d(p, r,B,A) > 0, not dependent on
Q, such that ΛQ is an incompressible sequence of density d lying in the strip Πh.

(ii) For any ε > 0 there exists Nε = Nε(p, r,B,A) ∈ N, that does not depend on Q, and a set
IQ,ε ⊂ Z, such that

|λn − λ0
n| < ε, n ∈ IQ,ε, and card (Z \ IQ,ε) ≤ Nε.

Proposition 6.1 combined with the maximum and minimum principles imply the following uniform
version of the relation |λn − λ̃n| � |∆̃(λn)| that is pivotal for establishing the stability property of
the mapping Q→ ΛQ := {λQ,n}n∈Z.
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Proposition 6.3. Let K be a compact set in L1([0, 1];C2×2) and let Q, Q̃ ∈ K. Moreover, let the
boundary conditions (1.2) be strictly regular, and let ΛQ = {λQ,n}n∈Z and ΛQ̃ = {λQ̃,n}n∈Z be

canonically ordered sequences of zeros of characteristic determinants ∆ := ∆Q and ∆̃ := ∆Q̃,
respectively. Then there exist constants N = N(K, A,B) ∈ N and C = C(K, A,B) ≥ 1, that do
not depend on Q and Q̃, such that the following uniform estimate holds

C−1 |∆Q̃(λQ,n)| ≤ |λQ,n − λQ̃,n| ≤ C |∆Q̃(λQ,n)|, |n| > N.

6.2 Stability property of eigenvalues for Q ∈ Lp

In this section we apply the abstract results from Section 5 to establish the stability of the mapping
Q → ΛQ := {λQ,n}n∈Z in different norms. Proposition 6.3 shows that to this end, it suffices to
evaluate the sequences {∆̃(λn)}n∈Z = {∆Q̃

(
λQ,n

)
}n∈Z when Q runs through either the ball U2×2

p,r

or a compact K in L1([0, 1];C2×2). In turn, these sequences can be easily evaluated by combining
the representation (4.13) and the results of Section 5. For example, the estimate (5.3) implies that

∑
n∈Z

∣∣∣∆Q̃

(
λQ,n

)∣∣∣p′ ≤ Cp,r,B ‖Q− Q̃‖p′p , Q, Q̃ ∈ U2×2
p,r .

Next we enhance and complete Proposition 4.8 in the case of Q ∈ Lp([0, 1];C2×2) with p ∈ [1, 2].
Our first result restricts the set K of potential matrices to be a compact.

Theorem 6.4. Let K be compact in Lp([0, 1];C2×2) for some p ∈ [1, 2], and let Q, Q̃ ∈ K.
Moreover, let the boundary conditions (1.2) be strictly regular, and let ΛQ := {λQ,n}n∈Z and
ΛQ̃ := {λQ̃,n}n∈Z be canonically ordered sequences of zeros of the characteristic determinants

∆(·) := ∆Q(·) and ∆̃(·) := ∆Q̃(·), respectively. Then there exist constants N = N(K, A,B) ∈ N
and C = C(p,K, A,B) > 0, not dependent on Q and Q̃, such that the following estimates hold:∑

|n|>N
|λQ,n − λQ̃,n|

p′ ≤ C ‖Q− Q̃‖p
′

p , p ∈ (1, 2], (6.1)

∑
|n|>N

(1 + |n|)p−2 |λQ,n − λQ̃,n|
p ≤ C ‖Q− Q̃‖pp, p ∈ (1, 2]. (6.2)

If p = 1, then
supQ,Q̃∈K |λQ,n − λQ̃,n| → 0 as n→∞.

In other words, the set of sequences
{{
|λQ,n − λQ̃,n|

}
n∈Z
}
Q,Q̃∈K forms a compact set in c0(Z).

Applying Theorem 6.4 with a compact set K = {Q, 0}, we can complete Proposition 4.8.

Corollary 6.5. Let Q ∈ Lp([0, 1];C2×2) for some p ∈ (1, 2]. Moreover, let the boundary condi-
tions (1.2) be strictly regular and let ∆(·) be the corresponding characteristic determinant. Then
the sequence Λ = {λn}n∈Z of its zeros can be ordered such that the following inequality holds∑

n∈Z

∣∣λn − λ0
n

∣∣p′ +
∑
n∈Z

(1 + |n|)p−2
∣∣λn − λ0

n

∣∣p <∞.
Note that the inclusion {λn − λ0

n}n∈Z ∈ `p
′
(Z) in the case of 2× 2 Dirac systems (−b1 = b2 = 1)

was first obtained in Savchuk & Shkalikov (2014: Theorems 4.3 & 4.5).
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Remark 6.6. Let p = 3/2 and p′ = 3. Moreover, assume that Q̃ = 0 and let Q ∈ Lp be fixed. Note
that

αn := λQ,n − λQ̃,n =
(
(1 + |n|) ln2(1 + |n|)

)−1/3
, n ∈ Z,

satisfies (6.1), but does not satisfy (6.2). Hence, this sequence cannot be a sequence of eigenvalue
deviations of operators L(Q) and L(0) for some Q ∈ Lp. Note that the results of Savchuk &
Shkalikov (2014) do allow it. In fact, inequality (6.2) is generally more restrictive and, hence, leads
to a sharper estimate of the sequence {λQ,n − λQ̃,n}n∈Z than (6.1). For example, inequality (6.2)

implies (6.1) under the general assumption αn = o(n−1/p′) as n→∞.

Next we extend Theorem 6.4 to the case K = U2×2
p,r . As in Proposition 6.2, we cannot select a

universal constant N serving all potentials. Instead, we need to sum over the sets of integers whose
complements have uniformly bounded cardinality.

Theorem 6.7. LetQ, Q̃ ∈ U2×2
p,r for some p ∈ (1, 2] and r > 0. Let the boundary conditions (1.2) be

strictly regular, and let ΛQ = {λQ,n}n∈Z and ΛQ̃ = {λQ̃,n}n∈Z be canonically ordered sequences

of zeros of characteristic determinants ∆ := ∆Q and ∆̃ := ∆Q̃, respectively. Then there exist

constants N ∈ N, C1, C2, C > 0, not dependent on Q and Q̃, and a set I := IQ,Q̃ ⊂ Z, such that
the following estimates hold:

card
(
Z \ IQ,Q̃

)
≤ N, (6.3)

C1

∣∣∣∆Q̃

(
λQ,n

)∣∣∣ ≤ |λQ,n − λQ̃,n| ≤ C2

∣∣∣∆Q̃

(
λQ,n

)∣∣∣ , n ∈ IQ,Q̃, (6.4)

∑
n∈IQ,Q̃

∣∣∣λQ,n − λQ̃,n∣∣∣p′ ≤ C ‖Q− Q̃‖p′p , (6.5)

∑
n∈IQ,Q̃

(1 + |n|)p−2
∣∣∣λQ,n − λQ̃,n∣∣∣p ≤ C ‖Q− Q̃‖pp. (6.6)

Remark 6.8. (i) Observe that the proofs of all results in this section, including the proofs of Theo-
rems 6.4 and 6.7, rely on the Bessel type inequalities (5.3)–(5.4) for the ordinary Fourier transform,
not for its maximal version described in Theorem 5.4, whose proof relies on Theorem 5.1.

(ii) The case of Dirac systems (b1 = −b2 = 1) and Q̃ = 0 has extensively been studied in many re-
cent papers of Sadovnichaya, Savchuk, and Shkalikov by applying a different method. In particular,
the estimate (6.1) was established earlier in Savchuk & Shkalikov (2014: Theorems 4.3 & 4.5) with
a constant C that depends on Q, while estimate (6.5) of Theorem 6.4 with Q̃ = 0 was established
in Savchuk & Sadovnichaya (2018).

(iii) The weighted estimates (6.2) and (6.6), as well as the estimate (6.1), which establish stability
properties of the spectrum under the perturbation Q→ Q̃, are new even for Dirac system.

(iv) L. Rzepnicki (2020) obtained sharp asymptotic formulas for deviations λn − λ0
n = δn + ρn in

the case of Dirichlet BVPs for the Dirac system with Q ∈ Lp([0, 1];C2×2), 1 ≤ p < 2. Namely,
δn is explicitly expressed via Fourier coefficients and Fourier transforms of Q12 and Q21, while
{ρn}n∈Z ∈ `p

′/2(Z), i.e., the convergence to zero is "twice" better than what formula (6.1) guaran-
tees for λn − λ0

n. A similar result was obtained for eigenfunctions.

(v) We mention also the papers (Cascaval et al., 2004), (Clark & Gesztesy, 2006), and (Brown et al.,
2019), where different spectral properties of j-selfadjoint Dirac operators were investigated.
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7 Stability property of eigenfunctions

7.1 Estimates of Fourier transforms of transformation operators

In this subsection we study "Fourier" transforms of the kernels of the corresponding transformation
operators from the representation (3.1) of the form∫ x

0

K±jk(x, t)eiλbkt dt.

Our investigation is motivated by the representation (4.6) for the entries of the fundamental matrix
Φ(·, λ). As distinguished from the considerations of Section 6, here our proofs substantially involve
the deep Carleson-Hunt theorem via the corresponding results of Section 5.

As a first step we study "Fourier" transforms of the auxiliary kernelsRQ from the representation (3.7)
for the kernels of the transformation operators K±Q . Below, we first estimate generalized "Fourier"
transforms with an arbitrary bounded function, instead of the exponential function in the integral.
Recall that αk :=

bj
bj−bk , j = 2/k, k ∈ {1, 2}.

Proposition 7.1. Let Q ∈ L1([0, 1];C2×2) and let

RQ = (Rjk)2
j,k=1 ∈

(
X0

1,1(Ω) ∩X0
∞,1(Ω)

)
⊗ C2×2

be the (unique) solution of the system of integral equations (3.8)–(3.9). Moreover, let x ∈ [0, 1] be
fixed, let f ∈ L∞(R) be such that f(t) = 0 for t /∈ [0, x], and set

Fjk(s; f) := sup u∈[0,s]
v∈[−u,x]

∣∣∣∣∫ u

0

Rjk(s, t)f(t+ v) dt

∣∣∣∣ , s ∈ [0, x], j, k ∈ {1, 2}.

Then the following estimates hold for s ∈ [0, x], k ∈ {1, 2}, and j = 2/k:

Fkk(s; f) ≤ |bk|
∫ s

0

|Qkj(t)|Fjk(t; f) dt,

Fjk(s; f) ≤ |bj | sup u∈[0,s]
v∈[−u,x]

∣∣∣∣αj ∫ u

0

Qjk(αks+ αjt) f(t+ v) dt

∣∣∣∣
+ 2|bjbk| ‖Qjk‖L1[0,s]

∫ s

0

|Qkj(t)|Fjk(t; f) dt.

In particular, one has that the following uniform estimate holds for Q ∈ U2×2
1,r , x ∈ [0, 1], λ ∈ C,

and j, k ∈ {1, 2}

sups∈[0,x]

∣∣∣∣∫ s

0

Rjk(x, t)eiλbkt dt

∣∣∣∣ ≤ Ce(b2−b1)|Imλ|x sups∈[0,x]

∣∣∣∣∫ s

0

Qjk(t)ei(bk−bj)λt dt

∣∣∣∣ , (7.1)

where j = 2/k and C = C(B, r) > 0 does not depend on Q, x, and λ.

Note that (7.1) follows by taking f(t) = eibkλt, t ∈ [0, x], and f(t) = 0, t /∈ [0, x], in the formulas
preceding (7.1). The estimate (7.1) allows us to obtain a similar estimate for the Fourier transforms
of the auxiliary functions P±k from the representation (3.6)–(3.7). Combining them, we arrive at the
following important estimate of the Fourier transforms of the kernels K±Q .
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Theorem 7.2. Let Q ∈ U2×2
1,r for some r > 0 and let K±Q be the kernels of the corresponding

transformation operators from representation (3.1). Then the following uniform estimate holds for
x ∈ [0, 1] and λ ∈ C

2∑
j,k=1

∣∣∣∣∫ x

0

K±jk(x, t)eibkλt dt

∣∣∣∣ ≤ C e2(b2−b1)|Imλ|x∑
j 6=k

sups∈[0,x]

∣∣∣∣∫ s

0

Qjk(t)ei(bk−bj)λt dt

∣∣∣∣ .
This estimate is uniform in the sense that C = C(B, r) > 0 does not depend on Q, x, and λ.

7.2 Stability property of the fundamental matrix

Alongside equation (1.1) we consider similar Dirac-type equations with the same matrix B but with
a different potential matrix Q̃ ∈ L1([0, 1];C2×2). Recall that ΦQ(x, λ) and ΦQ̃(x, λ) denote the

fundamental matrix solutions of the system (1.1) for Q and Q̃, that satisfy the initial conditions
ΦQ(0, λ) = ΦQ̃(0, λ) = I .

We can extend Theorem 7.2 to obtain the stability of "Fourier" transforms of the kernel differences
of the corresponding transformation operators from the representation (3.1). Combining it with
the representations (4.8)–(4.9) in Lemma 4.2 for entries of the deviation ΦQ(·, λ) − ΦQ̃(·, λ) of
the fundamental matrices, we obtain the following uniform estimate that plays an important role in
studying deviations of root vectors and which is of independent interest.

Theorem 7.3. Let Q, Q̃ ∈ U2×2
1,r for some r > 0, and let K±Q and K±

Q̃
be the kernels of the

corresponding transformation operators from representation (3.1) for Q and Q̃, respectively. Then
with some C = C(B, r) > 0 the following uniform estimate holds for x ∈ [0, 1] and λ ∈ C

∣∣∣ΦQ(x, λ)− ΦQ̃(x, λ)
∣∣∣ ≤ 2

2∑
j,k=1

∑
±

∣∣∣∣∫ x

0

(
K±Q −K

±
Q̃

)
jk

(x, t)eibkλt dt

∣∣∣∣
≤ C e2(b2−b1)|Imλ|x∑

j 6=k

(
sups∈[0,x]

∣∣∣∣∫ s

0

(Qjk(t)− Q̃jk(t))ei(bk−bj)λt dt

∣∣∣∣
+‖Q− Q̃‖1 sups∈[0,x]

∣∣∣∣∫ s

0

Q̃jk(t)ei(bk−bj)λt dt

∣∣∣∣) .
Combining Theorems 7.3 and 5.4, we arrive at an important stability (Lipschitz) property of the
fundamental matrix.

Proposition 7.4. Let Q, Q̃ ∈ U2×2
p,r for some p ∈ (1, 2] and r > 0, and let Λ = {µn}n∈Z be an

incompressible sequence of density d lying in the strip Πh. Then for some C = C(p, r, B, h, d) > 0,
not dependent on Q, Q̃, and Λ, the following uniform estimates hold:

∑
n∈Z

∥∥∥ΦQ(·, µn)− ΦQ̃(·, µn)
∥∥∥p′
∞
≤ C ‖Q− Q̃‖p

′

p ,

∑
n∈Z

(1 + |n|)p−2
∥∥∥ΦQ(·, µn)− ΦQ̃(·, µn)

∥∥∥p
∞
≤ C ‖Q− Q̃‖pp.



136 Acta Wasaensia

7.3 Stability property of the eigenfunctions

Now the main results of this section are formulated. The following result for p = 1 general-
izes (Sadovnichaya, 2016: Theorem 4) to the case of Dirac-type systems and extends it for p ∈ (1, 2].
It can be proved by combining results of the previous subsection with Theorem 6.4.

Theorem 7.5. Let K be compact in Lp([0, 1];C2×2) for some p ∈ [1, 2] and let Q, Q̃ ∈ K. Let the
BCs (1.2) be strictly regular and let s ∈ (0,∞]. Then there exist SRVs {fQ,n}n∈Z and {fQ̃,n}n∈Z
of the operators L(Q) and L(Q̃), respectively, such that ‖fQ,n‖s = ‖fQ̃,n‖s = 1, |n| > N , and

that the following relations hold uniformly for Q, Q̃ ∈ K:

supQ,Q̃∈K

∥∥∥fQ,n − fQ̃,n∥∥∥∞ → 0 as |n| → ∞, (7.2)

∑
|n|>N

∥∥∥fQ,n − fQ̃,n∥∥∥p′∞ ≤ C ‖Q− Q̃‖p′p , p ∈ (1, 2], (7.3)

∑
|n|>N

(1 + |n|)p−2
∥∥∥fQ,n − fQ̃,n∥∥∥p∞ ≤ C ‖Q− Q̃‖pp, p ∈ (1, 2]. (7.4)

Here the constants N ∈ N and C > 0 do not depend on Q, Q̃, and s.

Next we extend Theorem 7.5 to the case K = U2×2
p,r . As in Theorem 6.7, we cannot select a uni-

versal constant N serving all potentials. Instead, we need to sum over the sets of integers, whose
complements have uniformly bounded cardinality.

Theorem 7.6. Let Q, Q̃ ∈ U2×2
p,r for some p ∈ (1, 2] and some r > 0. Let the BCs (1.2) be strictly

regular and let s ∈ (0,∞]. Then there exist SRVs {fQ,n}n∈Z and {fQ̃,n}n∈Z of the operators L(Q)

and L(Q̃), respectively, and a set IQ,Q̃ ⊂ Z, such that the following uniform relations hold for

Q, Q̃ ∈ U2×2
p,r :

‖fQ,n‖s = ‖fQ̃,n‖s = 1, n ∈ IQ,Q̃, and card
(
Z \ IQ,Q̃

)
≤ N,

∑
n∈IQ,Q̃

∥∥∥fQ,n − fQ̃,n∥∥∥p′∞ ≤ C ‖Q− Q̃‖p′p ,
∑

n∈IQ,Q̃

(1 + |n|)p−2
∥∥∥fQ,n − fQ̃,n∥∥∥p∞ ≤ C ‖Q− Q̃‖pp.

Here the constants N ∈ N and C > 0 do not depend on Q, Q̃, and s.

Applying Theorem 7.5 with a two-point compact K = {Q, 0}, we arrive at the following stability
property of eigenfunctions demonstrating the core of both Theorems 7.5 and 7.6.

Corollary 7.7. Let Q ∈ Lp([0, 1];C2×2), p ∈ (1, 2], and let the BCs (1.2) be strictly regular.
Then SRVs {fn}n∈Z and {f0

n}n∈Z of the operators L(Q) and L(0) can be chosen asymptotically
normalized in Lp

′
([0, 1];C2) and satisfying the following uniform estimates∑

n∈Z

∥∥fn − f0
n

∥∥p′
∞ +

∑
n∈Z

(1 + |n|)p−2
∥∥fn − f0

n

∥∥p
∞ <∞.
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The following case shows that in some cases we can relax the compactness condition and even
boundedness of K and sum over all n ∈ Z in (7.3)–(7.4).

Proposition 7.8. Let Q12 = Q̃12 = 0 and Q21, Q̃21 ∈ Lp[0, 1] for some p ∈ (1, 2]. Let the
BCs (4.18) be strictly regular with b = 0. Then the eigenvalues of the operators L(Q) and L(Q̃) are
simple and separated, and there exist systems {fn}n∈Z and {f̃n}n∈Z of their eigenfunctions, both
normalized in C([0, 1];C2), such that the following uniform estimates hold:

∑
n∈Z

∥∥∥fn − f̃n∥∥∥p′
∞
≤ C ‖Q− Q̃‖pp, (7.5)

∑
n∈Z

(1 + |n|)p−2
∥∥∥fn − f̃n∥∥∥p

∞
≤ C ‖Q− Q̃‖p

′

p . (7.6)

These estimates are uniform in the sense that C = C(p,B,A) > 0 does not depend on Q and Q̃.

Remark 7.9. If Q12 = 0, b = 0, and a = 1 in the BCs (4.18), then the sequence of eigenvalues of
the operator L(Q) is the union of two arithmetic progressions with one of them being the sequence
µn = 2(1− b2/b1)πn, n ∈ Z. The corresponding eigenfunctions can be expressed explicitly via the
Fourier coefficients ∫ x

0

Q21(t)eiµnt dt and
∫ 1

0

Q21(t)eiµnt dt.

Hence Proposition 7.8 shows that the stability properties (7.5)–(7.6) of the eigenfunctions of the
operator L(Q) are equivalent to the abstract inequalities (5.3)–(5.4) from Theorem 5.4 with the
sequence {µn}n∈Z being an arithmetic progression.
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COMPLETENESS AND MINIMALITY OF
EIGENFUNCTIONS AND ASSOCIATED FUNCTIONS
OF ORDINARY DIFFERENTIAL OPERATORS

Manfred Möller

Dedicated to Seppo Hassi on the occasion of his 60th birthday

1 Introduction

One of the oldest and most important results in operator theory is that a selfadjoint operator with
compact resolvent in a Hilbert gives rise to an orthogonal basis of eigenvectors. This property is
extensively used in the Sturm-Liouville theory. If the operator is not selfadjoint, then there may
be biorthogonal bases of the operator and its adjoint, but such bases are not guaranteed. There is
some substantial literature especially regarding Sturm-Liouville problems, including operators with
eigenvalue parameter dependent boundary conditions.

Often, properties of the spectra of quite special cases are considered in detail, see, e.g., (Aliyev &

Guliyeva, 2018; Aliyev & Namazov, 2017; Binding & Browne, 1995; Guliyev, 2019). Such proper-
ties of spectra are then used to prove minimality or basisness of a subsystem of eigenfunctions and
associated functions, see, e.g., (Aliyev, 2007; Aliev & Dun’yamalieva, 2015; Kerimov & Mirzoev,
2003; Namazov, 2017). Expansion theorems predate these results, see Schneider (1974), Walter
(1973), or the more recent result on completeness in Allahverdiev (2005). Shkalikov (1983) de-
vised a linearization method for differential operator polynomials in the eigenvalue parameter and
he proved completeness and minimality of the eigenvectors and associated vectors of the linearized
system. However, the degree of this operator polynomial equals the order of the differential equation
and his method is therefore not applicable to the differential operators studied in the current note.

For a Banach space H , Shkalikov (2019) starts with bases or complete and minimal systems in
H ⊕ CN to give conditions when co-finite subsystems of projections onto H are bases or complete
and minimal systems in H . In Möller (2020) and in this note B-biorthogonality for a bounded
linear operator from a Banach space E to a Banach space F will be used, where E is densely and
continuously embedded in the space H , see Section 2 for more details. This has the advantage
that the general results of Mennicken & Möller (2003) for arbitrary Birkhoff regular n-th order
differential operators can be applied. In particular, Birkhoff regularity guarantees the existence of
co-finite systems which are minimal and complete in H , and more or less explicit criteria for the
choice of such systems can be given.

For the sake of completeness, the preparation needed and presented in Möller (2020) will be repeated
here. The outline of the contents is as follows. In Section 2 notation is introduced and the abstract
functional analytic theorem on completeness and minimality is proved. In Section 3 it is shown how
the main result, Theorem 2.6, can be applied to an n-th order ordinary Birkhoff regular differential
operator with boundary conditions which may depend on λ linearly. In Section 4 the case of second
order differential equations with separable boundary conditions is discussed. A general result is ob-
tained when exactly one boundary condition depends on λ, whereas a positive result is also provided
for a special case when both boundary conditions depend on λ.
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2 Complete and minimal systems

2.1 Minimality

Let E, F , and H be infinite-dimensional Banach spaces such that E is a dense subset of H with
continuous embedding E ↪→ H . The dual spaces of E, F , H are denoted by E′, F ′, H ′ with
corresponding bilinear forms 〈 , 〉. The notation 〈 , 〉E for the bilinear form in E×E′, for example,
may also be used.

Definition 2.1. A sequence (wi)
∞
i=1 in the Banach space H is called minimal in H if

wj 6∈ span {wi : i ∈ N, i 6= j} for all j ∈ N.

The sequence (wi)
n
i=1 in H is called complete in H if

span {wi : i ∈ N} = H.

Definition 2.2. Let B ∈ L(E,F ). Two sequences (yi)
∞
i=1 in E and (vi)

∞
i=1 in F ′ are called B-

biorthogonal if
〈Byi, vj〉F = δij , i, j ∈ N. (2.1)

When the operator B is clear from the context, the notion B-biorthogonal may be shortened to
biorthogonal.

Let F be decomposed as F1 × F2 where F1 is a Banach space and F2 is a finite-dimensional space
of dimension κ, where κ = 0 is allowed. Then the operator B from E to F can be decomposed as

B =

(
B1

B2

)
,

where Bl ∈ L(E,Fl), l = 1, 2. Furthermore it is assumed that B1 has a continuous extension
B0 ∈ L(H,F1). With respect to the decomposition F ′ = F ′1 × F ′2, let vi =: (vi,1, vi,2) for i ∈ N.

Theorem 2.3 (Möller (2020: Theorem 1)). Assume that the sequences (yi)
∞
i=1, yi ∈ E, and (vi)

∞
i=1,

vi ∈ F ′, are B-biorthogonal. If span {v1,2, . . . , vκ,2} = F ′2, then (yi)
∞
i=κ+1 is minimal in H .

2.2 Completeness

For an operator S in a Banach space, its adjoint will be denoted by S∗.

Proposition 2.4. Assume that span {v1,2, . . . , vκ,2} = F ′2 and that (yi)
∞
i=1 is complete in H . Then

there is an integer N with 1 ≤ N ≤ κ+ 1 such that, after possibly permutating the indices 1, . . . , κ,
the system (yi)

∞
i=N is minimal and complete in H .

Proof. If (yi)
∞
i=κ+1 is complete in H , then the statement holds for N = κ + 1, since (yi)

∞
i=κ+1 is

also minimal in H by Theorem 2.3. If (yi)
∞
i=κ+1 is not complete in H , then

span {yi : i ∈ N, i ≥ κ+ 1}
H

$ H = span {yi : i ∈ N}
H
.
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Therefore it may be assumed without loss of generality that

yκ 6∈ span {yi : i ∈ N, i ≥ κ+ 1}
H
.

It is clear that also (yi)
∞
i=κ is minimal in H . If (yi)

∞
i=κ is not complete in H , then this procedure is

repeated up to an index N with 2 ≤ N ≤ κ+ 1 which gives that (yi)
∞
i=N is minimal and complete

in H , or up to N = 1 which gives that (yi)
∞
i=N is minimal in H . But for N = 1 the system (yi)

∞
i=1

is complete in H by assumption, and the proof is complete.

Proposition 2.4 states a sufficient condition under which the removal of at most κ terms from the
sequence results in the remaining sequence to be minimal and complete. However, the number of
terms to be removed is not known, and therefore sufficient conditions will be found such that this
number is exactly κ. Let

Ẽ := span {yi : i ∈ N}
E
, B̃1 := B1|Ẽ , B̃2 := B2|Ẽ , and B̃ :=

(
B̃1

B̃2

)
.

Proposition 2.5. Let the assumptions of Proposition 2.4 be satisfied and let N be the number in the
statement of that proposition. Then B̃∗2 is injective on span {v1,2, . . . , vN−1,2}.

Proof. Of course, we only need to consider the case N > 1. Assume the statement to be false.
Replacing y1, . . . , yN−1 and v1, . . . , vN−1 with suitable linear combinations thereof such that (2.1)
remains true, it may be assumed without loss of generality that B̃∗2v1,2 = 0. Then

〈B̃2yi, v1,2〉 = 〈yi, B̃∗2vi,2〉 = 0, i ∈ N,

and (2.1) would give

δi,1 = 〈B̃yi, v1〉 = 〈yi, B̃∗0v1,1〉Ẽ = 〈yi, B̃∗0v1,1〉H , i ∈ N.

But, since (yi)
∞
i=N is complete in H , this would lead to B̃∗0v1,1 = 0 and 1 = 〈y1, B̃

∗
0v1,1〉H , a

contradiction.

Consequently, under the assumptions of Proposition 2.4, for N in Proposition 2.4 to be κ + 1 it is
necessary that B̃∗2 is injective or, equivalently, that B̃2 is surjective.

Since (yi)
∞
i=N is minimal and complete in H , there exists a unique sequence (wi)

∞
i=N in H ′ such

that
〈yi, wj〉H = δi,j , i, j ≥ N. (2.2)

Theorem 2.6. Assume that span {v1,2, . . . , vκ,2} = F ′2, that the sequence (yi)
∞
i=1 is complete in H ,

that B2(span {yi : i ∈ N}) = F2, and that R(B∗2) ∩H ′ = {0}. Then (yi)
∞
i=κ+1 is complete in H .

Proof. By Proposition 2.4, the system (yi)
∞
i=N is minimal and complete in H . In particular, Ẽ

is dense in H . Then it is clear that with B1 also B̃1 has a continuous extension B̃0 to H and that
B̃0 = B0. Furthermore, B̃2 andB2 are surjective, which implies that B̃∗2 andB∗2 are injective. Hence
there is a one-to-one identification of elements in R(B̃∗2) with elements in R(B∗2). But since H ′ is a
subspace of Ẽ′ as well as E′, the assumption R(B∗2) ∩H ′ = {0} gives that R(B̃∗2) ∩H ′ = {0}.
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From (2.1) and (2.2) it follows that

〈yi, B̃∗vj − wj〉 = 0, i, j ≥ N.

The completeness of (yi)
∞
i=1 in Ẽ and the biorthogonality (2.1) imply that B̃∗vj − wj is a linear

combination of B̃∗vl, l = 1, . . . , N − 1. Therefore

B̃∗vj − wj =
N−1∑
l=1

〈yl, B̃∗vj − wj〉B̃∗vl = −
N−1∑
l=1

〈yl, wj〉B̃∗vl, j ≥ N,

which gives

B̃∗2vj,2 +
N−1∑
l=1

〈yl, wj〉B̃∗2vl,2 = wj − B̃∗0vj,1 −
N−1∑
l=1

〈yl, wj〉B̃∗0vl,1 ∈ H ′, j ≥ N.

Then R(B̃∗2) ∩H ′ = {0} and the injectivity of B̃∗2 show that

vj,2 +
N−1∑
l=1

〈yl, wj〉vl,2 = 0,

which is impossible when N ≤ j ≤ κ because v1,2, . . . , vκ,2 are linearly independent. Therefore
N = κ+ 1.

3 The differential operator

Let a < b be real numbers. Recall the Sobolev space

W k
p (a, b) = {y ∈ Lp(a, b) : y(i) ∈ Lp(a, b), i = 1, . . . , k}, p ∈ (1,∞), k ∈ N,

where the derivative is taken in the sense of distributions, see, e.g., (Mennicken & Möller, 2003:
Section 2.1). The vector space W k

p (a, b) becomes a Banach space when equipped with the norm
‖ ‖p,k, defined by

‖y‖p,k =
k∑
i=0

‖y(i)‖p, y ∈W k
p (a, b),

where ‖ ‖p is the norm in Lp(a, b). The dual of the Banach space W k
p (a, b) will be identified with

a space of distributions W−kp′ [a, b], where 1/p+ 1/p′ = 1, and the corresponding bilinear form will
be denoted by 〈 , 〉p,k, see, e.g., (Mennicken & Möller, 2003: Section 2.1).

Now let n ≥ 2 and define

Ky =

n∑
i=0

kiy
(i)

with ki ∈ W i
p′(a, b) for i = 1, . . . , n − 1 and k0 ∈ Lmin(p,p′)(a, b). It will always be assumed that

kn is a non-zero constant. The differential operator

LD(λ)y := Kη − λy, y ∈Wn
p (a, b), (3.1)
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satisfies LD(λ) ∈ L(Wn
p (a, b), Lp(a, b)). Together with (3.1) two-point boundary conditions

LR(λ)y :=

(n−1∑
i=0

w
(0)
ki (λ)y(i−1)(a) +

n−1∑
i=0

w
(1)
ki (λ)y(i−1)(b)

)n
k=1

= 0 (3.2)

are considered, where the w(j)
ki are polynomials of degree at most 1, i. e., they are constant or poly-

nomials of degree 1. It is assumed that for each k = 1, . . . , n at least one of the 2n polynomials
w

(0)
ki , w

(1)
ki , i = 1, . . . , n, is not the zero polynomial. Clearly, LR(λ) ∈ L(Wn

p (a, b),Cn).

For λ ∈ C define
L(λ) := (LD(λ), LR(λ)). (3.3)

It is clear that there are bounded operators

A,B ∈ L(Wn
p (a, b), Lp(a, b)× Cn) such that L(λ) = A+ λB, λ ∈ C. (3.4)

Since the dual spaces are defined via sesquilinear forms, the adjoint operator has the representation

L(λ)∗ = A∗ + λB∗, λ ∈ C.

In order to define Birkhoff regularity some notation is introduced first. For positive integers r let
Mr(C) be the set of r × r matrices with entries in C and put

W (j)(λ) =
(
w

(j)
ki (λ)

)n
k,i=1

, j = 0, 1,

W (λ) = (W (0)(λ),W (1)(λ)),

C0(µ) = diag(1, µ, . . . , µn−1) ∈Mn(C),

lν = deg
[
eT
ν

(
W (0)(µn)C0(µ),W (1)(µn)C0(µ)

)]
, ν = 1, . . . , n,

(3.5)

where deg denotes the degree as a vector polynomial in the variable µ and eν is the ν-th standard
basis vector in Cn. Furthermore, let

C1 =


1 . . . 1

k
−1/n
n ω1 . . . k

−1/n
n ωn

...
...

k
(n−1)/n
n ωn−1

1 . . . k
(n−1)/n
n ωn−1

n

 , (3.6)

where

ωj = exp

{
2πi(j − 1)

n

}
, j = 1, . . . , n.

Then
diag(µ−l1 , . . . , µ−ln)W (j)(µl)C0(µ)C1 = W

(j)
0 +O(µ−1), j = 0, 1.

Clearly, the constants lν defined in (3.5) satisfy 0 ≤ lν ≤ 2n − 1. Without loss of generality it will
be assumed that lν ≤ lν+1 for ν = 1, . . . , n− 1. Let

κ := #{ν ∈ {1, . . . , n} : lν ≥ n}. (3.7)

This means that for ν > n − κ at least one entry of the ν-th row of the n × 2n matrix W (λ)

is not constant, whereas for ν ≤ n − κ, all entries of the ν-th row of W (λ) are constant. Let
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l̂ν ∈ {0, . . . , n− 1} be such that

lν = l̂ν mod (n), ν = 1, . . . , n.

Clearly, lν = l̂ν for ν ≤ n− κ and lν = l̂ν + n for ν > n− κ.

If n = 2m is even, then let L be the set of all n × n diagonal matrices with m consecutive entries
1 in the diagonal, in a cyclic arrangement, whereas the remaining entries are 0. If n = 2m + 1 is
odd, then let L be the set of all n × n diagonal matrices with m or m + 1 consecutive entries 1 in
the diagonal, in a cyclic arrangement, whereas the remaining entries are 0. Let

B := {W (0)
0 Λ +W

(1)
0 (In − Λ) : Λ ∈ L}. (3.8)

The problem (3.1)-(3.2) is called Birkhoff regular if det Φ 6= 0 for all Φ ∈ B. This definition of
Birkhoff regularity is a special case of the characterization of Birkhoff regularity in Mennicken &

Möller (2003: Theorem 7.3.2). Then it follows from Mennicken & Möller (2003: Theorem 4.3.9)
that the resolvent set of L is not empty, which implies the following result.

Proposition 3.1. If the problem (3.1)-(3.2) is Birkhoff regular, then the spectrum σ(L) of L consists
of a sequence (λk)∞k=1 of eigenvalues of finite multiplicity.

Definition 3.2. (i) An ordered set {y0, y1, . . . , yh} in E is called a chain of an eigenvector and
associated vectors (CEAV) of L at λ0 ∈ C if y0 6= 0 and if the vector polynomial

y :=
h∑
l=0

(· − λ0)lyl

is such that the vector polynomial Ly has a zero at λ0 of multiplicity ν(y) ≥ h+ 1.
(ii) Let y0 ∈ N(L(λ0)) \ {0}. Then ν(y0) denotes the maximum of all multiplicities ν(y), where y
is as in part (i) with y(λ0) = y0.
(iii) A system {y(j)

l : 1 ≤ j ≤ r, 0 ≤ l ≤ mj − 1} is called a canonical system of eigenvectors and
associated vectors (CSEAV) of L at λ0 if

(a) {y(1)
0 , . . . , y

(r)
0 } is a basis of N(L(λ0));

(b) {y(j)
0 , . . . , y

(j)
mj−1} is a CEAV of L at λ0, j = 1, . . . , r;

(c) mj = max{ν(y) : y ∈ N(L(λ0)) \ span {y(k)
0 : k < j}}, j = 1, . . . , r.

The following two propositions are special cases of results in Mennicken & Möller (2003: Section
1.10).

Proposition 3.3. Assume that L is Birkhoff regular and let λ0 ∈ σ(L). Let y0, . . . , yk be a CEAV of
L at λ0. Then

(A+ λ0B)y0 = 0, (A+ λ0B)yl+1 = −Byl, l = 0, . . . , k − 1.

For each eigenvalue there exist biorthogonal canonical systems of eigenvectors and associated vec-
tors of L and L∗.
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Proposition 3.4. Assume that the differential operator L is Birkhoff regular and let the CSEAV

{y(j)
l : 1 ≤ j ≤ r, 0 ≤ l ≤ mj − 1}

of L at λ0 be given. Then there exists a CSEAV

{v(j)
l : 1 ≤ j ≤ r, 0 ≤ l ≤ mj − 1}

of L∗ at λ0 such that these two systems are biorthogonal, i.e.,

〈By(i)
l , v

(j)
mj−1−k〉 = δij δlk, 1 ≤ i ≤ r, 0 ≤ l ≤ mi − 1, 1 ≤ j ≤ r, 0 ≤ k ≤ mj − 1.

Before formulating the main result for differential operators, more notation is needed. Writing

W (λ) =: W0 + λW1, (3.9)

see (3.5), let Ŵ1 be the κ × 2n submatrix of W1 consisting of the last κ rows of W1. Furthermore,
for y ∈Wn

p (a, b) let Ŷ be the 2n-vector

Ŷ := (y(a), . . . , y(n−1)(a), y(b), . . . , y(n−1)(b)).

The obvious modification for indexed functions applies. A representation of the adjoint operator
L∗(λ) is given in Mennicken & Möller (2003: Theorem 6.5.1), namely,

L∗(λ)(u, d) =

n∑
i=0

(−1)i
(
kiu
)(i)
e
− λue + LR

∗
(λ)d, u ∈ Lp′(a, b), d ∈ Cn,

where ue is the canonical extension of u to R by defining u = 0 on R \ [a, b], and where

LR
∗
(λ) =

n∑
i=1

(−1)i−1

((
W (0)(λ)ei

)T
δ(i−1)
a +

(
W (1)(λ)ei

)T
δ

(i−1)
b

)
with the Dirac distributions δc at c for c = a and c = b.

Theorem 3.5. Assume that the differential operator L defined by (3.3) with the representation (3.4)
is Birkhoff regular and that (yi)

∞
i=1 is a sequence of elements in Wn

p (a, b) which consists of CSEAVs
at all eigenvalues of L. Let (vi)

∞
i=1 be a corresponding sequence of CSEAVs (at all eigenvalues of

L∗) such that, under suitable indexing, the biorthogonality relation (2.1) holds. With respect to the
decomposition Lp(a, b)⊕ Cn−κ ⊕ Cκ write vi = (ui, di,1, di,2). Further assume that

span {d1,2, . . . , dκ,2} = Cκ and span {Ŵ1Ŷi : i ∈ N} = Cκ.

Then the system (yi)
∞
i=κ+1 is minimal and complete in Lp(a, b).

Proof. Note first that the existence of the sequence (vi)
∞
i=1 in the statement of the theorem is guar-

anteed by Proposition 3.4.

Putting E = W k
p (a, b), F = Lp(a, b)⊕ Cn, F1 = Lp(a, b)⊕ Cn−κ, F2 = Cκ, and H = Lp(a, b),

it follows in the notation of Section 2 that B1y = (−y, 0), y ∈ E, has a continuous extension B0

onto H given by B0y = (−y, 0). By (Mennicken & Möller, 2003: Theorem 8.8.3 & Remark 8.8.4)
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each function in f ∈ Lp(a, b) can be represented by a series
∑∞
j=1 fj , where each fj is a finite

linear combination of eigenfunctions and associated functions of L. Therefore the eigenfunctions
and associated functions of L form a complete system in Lp(a, b). The operator B2 is represented
by B2y = Ŵ1Ŷ , y ∈ E. Thus the operator B∗2 is represented by the coefficient of λ in (LR)∗(λ)

restricted to the last κ components of Cn. Then (3.11) shows thatR(B∗2) consists of linear combina-
tions of Dirac distributions and their derivatives, and therefore R(B∗2) ∩H ′ = {0}. An application
of Theorems 2.3 and 2.6 completes the proof.

The condition span {Ŵ1Ŷi : i ∈ N} = Cκ is a very technical one and it will not be considered any
further in this note in the general case. The case n = 2 will be discussed in the next section.

4 Completeness and minimality for second order differential
operators

In general, the assumptions of Theorem 3.5 are not easy to verify. Here we consider the case n = 2

with separable boundary conditions. For convenience, and possibly deviating from the arrangement
of the rows ofW (λ) in Section 3, it will be assumed that the first boundary condition is at a, whereas
the second boundary condition is at b. Therefore

W (0)(λ) =

(
w

(0)
11 (λ) w

(0)
12 (λ)

0 0

)
, W (1)(λ) =

(
0 0

w
(1)
21 (λ) w

(1)
22 (λ)

)
,

where neither W (0) nor W (1) is identically zero. If, say, W (0)(λ0) = 0 for some λ0 ∈ C, then one
could factor out λ− λ0 from W (0), which would be a rather artificial factor in the boundary matrix.
Hence it is reasonable to require that W (0)(λ) 6= 0 and W (1)(λ) 6= 0 for all λ ∈ C. In particular,
the boundary condition at a is an initial condition, and therefore each eigenvalue has geometric
multiplicity 1. Furthermore, with the notation as in (3.9),

W
(0)
0 =

(
α0,0 α0,1

0 0

)
C1, W

(1)
0 =

(
0 0

α1,0 α1,1

)
C1,

for complex numbers αi,j such that (αi,0, αi,1) 6= (0, 0) for i = 0, 1. Assuming the Sturm-Liouville
equation, i.e., k2 = −1, for simplicity and taking k−1/2

2 = i, it follows that

C1 =

(
1 1

i −i

)
,

see (3.6). Therefore,

W
(0)
0 C1 =

(
α0,0 + iα0,1 α0,0 − iα0,1

0 0

)
, W

(1)
0 C1 =

(
0 0

α1,0 + iα1,1 α1,0 − iα1,1

)
,

and L = {diag(1, 0), diag(0, 1)}. Hence B as defined in (3.8) consists of the two matrices(
α0,0 + iα0,1 0

0 α1,0 − iα1,1

)
,

(
0 α0,0 − iα0,1

α1,0 + iα1,1 0

)
.
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Assuming further for simplicity that all coefficients of wki are real, it follows that all problems in
this section are Birkhoff regular. For general k2 and αi,j it is obviously easy to determine when the
problem is Birkhoff regular.

Now the cases κ = 0, κ = 1, and κ = 2 will be considered separately; for notation see Theorem 3.5
and (3.7). It will always be assumed that k2 = −1 and that all wki have real coefficients.

4.1 The case κ = 0

This case is well known, it is just included for completeness. Here the assumption on the span is
void, and therefore

Theorem 4.1. If L is Birkhoff regular and if the boundary conditions are independent of the eigen-
value parameter, then the system (yi)

∞
i=1 is minimal and complete in Lp(a, b).

4.2 The case κ = 1

Since the geometric multiplicity of each eigenvalue is 1, each CSEAV consist of one CEAV, whose
length is the algebraic multiplicity of the corresponding eigenvalue. Hence each yi is therefore an
element in such a chain, and we call yi a terminal function if it is the last element of such a CEAV.
Note that a terminal function yi is an eigenfunction if the eigenvalue is simple, and an associated
function otherwise.

Theorem 4.2. Assume that k2 = −1, that k1 = 0, and that L is Birkhoff regular. If y1 is a terminal
function or if d1,2 6= 0, then the system (yi)

∞
i=2 is minimal and complete in Lp(a, b).

Proof. The minimality has been shown in Möller (2020: Theorem 4). Since κ = 1, it therefore
suffices to prove that Ŵ1Y 6= 0 whenever y is an eigenfunction. Hence by proof of contradiction,
assume that Ŵ1Ŷ = 0. Then Ŵ1 = eT

ιW1, where ι = 1 if the λ-dependent boundary condition
is at a and ι = 2 otherwise. Furthermore, W (λ)Ŷ = 0 for the eigenfunction y implies that also
eT
ιW0Ŷ = 0. But eT

ιW0 and eT
ιW1 are linearly independent by the feasibility assumption, which

means that eT
ιW0Ŷ and eT

ιW1Ŷ would be linearly independent linear combinations of y and y′ at
the corresponding endpoint. Hence both y and y′ would be 0 at that endpoint, which contradicts
y 6= 0.

4.3 The case κ = 2

Since this note is a continuation of the work in Möller (2020), only the special case

y′′ + λy = 0, (4.1)

αy′(0)− λy(0) = 0, (4.2)

βy(1)− λy′(1) = 0, (4.3)

with α, β ∈ R \ {0} will be considered.
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Theorem 4.3. Let (yi)
∞
i=1 be a sequence of elements in Wn

p (a, b) which consists of CSEAVs at all
eigenvalues of (4.1)–(4.3). If y1 and y2 are terminal functions corresponding to sufficiently large
real eigenvalues, then the system (yi)

∞
i=3 is minimal and complete in Lp(a, b).

Proof. The minimality statement is Möller (2020: Theorem 5). It was also shown there, and it is
easy to see, that solutions of (4.1) and (4.2) are multiples of

u(x, λ) = α cos
√
λx+

√
λ sin

√
λx

and that λ is an eigenvalue of (4.1)–(4.3) if and only if λ satisfies

(αβ − λ2) cos
√
λ+ (β + αλ)

√
λ sin

√
λ = 0. (4.4)

It is clear that

Ŵ1Ŷ = −
(
y(0)

y′(1)

)
.

It has also been shown that

u′(1, λ) = −α
√
λ sin

√
λ+ λ cos

√
λ = β

α2 + λ

β + αλ
cos
√
λ,

whereas clearly u(0, λ) = α. From (4.4) we conclude for eigenvalues λ that

[(αβ − λ2)2 + λ(β + αλ)2] cos2
√
λ = λ(β + αλ)2,

and therefore

(u′(1, λ))2 =
β2λ(α2 + λ)2

(αβ − λ2)2 + λ(β + αλ)2
,

which shows that Ŵ1Yi and Ŵ1Yj are linearly independent for infinitely many pairs of eigenfunc-
tions yi and yj . In particular, span {Ŵ1Ŷi : i ∈ N} = C2.
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PARTIALLY OVERLAPPING EVENT WINDOWS AND TESTING
CUMULATIVE ABNORMAL RETURNS IN FINANCIAL EVENT
STUDIES

Seppo Pynnönen

Dedicated to Professor Seppo Hassi on the occasion of his 60th birthday

1 Introduction

In financial event studies the interest is to evaluate the effect of an economic event on the value
of a firm. For this evaluation data available from financial markets can be successfully used with
appropriate statistical testing methodology. The analyses are mainly based on stock or other asset
returns. Campbell, Lo & MacKinlay (1997: Chapter 4) is an excellent introduction to financial event
studies and related statistical methods.

Instead of using returns as such, standardizing them by respective standard deviations homogenizes
data and improves testing performance. Because of this improvement, standardized return based
tests by Patel (1976) and Boehmer, Musumeci & Poulsen (1991) (BMP) have gained popularity over
conventional non-standardized tests in testing event effects on mean security price performance. Har-
rington & Shrider (2007) found that in a short-horizon testing of abnormal returns (i.e., systematic
deviation from expected behavior), one should always use methods that are robust to cross-sectional
variation in the true abnormal returns; for a discussion of true abnormal returns, see (Harrington &
Shrider, 2007). They found that BMP is a good candidate for a robust, parametric test in conventional
event studies.*

However, a major problem in statistical tests of returns is that the returns are not normally dis-
tributed, see (Fama, 1976). Therefore, not surprisingly, non-parametric rank tests introduced by
Corrado (1989; 2011), Corrado & Zivney (1992), Campbell & Wasley (1993), and Kolari & Pyn-
nonen (2011), among others, dominate parametric tests both in terms of better size and power, see
e.g., (Corrado, 1989; Corrado & Zivney, 1992; Campbell & Wasley, 1993; Kolari & Pynnonen,
2010; 2011; Luoma, 2011). Furthermore, the rank tests of Corrado & Zivney (1992) and Kolari &
Pynnonen (2011) that utilize event period re-standardized returns have proven to be robust to event-
induced volatility (Kolari & Pynnonen, 2010; 2011), cross-correlation due to event day clusterings
(Kolari & Pynnonen, 2010), and autocorrelation (Kolari & Pynnonen, 2011). These are consistent
with the view stated in the epilogue of Lehmann (2006: p. v): "Rank tests apply often to relatively
simple solutions, such as one-, two-, and s-sample problems, and testing for independence and ran-
domness, but for these situations they are often the method of choice." Moreover, the results of rank
tests are invariant to monotone transformations of the underlying returns, that is, whether the returns
are defined as simple, continuously compounded (log-returns), or gross-returns. The existing rank
based tests, however, are not robust to cross-sectional correlation if the event days are partially over-

*We define conventional event studies as those focusing only on mean stock price effects. Other types of
event studies include (for example) the examination of return variance effects (Beaver, 1968; Patel, 1976),
trading volume (Beaver, 1968; Campbell & Wasley, 1996), accounting performance (Barber & Lyon, 1997),
and earnings management procedures (Dechow, Sloan & Sweeney, 1995; Kothari, Leone & Wasley, 2005).
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lapping. That is, when events in calendar time are scattered within an event window more or less
randomly rather than clustered on the same calendar day, see (Kolari & Pynnonen, 2010). The cur-
rent paper aims to fill this gap in the non-parametric event study testing. Kolari, Pape & Pynnonen
(2018) have generalized existing parametric cross-sectional correlation robust testing towards this
direction.

The rest of the paper is organized as follows. Section 2 reviews some related key literature. Section 3
defines the main concepts and derives some distributional properties of rank statistics. Section 4
introduces the new transformed rank test. Section 5 reports simulation results and Section 6 contains
conclusions.

2 Review of related literature

Patell and BMP parametric tests apply straightforwardly for testing cumulative abnormal returns
(CARs) over multiple day windows. With the correction suggested by Kolari & Pynnonen (2010)
these tests are useful also in the case of completely clustered event days, and with the correction
suggested by Kolari, Pape & Pynnonen (2018) when the event days are partially clustered. By
construction the Corrado (1989) rank test applies for testing single day event returns. Testing for
CARs with the same logic implies the need for defining multiple-day returns that match the number
of days in the CARs, see Corrado (1989: p. 395) and Campbell & Wasley (1993: footnote 4). In
practice this can be carried out by dividing the estimation period and event period into intervals
matching the number of days in the CAR. Unfortunately, this procedure is not useful for a number
of reasons. Foremost, it does not necessarily lead to a unique testing procedure. Also, the abnormal
return model should be re-estimated for each multiple-day CAR definition. Furthermore, for a fixed
estimation period, as the number of days accumulated in a CAR increases, the number of multiple-
day estimation period observations reduces quickly to an impractically low number and thus, would
weaken the abnormal return model estimation, cf. (Kolari & Pynnonen, 2010). Kolari & Pynnonen
(2011) solve these issues in their generalized rank test approach.

On the other hand, for example, Campbell & Wasley (1993) suggest to use the Corrado (1989)
rank test for testing cumulative abnormal returns by simply accumulating the respective ranks to
constitute cumulative ranks. This is also the practice adopted in the Eventusr software (Cowan
Research L.C., www.eventstudy.com) and is probably, for the time being, the most popular practice
in multiple day applications of rank tests.

In spite of these attractive properties, the cumulative ranks test does not account for the cross-
sectional correlation due to partially overlapping event windows. The correlation biases the standard
errors downwards, leading to over-rejection of the null hypothesis of no event effect. This paper
proposes an adjustment for the standard errors that corrects the bias.

3 Distributional properties of ranks

We begin by fixing some notations and an underlying assumption to facilitate our theoretical discus-
sion.
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Assumption 1. Stock returns rit for firm i are weak white noise continuous random variables and
are cross-sectionally independent over non-overlapping calendar days t, or,

E [rit] = µi for all t,
var [rit] = σ2

i for all t,
cov [rit, riu] = 0 for all t 6= u,

rit and rju are independent whenever i 6= j and t 6= u.

Note that it is a stylized fact that the variances of the returns are time varying and that there is mild
autocorrelation. The time varying volatility problem can be partially captured in terms of generalized
autoregressive conditional heteroskedasticity (GARCH) modeling. It is notable that under typical
assumptions, GARCH-processes satisfy the weak stationary properties of Assumption 1.

Let ARit = rit−E [rit] denote the abnormal return of security i on day t, and let day t = 0 indicate
the event day. Days from t = T0 + 1 to t = T1 represent the estimation period relative to the event
day, and days from t = T1 + 1 to t = T2 represent the event window. The cumulative abnormal
return (CAR) from τ1 to τ2 with T1 < τ1 ≤ τ2 ≤ T2, is defined as

CARi(τ1, τ2) =

τ2∑
t=τ1

ARit. (3.1)

The time period from τ1 to τ2 is called in the following a CAR window or CAR period.

Standardized abnormal returns are defined as

SARit =
ARit

S(ARi)
,

where

S(ARi) =

√√√√ 1

T1 − T0 − 1

T1∑
t=T0+1

AR2
it.

Moreover, for the purpose of accounting for the possible event induced volatility, the re-standardized
abnormal returns are defined in the manner of Boehmer, Musumeci & Poulsen (1991), see also
(Corrado & Zivney, 1992), as

SAR′it =

{
SARit/SSARt , T1 < t ≤ T2,

SARit, otherwise,

where

SSARt =

√√√√ 1

n− 1

n∑
i=1

(SARit − SARt)2

is the time t cross-sectional standard deviation of the SARits. In the preceding formula n is the
number of stocks in the portfolio and SARt = 1

n

∑n
i=1 SARit. Furthermore, let Kit denote the

rank number of abnormal returns, where Kit ∈ {1, . . . , T}, t = T0 + 1, . . . , T2, T = T2 − T0, and
i = 1, . . . , n.

In particular, if the available observations on the estimation period vary from one series to another,
then it is more convenient to deal with standardized ranks with zero mean and unit variance. For the
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purpose we use the known results of rank statistics, e.g., Lehmann (2006: Appendix, Section 1),

E [Kit] = (T + 1)/2, var [Kit] = (T 2 − 1)/12, cov [Kis,Kit] = −(T + 1)/12, s 6= t,

and define, cf. Hagnäs & Pynnonen (2014),

Definition 3.1. Standardized ranks are defined as

Uit =
Kit − 1

2 (T + 1)√
(T 2 − 1)/12

.

Thus, E [Uit] = 0, var [Uit] = 1, and cov [Uis, Uit] = −1/(T − 1).

Next we define cumulative standardized ranks for individual stocks.

Definition 3.2. The cumulative standardized ranks of a stock i over the event days window from τ1
to τ2 are defined as

Ui(τ1, τ2) =

τ2∑
t=τ1

Uit, where T1 < τ1 ≤ τ2 ≤ T2. (3.2)

Then immediately µi(τ1, τ2) = E [Ui(τ1, τ2)] = 0, and the variance equation

var [Ui(τ1, τ2)] =

τ2∑
t=t1

var [Uit] +
∑
s6=t

cov [Uis, Uit]

implies that

σ2
i (τ1, τ2) = var [Ui(τ1, τ2)] =

τ(T − τ)

T − 1
, (3.3)

where i = 1, . . . , n, T1 < τ1 ≤ τ2 ≤ T2, and τ = τ2 − τ1 + 1.

Rather than investigating individual (cumulative) returns, the practice in event studies is to aggregate
individual returns into equally weighted portfolios.

Definition 3.3. The average cumulative standardized ranks are defined as the equally weighted
portfolio of individual cumulative standardized ranks defined in (3.2), i.e.,

Ū(τ1, τ2) =
1

n

n∑
i=1

Ui(τ1, τ2) =

τ2∑
t=τ1

Ūt, (3.4)

where T1 < τ1 ≤ τ2 ≤ T2, and

Ūt =
1

n

n∑
i=1

Uit

is the time t average of standardized ranks.

The expected value of the average cumulative standardized ranks is the same as that of the cumulative
ranks of individual securities, or

E
[
Ū(τ1, τ2)

]
=

1

n

n∑
i=1

E [Ui(τ1, τ2)] = 0.
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If the event days are not clustered, then the cross-sectional correlations of the return series are zero,
or at least negligible. Under the assumption of independence, the variance of Ū(τ1, τ2) is

σ2
τ = var

[
Ū(τ1, τ2)

]
=
τ(T − τ)

(T − 1)n

and by the central limit theorem asymptotically as n→∞,

Z =

(
(T − 1)n

τ(T − τ)

) 1
2

Ū(τ1, τ2) ∼ N(0, 1). (3.5)

The situation is more complicated if the event days are partially overlapping in calendar time, which
implies cross-correlation. Recalling that the variances of Ui(τ1, τ2) given in equation (3.3) are
constants (independent of i), we can write the cross-covariance of Ui(τ1, τ2) and Uj(τ1, τ2) as

cov [Ui(τ1, τ2), Uj(τ1, τ2)] =
τ(T − τ)

T − 1
ρij(τ1, τ2), (3.6)

where ρij(τ1, τ2) is the cross-sectional correlation of Ui(τ1, τ2) and Uj(τ1, τ2), i, j = 1, . . . , n.
Utilizing this and the variance-of-the-sum formula, the variance of Ū(τ1, τ2) in (3.4) becomes

var
[
Ū(τ1, τ2)

]
=

1

n2

n∑
i=1

var [Ui(τ1, τ2)] +
1

n2

n∑
i=1

n∑
j 6=i

cov [Ui(τ1, τ2), Uj(τ1, τ2)]

=
τ(T − τ)

(T − 1)n
(1 + (n− 1)ρ̄n(τ1, τ2)) , (3.7)

where

ρ̄n(τ1, τ2) =
1

n(n− 1)

n∑
i=1

n∑
j=1
j 6=i

ρij(τ1, τ2)

is the average cross-sectional correlation of cumulated ranks.

Cross-sectional dependence affects the asymptotic distribution of the statistic in (3.5). However, as
discussed in Lehmann (1999: Section 2.8), it is frequently true that the asymptotic normality holds,
provided that the average correlation, ρ̄n(τ1, τ2), tends to zero rapidly enough such that

1

n

n∑
i6=j

ρij(τ1, τ2) = (n− 1)ρ̄n(τ1, τ2)→ γ as n→∞,

where γ is some finite constant. Under this condition the limiting distribution of the Z-statistic in
(3.5) becomes N(0, 1 + γ).

Otherwise, from a practical point of view, the crucial result of (3.7) is that the only unknown pa-
rameter to be estimated is the average cross-sectional correlation ρ̄n(τ1, τ2). Hagnäs & Pynnonen
(2014) discuss approaches to implicitly account for this average correlation in cumulated ranks tests
when all events share the same calendar day, i.e., the case of complete overlapping (clustering) event
periods. These implicit approaches, however, do not work when the event periods are partially over-
lapping. Therefore, by utilizing the procedure developed in Kolari, Pape & Pynnonen (2018), this
paper proposes a method to estimate explicitly the cross-sectional correlation ρ̄n(τ1, τ2), and thereby
solves the cross-sectional correlation problem also in cases with partially overlapping event periods.
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4 Correlation robust test for cumulated ranks

Following Kolari, Pape & Pynnonen (2018), let τij , 0 ≤ τij ≤ τ , denote the number of calendar days
that stocks i and j have overlapping calendar days within the event windows. By the independence in
Assumption 1 the correlation cor [Uiu, Ujv] of the standardized ranks Uiu and Ujv is zero whenever
the underlying calendar days of the relative event days, u and v, differ, and can be non-zero when
the calendar days are the same. Denoting these non-zero correlations, which are also covariances,
by ρij , we obtain

cov [Ui(τ1, τ2), Uj(τ1, τ2)] =

τ2∑
u=τ1

τ2∑
v=τ1

cor [Uiu, Uju] = τijρij .

Combining this with (3.6) we obtain

ρij(τ1, τ2) =

(
T − 1

T − τ

)
τij
τ
ρij .

We can assume that the overlapping window lengths τij and the cross-sectional correlations ρij are
not dependent on each other so that

∑
i6=j τijρij = n(n − 1)τ̄ ρ̄, where τ̄ is the average number of

overlapping calendar days and ρ̄ is the average cross-sectional correlation of Ui and Uj .† As a result,
we can rewrite (3.7) as

var
[
Ū(τ1, τ2)

]
=
τ(T − τ)

(T − 1)n
(1 + (n− 1)δρ̄), (4.1)

where δ = τ̄(T − 1)/(τ(T − τ)) adjusts the average correlation by the fraction of overlapping
calendar days within the event window.

It is notable that even though the average cross-sectional correlation ρ̄ in (4.1) is based on n(n−1)/2

correlations, it can be computed without estimating individual correlations by utilizing the method
introduced by Edgerton & Toops (1928). Instead of the n(n − 1)/2 individual correlations, it turns
out that we need to compute only n+1 variances, which is a computational problem of order n viz-a-
viz of order n2 when averaging the correlations. To illustrate this idea, consider n random variables
xj , j = 1, . . . , n, and define the standardized variables zj = xj/σj . Next let z̄ =

∑
j zj/n denote

the average of the variables. Then the variance of z̄ is

σ2
z̄ = var [z̄] =

1 + (n− 1)ρ̄

n
,

because var [zj ] = 1 and cov [zj , zk] = cor [zj , zk] = ρjk. From this result we obtain

ρ̄ =
nσ2

z̄ − 1

n− 1
.

Thus, for large n, ρ̄ ≈ σ2
z̄ . In order to estimate the average cross-sectional correlation, all we need

are estimates of n standard deviations of the x-variables and the variance of z̄.

Since in our case the calendar days of different stocks are only partially overlapping, we estimate
the variance of the average utilizing the clustering robust estimation technique, see, e.g., (Cameron,

†The equation follows by setting
∑

(x− x̄)(y − ȳ) =
∑

xy − nx̄ȳ to zero, so that
∑

xy = nx̄ȳ.
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Gelbach & Miller, 2011), suggested in Kolari, Pape & Pynnonen (2018).

Following Kolari, Pape & Pynnonen (2018), denote the calendar days of the returns in the combined
estimation and event window as t = 1, . . . , L. In other words, L is the number of clusters which
equals the number of separate calendar days on which returns are available in the combined estima-
tion and event windows. Let nt denote the number of stocks having returns on calendar day t and
define

Ut =

nt∑
k=1

Ukt.

Then

U2
t =

nt∑
k=1

U2
kt +

nt∑
i6=j

UitUjt,

which can be rearranged as
nt∑
i6=j

UitUjt = U2
t −

nt∑
k=1

U2
kt.

Summing these up over the calendar days in the combined estimation and event window, we have

L∑
t=1

nt∑
i6=j

UitUjt =

L∑
t=1

U2
t −

L∑
t=1

nt∑
k=1

U2
kt. (4.2)

Taking the average, we get an estimator for the average correlation

ˆ̄ρ =
1

M

L∑
t=1

nt∑
i6=j

UitUjt,

where

M =
L∑
t=1

nt(nt − 1)

is the number of cross-product terms. It is notable that days for which there is available only one
return drop out automatically: if nt = 1 for all t, then ˆ̄ρ = 0. The potentially tedious computation
over all cross-products can be materially simplified by utilizing the right-hand side of (4.2) and
observing that by rearranging the terms of the rightmost sum it becomes equal to nT , i.e., the number
of stocks n multiplied by the combined estimation and event period T . The reason for this is that the
sample variances of standardized ranks are all equal to one, see the discussion below Definition 3.1.
Therefore, the only component we need is the first sum of squares on the right-hand side. As a result,
we can estimate the average correlation efficiently by

ˆ̄ρ =
N

M
(s2
U − 1),

where N =
∑L
t=1 nt is the total number of returns, which equals nT if the combined estimation

and event windows are of the same length T for all stocks, and s2
U is the clustering robust estimator

of the variance of standardized ranks in the presence of intra-cluster correlation, i.e.,

s2
U =

1

N

L∑
t=1

U2
t .
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Given the estimator of the average cross-sectional correlation, ˆ̄ρ, we can define an appropriate cross-
sectional correlation robust test for the null hypothesis of zero cumulative abnormal returns

H0 : µ(τ1, τ2) = E [CAR(τ1, τ2)] = 0

in terms of the cumulated ranks using the z-ratio

zτ =
Ū(τ1, τ2)

στ
√

1 + δ(n− 1)ˆ̄ρ
, (4.3)

where στ is the square root of the variance

σ2
τ =

τ(T − τ)

(T − 1)n

of Ū(τ1, τ2) for completely non-overlapping event windows in calendar time (i.e., when ρ̄ = 0 in
(4.1)), and τ = τ2 − τ1 + 1 is the length of the window of cumulated abnormal returns.

5 Simulation results

We generate artificial returns utilizing the Fama & French (2015) five-factor model (FF5),

(rit − rf )t = αi + βi,mkt(rm − rf )t + βi,smbSMBt + βi,hmlHMLt

+βi,rmwRMWt + βi,cmwCMWt + εit,
(5.1)

where rm− rf is the market excess return over the risk-free rate rf , SMB, HML, RMW, and CMW
are common market factors proposed by Fama and French. We utilize daily data from January 2,
1990 through October 30, 2020 (7,770 daily returns) to generate 20,000 initial daily return series
for this sample period. The regression coefficients for each stock are generated from multivariate
normal distribution with mean vector (0, 1, 0.5, 0.5, 0.5, 0.5) and covariance matrix σ2

i (X ′X)−1,
in which σ2

i is the variance of the error term ε, with σi, the standard deviation, generated from
the uniform distribution U(1, 3) that corresponds to a range of annual volatilities varying roughly
from 10 percent to 48 percent, and X ′X is the cross-product matrix of the Fama-French 5-factor
regression model.‡ The 7,770 error terms εit for stock i are generated independently from the normal
distribution N(0, σ2

i ).

In the simulations we define the abnormal returns with respect to the market model, that is

ARit = (ri − rf )t − (α̂i + β̂i(rm − rf )t),

where α̂i and β̂i are ordinary least squares (OLS) estimates. Therefore missing common factors
introduce cross-sectional correlation between the abnormal returns. The event period is ±10 trading
days around the event day t = 0 and the estimation period consist of 250 days prior the event periods,
i.e., relative days −260, . . . ,−11.

‡Factor returns have been downloaded from French’s data library:
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
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In the experiments we focus on the effect of cross-sectional correlation on the size of the test. Other
issues, like event induced volatility, are well reported for example by Kolari & Pynnonen (2010;
2011). Utilizing the base design initiated by Brown & Warner (1985), we generate 1,000 samples
of 50 randomly selected stocks (the returns of which are generated by the FF5 model in (5.1)) with
four overlapping event days scenarios. In the first case of non-overlapping event days, the returns
are cross-sectionally independent. In the second case of completely overlapping events, all firms
share the same event day (calendar time), and in the third and fourth scenarios the event days are
randomly scattered across 5 and 10 adjacent calendar days, i.e., one and two weeks of trading days,
respectively.

We report two-tailed rejection rates for the null hypothesis of no event-effect across different event
windows of 0, ±1, ±2, ±5, and ±10 around the event day, i.e., window lengths τ = 1, 3, 5, 11, and
21 days. In addition to the statistic zτ in (4.3), we also report results for the more traditional rank
based test proposed by Campbell & Wasley (1993: p. 85)

zcw =

∑τ2
t=τ1

k̄t√
τsk̄

, (5.2)

where, with E [Kit] = (T + 1)/2,

k̄t =
1

n

∑
i=1

(Kit − E [Kit]) and s2
k̄ =

1

T

T2∑
t=T0+1

k̄2
t .

Moreover, we also report results for a traditional parametric (cross-sectional correlation non-robust)
t-statistics popular in event studies, see, e.g., (Campbell, Lo & MacKinlay, 1997: Chapter 4),

tτ =
CAR(τ1, τ2)

s.e(CAR)
, (5.3)

where CAR(τ1, τ2) is the sample average of CARi(τ1, τ2) defined in (3.1) and s.e(CAR) is the
related standard error. Under independence the null distribution of tτ is asymptotically standard
normal.

Table 1 summarizes the test statistics and their major features.

Table 1. Test statistics and their key features.

Robustness due to
event correlation caused by

Statistic Type volatility complete ovrl partial ovrl

zτ = Ū(τ1,τ2)

στ
√

1+δ(n−1)ˆ̄ρ
, eq. (4.3) non-parametric yes yes yes

zcw =
∑τ2
t=τ1

k̄t

τsk̄
, eq. (5.2) non-parametric no yes no

tτ = CAR(τ1,τ2)
s.e(CAR)

, eq. (5.3) parametric yes no no

Table 2 reports the simulation results of the two-tailed rejection rates of the null hypothesis of no
abnormal return at the 5% nominal rejection rate. The results are clear-cut. Panel A of the table
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reports the non-overlapping case with zero cross-sectional correlation. All statistics reject close to
the nominal rate as would be expected. Panel B reports results of complete overlapping. That is, all
events share the same calendar day, and, hence, returns are prone to cross-sectional correlation. The
new zτ and the more traditional cumulative ranks statistic zcw, that both account for cross-sectional
correlation, reject reasonably close to the nominal rate up to event windows ±5 and exhibit some
over-rejection on the longest event window ±10, i.e., 21 days. As expected, the parametric, non
cross-correlation robust statistic tτ incrementally over-rejects as the event windows grows longer.
Panel C reports partial overlapping with events clustered randomly within 5 trading days (about a
week). For the event day testing also the a priori non-robust statistics in this regard are doing fine by
rejecting at the nominal rate. However, they start to incrementally over-reject as the event window
gets longer. The a priori partial overlapping robust statistic zτ rejects close to the nominal rate up to
the event windows of 5 days and over-rejects to some extend on the longest event windows of 11 and
21 days; albeit far less than the, in this regard, non-robust statistics zcw and tτ . The results are pretty
much similar with the decreased overlapping in Panel D. Thus, we conclude that accounting for
cross-sectional correlation is crucial to avoid biased inferences in statistical testing, not only in the
case of complete overlapping of event windows but also in the case of partially overlapping cases.
For the latter cases this paper has introduced a new test statistics to account for the dependence.

Table 2. Rejection rates of the null hypothesis of no event effect at the nominal 5% level
when the events are non-overlapping, partially overlapping, and completely
overlapping.

CAR window length
1 3 5 11 21

Event day (−1,+1) (−2,+2) (−5,+5) (−10,+10)

Panel A: Non-clustered events
zτ (SCAR) 0.048 0.054 0.049 0.052 0.063

zcw(SCAR) 0.052 0.050 0.051 0.052 0.063

tτ (CAR) 0.045 0.035 0.049 0.052 0.048

Panel B: Events clustered on the same trading day
zτ (SCAR) 0.059 0.052 0.060 0.064 0.075

zcw(SCAR) 0.059 0.052 0.061 0.064 0.075

tτ (CAR) 0.087 0.091 0.096 0.085 0.110

Panel C: Events clustered on 5 adjacent trading days
zτ (SCAR) 0.056 0.055 0.058 0.087 0.080

zcw(SCAR) 0.050 0.075 0.093 0.127 0.129

tτ (CAR) 0.045 0.063 0.077 0.112 0.102

Panel D: Events clustered on 10 adjacent trading days
zτ (SCAR) 0.063 0.051 0.062 0.058 0.080

zcw(SCAR) 0.059 0.062 0.091 0.116 0.133

tτ (CAR) 0.065 0.057 0.056 0.089 0.105
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6 Conclusion

This paper proposes a new non-parametric rank based test statistic for testing cumulative abnormal
returns in short run event studies. The statistic is robust with respect to event induced volatility
and cross-sectional correlation due to complete or partially overlapping event windows. This latter
source of cross-sectional correlation is not accounted for by the existing non-parametric test statis-
tics. Simulation results indicate that, unlike typically utilized test statistics, the proposed statistic
rejects the null hypothesis of no event effect close to the nominal significant level also in the par-
tially overlapping case.

Acknowledgement: The author wants to thank the editors for their valuable comments and edits
that greatly improved readability of the paper. The remaining errors and inconsistencies are the sole
responsibility of the author.
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ON THE KREĬN-VON NEUMANN AND FRIEDRICHS
EXTENSION OF POSITIVE OPERATORS

Zoltán Sebestyén and Zsigmond Tarcsay

Dedicated to Seppo Hassi on the occasion of his 60th birthday

1 Introduction

In his profound paper (von Neumann, 1931), J. von Neumann introduced the concept of the adjoint
of a densely defined possibly unbounded operator J : K → H between two Hilbert spaces as the
operator J∗ : H → K, having the domain

dom J∗ = {g ∈ H : ∃k′ ∈ K such that (Jk | g) = (k | k′) ∀k ∈ dom J},

by setting
J∗g := k′, g ∈ dom J∗.

Although the adjoint operator behaves nicer than the original one (because it is always closed), it is
not necessarily densely defined. An essential question arises therefore: when is the domain dom J∗

a dense subspace ofH? Von Neumann himself gave an elegant answer to that question. Namely, he
proved that J∗ is densely defined if and only if J is a closable operator. Moreover, in that case the
second adjoint J∗∗ of J exists and it is equal to the closure J of J :

J = J∗∗.

At the same time, J∗∗J∗ and J∗J∗∗ are positive self-adjoint operators in the Hilbert spaces H and
K, respectively. Note also that we have

dom (J∗∗J∗)1/2 = dom J∗ and dom (J∗J∗∗)1/2 = dom J∗∗

on the domains, and

ran (J∗∗J∗)1/2 = ran J∗∗ and ran (J∗J∗∗)1/2 = ran J∗

on the ranges. Here, for a given positive self-adjoint operator A, A1/2 denotes the unique positive
self-adjoint square root of A; see, e.g., (Sebestyén & Tarcsay, 2017).

However, if J is not closed, then J∗J and JJ∗ are not self-adjoint operators in general. In fact,
it is not even clear whether those operators are densely defined, and therefore it is also a non-
trivial question whether they have any positive self-adjoint extensions at all. From classical works
by Friedrichs, Kreı̆n, and von Neumann, we know that a densely defined positive and symmetric
operator may be extended to a positive self-adjoint operator, see, e.g., (Friedrichs, 1934; Kreı̆n,
1947; von Neumann, 1931). In that case, there exist two distinguished self-adjoint extensions AN
and AF of any positive symmetric operator A, such that

AN ≤ AF ,
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and every positive self-adjoint extension Ã of A is between AN and AF : AN ≤ Ã ≤ AF . The
smallest extension AN of A is called the Kreı̆n-von Neumann extension, while the largest extension
AF of A is called the Friedrichs extension.

The problem of the existence of positive self-adjoint extensions has its relevance even in the non-
densely defined case. Although the Friedrichs extension exists only for a densely defined operator,
the smallest extension always exists if there exists any extension, see, e.g., (Sebestyén & Stochel,
1991) and also (Sebestyén & Stochel, 2007; Hassi, 2004).

In the present paper we revise the main result Theorem 1 of Sebestyén & Stochel (1991) and give
some new characterizations for a not necessarily densely defined positive symmetric operator to
admit positive self-adjoint extensions. More specifically, in Section 2 we collect some new properties
for an operator to be closable. Based on this new characterization of closability, we establish in
Section 3 the correct version of the "duality theorem" stated in Jorgensen, Pearse & Tian (2018:
Theorem 5). In Section 4 we give a short proof of the fact that the "modulus square" operator T ∗T
of any densely defined operator T always has a positive self-adjoint extension, cf. (Sebestyén &
Tarcsay, 2012: Theorem 2.1). At the same time, we shall see that this is not the case with TT ∗; that
operator might be even non-closable. However, we are going to establish necessary and sufficient
conditions for the extendibility of TT ∗. In particular, our construction of the Kreı̆n-von Neumann
extension in Section 4 will be used to exhibit a counterexample to (Jorgensen, Pearse & Tian, 2018:
Theorem 5). Finally, in Section 5 we treat the problem of the existence of the Friedrichs extension
of a densely defined positive symmetric operator. In particular, we discuss there the case when the
Friedrichs extension of the operator T ∗T is identical with T ∗T ∗∗.

2 Closable operators

Let J be a densely defined operator between the real or complex Hilbert spaces K andH. Note that
J is closable if for each sequence (gn)n∈N ⊂ dom J , such that gn → 0 and Jgn → h, it follows
that h = 0. On the other hand, a profound theorem by von Neumann tells us that J is closable if and
only if J∗ is densely defined, that is,

(dom J∗)⊥ = {0}.

In the following theorem, we give an extension of von Neumann’s result and collect some new
characteristic properties for an operator J to be closable. For further characterizations of closability
and closedness, see, e.g., (Popovici & Sebestyén, 2014; Sebestyén & Tarcsay, 2016; 2019; 2020).

Theorem 2.1. Let J be a densely defined operator between the real or complex Hilbert spaces K
andH. Then the following properties are equivalent:

(i) J is closable;

(ii) (dom J∗)⊥ = {0};

(iii) (dom J∗)⊥ ∩ (ran J)⊥⊥ = {0};

(iv) (dom J∗)⊥ ⊆ ran (I + JJ∗).
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Proof. (i)⇒ (ii) Consider a vector h ∈ (dom J∗)⊥, then

(0, h) ∈
{
{−J∗k, k} : k ∈ dom J∗

}
= G(J).

Since J is closable, this implies h = 0.

(ii)⇒ (iii) This implication is trivial.

(iii) ⇒ (i) Consider a sequence (gn)n∈N ⊂ dom J such that gn → 0, and Jgn → h. Then
h ∈ ran J = (ran J)⊥⊥. On the other hand, for every f ∈ dom J∗

(f |h) = lim
n→∞

(f | Jgn) = lim
n→∞

(J∗f | gn) = 0,

which means that h ∈ (dom J∗)⊥. Consequently, h = 0 by (ii) and therefore J is closable.

(ii)⇒ (iv) This implication is clear.

(iv)⇒ (ii) We are going to show that dom J∗ is dense in H. To this aim, take g ∈ (dom J∗)⊥. By
(iv), there exists h ∈ dom JJ∗ such that g = h+ JJ∗h. In particular, h ∈ dom J∗ and one has

0 = (g |h) = (h+ JJ∗h |h) = (h |h) + (JJ∗h |h) = ‖h‖2 + ‖J∗h‖2,

so that h = 0. This implies that g = 0 and therefore (iv) implies (ii).

3 Duality theorems

Let H1 and H2 be Hilbert spaces with a common vector subspace D. In Jorgensen, Pearse & Tian
(2018: Theorem 5) a necessary and sufficient condition is stated for the existence of a positive and
self-adjoint operator ∆ onH1 with the duality property

(∆ϕ |ψ)1 = (ϕ |ψ)2, ϕ, ψ ∈ D,

cf. also (Jorgensen & Pearse, 2016: Theorem 4.1). Unfortunately, there is a simple but serious
error in their proof and the statement itself is not true in that form either (a counterexample will be
exhibited in Example 4.2 below). In Theorem 3.3 we are going to establish the correct form of that
statement. Its proof depends on the following lemma.

Lemma 3.1. LetH andK be Hilbert spaces and let J : K → H be a densely defined linear operator
between them. Then the following three statement are equivalent:

(i) ran J ⊆ dom J∗;

(ii) J is closable and dom J ⊆ dom J∗J∗∗;

(iii) there exists a positive self-adjoint operator A in K such that dom J ⊆ dom A and

(Ag | k) = (Jg | Jk), g, k ∈ dom J. (3.1)
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Proof. (i)⇒ (ii) Since ran J ⊆ dom J∗, it follows that

(ran J)⊥⊥ ⊆ (dom J∗)⊥⊥ = H	 (dom J∗)⊥,

and, consequently,
(dom J∗)⊥ ∩ (ran J)⊥⊥ = {0}.

Applying Theorem 2.1 we see that J is closable. On the other hand, ran J ⊆ dom J∗ implies that
dom J = dom J∗J ⊆ dom J∗J∗∗.

(ii)⇒ (iii) If J is closable, then A := J∗J∗∗ is a positive self-adjoint operator inH, and by (ii) one
has dom J ⊆ dom A. On the other hand,

(Ag | k) = (J∗J∗∗g | k) = (J∗∗g | J∗∗k) = (Jg | Jk),

for every g, k ∈ dom J .

(iii) ⇒ (i) Suppose that A is a positive operator with dom J ⊆ dom A which satisfies (3.1). Let
k ∈ dom J be arbitrary, then for every g ∈ dom J

(Jg | Jk) = (Ag | k) = (g |Ak),

which implies Jk ∈ dom J∗. Therefore, ran J ⊆ dom J∗.

Remark 3.2. Let J be a closed operator. Then the inclusion

dom J ⊆ dom J∗J∗∗ (3.2)

is only possible if J is continuous and everywhere defined onH1, see, e.g., (Tarcsay, 2012: Lemma
2.1). This suggests that Lemma 3.1 is only relevant if J is a closable but not a closed operator.

The erroneous observation in the proof of (Jorgensen, Pearse & Tian, 2018: Theorem 5) is that (3.2)
holds true provided that both J and J∗ are densely defined. This makes it necessary to provide
the following correct version of (Jorgensen, Pearse & Tian, 2018: Theorem 5), which can also be
considered as a noncommutative version of the Lebesgue-Radon-Nikodym decomposition theorem.

Theorem 3.3. Let H1 and H2 be real or complex Hilbert spaces which contain a common linear
manifold D as a vector space. Suppose that D is dense inH1 and set

D∗ :=
{
h ∈ H2 : ∃Ch ≥ 0 such that |(ϕ |h)2| ≤ Ch‖ϕ‖1 ∀ϕ ∈ D

}
.

Then the following two conditions are equivalent:

(i) D ⊆ D∗ inH2;

(ii) there exists a positive self-adjoint operator ∆ inH2 such that D ⊆ dom ∆ inH1 and

(∆ϕ |ψ)1 = (ϕ |ψ)2, ϕ, ψ ∈ D. (3.3)

Proof. Let J be the operator from D ⊆ H1 to H2 defined by the identification Jϕ := ϕ, ϕ ∈ D.
Then J is a densely defined operator such that its adjoint J∗ has domain D∗: dom J∗ = D∗. The
desired equivalence follows now from Lemma 3.1.
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4 Von Neumann’s problem on positive self-adjoint extendibility

Given a positive symmetric operator A in a real or complex Hilbert space K, the question arises
whether there exists a positive self-adjoint extension of A. If the operator in question is densely
defined, then we know from classical papers by Friedrichs, Kreı̆n, and von Neumann that the operator
has a positive self-adjoint extension, see (Friedrichs, 1934; Kreı̆n, 1947; von Neumann, 1931); cf.
also (Ando & Nishio, 1970; Arlinskiı̆ et al., 2001; Prokaj & Sebestyén, 1996a;b; Schmüdgen, 2012).
However, uniqueness of the extension occurs only in the very special case when the operator in
question is essentially self-adjoint. In all other cases, the set of positive self-adjoint extensions is an
operator interval [AN , AF ], whereAN is the smallest (the so-called Kreı̆n-von Neumann) extension,
while AF is the largest (the so-called Friedrichs) extension of A. Recall that the partial ordering
among the set of positive self-adjoint operators is given by

A ≤ B ⇐⇒ (I +B)−1 ≤ (I +A)−1.

Equivalently, by means of the square roots, one has A ≤ B if and only if

dom B1/2 ⊆ dom A1/2 and ‖A1/2k‖2 ≤ ‖B1/2k‖2, ∀k ∈ dom B1/2.

The problem of the existence of positive self-adjoint extensions has its relevance even in the non-
densely defined case, and was treated in detail by Sebestyén & Stochel (1991), see also (Sebestyén
& Stochel, 2007; Hassi, 2004).

In the next result we revise (Sebestyén & Stochel, 1991: Theorem 1) on the existence of the Kreı̆n-
von Neumann extension of a positive and symmetric operator A. In this case it is convenient to
introduce the linear space D∗(A) by

D∗(A) := {k ∈ K : sup {|(Ag | k)| : g ∈ dom A, (Ag | g) ≤ 1} < +∞}. (4.1)

Theorem 4.1. Let A be a positive and symmetric operator on a real or complex Hilbert space K.
Then the following statements are equivalent:

(i) D∗(A) as in (4.1) is dense in K;

(ii) for every sequence (gn)n∈N ⊂ dom A and k ∈ K such that

(Agn | gn)K → 0 and Agn → k,

it follows that k = 0;

(iii) there exist a Hilbert space E and a densely defined linear operator V : K → E such that
dom A ⊆ dom V , (V (dom A))⊥ = {0}, and

〈V g, V h〉E = (Ag |h)K, g ∈ dom A, h ∈ dom V ; (4.2)

(iv) there exists a positive self-adjoint extension of A.

If any, and hence all, assertions of (i)-(iv) are satisfied, then there exists the smallest positive exten-
sion AN of A.
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Proof. (i)⇒ (ii) Assume that (Ag | g) = 0 for some g ∈ dom A. Then sup |(Ag, k)| < ∞ for all
k ∈ D∗(A), which implies (Ag, k) = 0. Since D∗(A) ⊆ K is dense by (i), it follows that Ag = 0.

This means that
〈Ag,Ah〉E := (Ag |h)K, g, h ∈ dom A, (4.3)

defines an inner product on ran A. Denote by E the completion of that space and consider the natural
inclusion operator JA : E ⊇ ran A→ K,

JA(Ag) := Ag ∈ K, g ∈ dom A. (4.4)

Clearly, ran A forms a dense linear manifold in E by definition, so that JA is densely defined. On
the other hand, one has

dom J∗A = D∗(A), (4.5)

thanks to the identities

(JA(Ag) |h)K = (Ag |h)K, g ∈ dom A, h ∈ K,

and
〈Ag,Ag〉E = (Ag | g)K, g ∈ dom A.

From (4.5) and (i) we see that J∗A is densely defined and therefore JA is closable. From this it
follows that A fulfills (ii).

(ii) ⇒ (iii) Note that the condition in (ii) implies that (4.3) defines an inner product. With the
notation as in the proof of the implication (i) ⇒ (ii), (ii) expresses that the canonical inclusion
operator JA : E → K is closable. Its adjoint J∗A : K → E is therefore a densely defined operator
such that

〈J∗Ag,Ah〉E = (g | JA(Ah))K = (g |Ah)K = 〈Ag,Ah〉E , g, h ∈ dom A,

whence we conclude that
J∗Ag = Ag ∈ E , g ∈ dom A. (4.6)

As a conseqence, J∗A provides a factorization for A in the sense of (iii):

〈J∗Ag, J∗Ah〉E = 〈Ag, J∗Ah〉E = (Ag |h)K, g ∈ dom A, h ∈ D∗(A). (4.7)

Moreover, by (4.6) we see that

J∗A(dom A) = {Ag : g ∈ dom A},

where the right-hand side is dense in H by definition. Hence, V := J∗A satisfies all requirements of
(iii).

(iii)⇒ (iv) Let V : K → E be a densely defined closable operator satisfying the properties in (iii).
By (4.2) we conclude that V g ∈ dom V ∗ for every g ∈ dom A and that

V ∗V g = Ag, g ∈ dom A. (4.8)

This means that dom V ∗ includes the dense set V (dom A), and therefore V is closable. Moreover,
by (4.8) we see that A ⊂ V ∗V ⊂ V ∗V ∗∗, i.e., the positive self-adjoint operator V ∗V ∗∗ extends A.



Acta Wasaensia 171

(iv) ⇒ (i): Let B be a positive self-adjoint extension of A. Then for every k ∈ dom B1/2 and
g ∈ dom A with (Ag | g) ≤ 1, we obtain that

|(Ag | k)| = |(Bg | k)| = |(B1/2g |B1/2k)|

≤ ‖B1/2g‖‖B1/2k‖ = (Ag | g)1/2‖B1/2k‖ ≤ ‖B1/2k‖,

whence k ∈ D∗(A). This implies that

dom B1/2 ⊆ D∗(A), (4.9)

where the former subspace is dense in K. Hence, D∗(A) is dense in K, i.e., (i) holds.

Finally, let any, and hence all, assertions of (i)-(iv) be satisfied. First note that the operator JA
defined in (4.4) is closable by (i). Hence, from (4.6) and (4.7) it follows that

AN := J∗∗A J∗A (4.10)

is a positive self-adjoint extension of A. Furthermore we have

D∗(A) = dom J∗A = dom (J∗∗A J∗A)1/2 (4.11)

and the density of ran A inH implies for every k ∈ D∗(A) that

‖(J∗∗A J∗A)1/2k‖2K = ‖J∗Ak‖2E
= sup

{
|〈Ag, J∗Ak〉E |2 : g ∈ dom A, 〈Ag,Ag〉E ≤ 1

}
= sup

{
|(JA(Ag) | k)K|2 : g ∈ dom A, (Ag | g)K ≤ 1

}
= sup

{
|(Ag | k)K|2 : g ∈ dom A, (Ag | g)K ≤ 1

}
.

Next we show thatAN as in (4.10) is the smallest self-adjoint extension ofA. Let thereforeB be any
positive self-adjoint extension of A. Since the positive self-adjoint operator B has no proper self-
adjoint extension, applying the above construction forB, we infer thatB = J∗∗B J∗B . By the inclusion
(4.9) we have dom B1/2 ⊆ dom A

1/2
N , see (4.10) and (4.11), and from the above calculation we

obtain that, for every k ∈ dom B1/2,

‖A1/2
N k‖2 = ‖(J∗∗A J∗A)1/2k‖2 = sup

{
|(Ag | k)|2 : g ∈ dom A, (Ag | g) ≤ 1

}
≤ sup

{
|(Bg | k)|2 : g ∈ dom B, (Bg | g) ≤ 1

}
= ‖(J∗∗B J∗B)1/2k‖2K = ‖B1/2k‖2K.

Hence AN ≤ B, as it is stated.

As was mentioned in the previous section, the statement of (Jorgensen, Pearse & Tian, 2018: Theo-
rem 5) is not correct, as with the notation used in Theorem 3.2, they assert that the existence of the
positive self-adjoint operator ∆ satisfying (3.3) is equivalent to D∗ being dense inH2. Based on the
preceding theorem and its proof, it will be shown by a counterexample that their assertion is not true
in general.

Example 4.2. Consider an unbounded positive self-adjoint operator A in a Hilbert space K and set

D := ran A.
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Denote by E the "energy space" associated with A and by J the corresponding inclusion operator
J : E ⊇ ran A→ K as in the proof of Theorem 4.1. Then D is a common vector subspace of E and
K such that D ⊆ E is dense. Furthermore,

D∗ :={k ∈ K : ∃Ck ≥ 0 such that |(ϕ | k)2
K| ≤ Ch‖ϕ‖2E ∀ϕ ∈ D}

={k ∈ K : ∃Ck ≥ 0 such that |(Ah | k)2
H| ≤ Ck(Ah |h)K ∀h ∈ dom A},

from which we conclude that
D∗ = D∗(A) = dom J∗,

so D∗ ⊆ K is dense. Suppose that the conclusion of (Jorgensen, Pearse & Tian, 2018: Theorem 5)
is true, then by that theorem the density of D∗ in K implies that there exists a positive self-adjoint
operator ∆ : E → E , D ⊆ dom ∆, such that

〈∆ϕ,ϕ〉E = (ϕ |ϕ)K, ϕ ∈ D.

From this we conclude that

(J(Ah) |Ak)K = (Ah |Ak)K = 〈Ah,∆(Ak)〉E , h ∈ dom A,

which in turn means that Ak ∈ dom J∗ and J∗(Ak) = ∆(Ak). As a consequence we see that
ran A ⊆ dom J∗, and since dom A ⊆ dom J∗ holds true as well, we obtain that

K = dom A+ ran A ⊆ dom J∗.

So J∗ is an everywhere defined bounded operator on K, and therefore so is A = J∗∗J∗. This is in
contradiction to the assumption that A is an unbounded operator.

Thanks to a classical result of J. von Neumann (von Neumann, 1931) we know that T ∗T and TT ∗

are positive self-adjoint operators whenever T is densely defined and closed. In Sebestyén & Tarcsay
(2014) we proved the converse of that statement: if both T ∗T and TT ∗ are self-adjoint then T is
necessarily closed, see also (Gesztesy & Schmüdgen, 2019) and (Sandovici, 2018) for the case of
linear relations. This means that if T is not closed (or not even closable), then either T ∗T or TT ∗ (or
even both) fail to be self-adjoint. In fact, TT ∗ might even be non-closable; however, surprisingly,
T ∗T behaves well. Namely, it was proved in Sebestyén & Tarcsay (2012: Theorem 2.1) that T ∗T
always has a positive self-adjoint extension. We provide a short proof of that result.

Theorem 4.3. Let T : K → H be a densely defined linear operator between the real or complex
Hilbert spaces K andH. Then T ∗T has a positive self-adjoint extension.

Proof. Consider the positive symmetric operator A := T ∗T . We are going to show that

dom T ⊆ D∗(A).

Indeed, for g ∈ dom A and k ∈ dom T , we have

|(Ag | k)|2 = |(T ∗Tg | k)|2 = |(Tg |Tk)|2 ≤ (Tg |Tg)(Tk |Tk)

= (T ∗Tg | g)(Tk |Tk) = (Ag | g)(Tk |Tk).

Hence D∗(A) is dense in K. Thus A has by Theorem 4.1 a positive self-adjoint extension.
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In the next result we deal with the positive extendibility of TT ∗.

Theorem 4.4. Let T : K → H be a densely defined operator between the real or complex Hilbert
spaces K andH. Then the following two statements are equivalent:

(i) TT ∗ has a positive self-adjoint extension;

(ii) T |domT ∩ ranT∗ is a closable operator.

Proof. The positive symmetric operator A := TT ∗ has a positive self-adjoint extension if and only
if it satisfies condition (ii) of Theorem 4.1. That is, according to that result, T ∗T has a positive
self-adjoint extension if and only if for every sequence (hn) ⊂ dom TT ∗ and every vector f ∈ H
the conditions

(TT ∗hn |hn) = ‖T ∗hn‖2 → 0 and TT ∗hn → f,

imply that f = 0. Evidently, this is equivalent to the closability of the restriction of T to the set
ran T ∗ ∩ dom T .

In the following example, we show that TT ∗ may have a bounded positive self-adjoint extension in
some cases even if T is not even closable.

Example 4.5. Let K be a separable Hilbert space and consider two orthonormal bases in it

{en,m : n,m ∈ N} and {fn : n ∈ N}.

Let us define the operator T on the vectors en,m by setting

Ten,m := mfn, n,m ∈ N,

and then extend it by linearity to dom T := span {en,m : n,m ∈ N}. It follows from this definition
that dom T ∗ = {0}. In order to see this, observe that for z ∈ dom T ∗ and n ∈ N we have

(z | fn) =
1

m
(z |Ten,m) =

1

m
(T ∗z | en,m),

for any m ∈ N. Letting m→∞ gives that (z | fn) = 0 and, hence, z = 0. Consequently, T is non-
closable (in fact, T is a maximal singular operator), but A = 0 is a (bounded) positive self-adjoint
extension of TT ∗.

The previous example demonstrated that TT ∗ can behave nicely even though T is singular. However,
as the following example illustrates, there exists an operator T such that TT ∗ is non-closable.

Example 4.6. Consider a maximal singular operator T in a Hilbert spaceK, that is, an operator such
that dom T ∗ = {0} (take e.g. the operator T from Example 4.5). Consider the following operator

J : K ⊇ dom T → K×K, Jg := {g, Tg}.

Then it is easy to verify that dom J∗ = K × dom T ∗ = K × {0}, and J∗{k, 0} = k. In particular,
dom JJ∗ = dom T × {0}, and

JJ∗{g, 0} = {g, Tg}, g ∈ dom T.
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Furthermore, we claim that J is not closable. Indeed, take any nonzero k ∈ K, then there exists a
sequence (gn)n∈N in dom T such that gn → 0 and Tgn → k. Then

JJ∗{gn, 0} = {gn, T gn} → {0, k},

which means that JJ∗ may not be closable.

Theorem 4.7. Let T : K → H be a densely defined closable linear operator, such that

dom T ⊆ ran T ∗. (4.12)

Then T ∗∗T ∗ agrees with the Kreı̆n-von Neumann extension of TT ∗.

Proof. Denote by E the completion of ran TT ∗ under the inner product

〈TT ∗h, TT ∗f〉 := (TT ∗h | f) = (T ∗h |T ∗f), h, f ∈ dom TT ∗.

By the construction of the proof of Theorem 4.1, the Kreı̆n-von Neumann extension of TT ∗ is of the
form J∗∗J∗, where J is the natural inclusion operator from E ⊇ ran TT ∗ intoH:

J(TT ∗h) := TT ∗h, h ∈ dom TT ∗.

Note that by (4.12) we have the identity dom T = {T ∗g : g ∈ dom TT ∗}. Consequently,

dom (J∗∗J∗)1/2 = dom J∗ = D∗(TT ∗)

=
{
h ∈ H : sup

{
|(TT ∗f |h)| : f ∈ dom TT ∗, ‖T ∗f‖2 ≤ 1

}
< +∞

}
= dom T ∗ = dom (T ∗∗T ∗)1/2.

At the same time we have that

‖(J∗∗J∗)1/2h‖2 = ‖J∗h‖2E
= sup

{
|〈TT ∗f, J∗h〉2| : f ∈ dom TT ∗, ‖T ∗f‖2 ≤ 1

}
= sup

{
|(T ∗f |T ∗h)|2 : f ∈ dom TT ∗, ‖T ∗f‖2 ≤ 1

}
= ‖T ∗h‖2,

for every h ∈ dom T ∗. We have therefore proved that T ∗∗T ∗ ≤ J∗∗J∗, and since J∗∗J∗ is the
smallest positive self-adjoint extension of TT ∗, we obtain that T ∗∗T ∗ = J∗∗J∗.

5 The Friedrichs extension

A densely defined positive symmetric operator A on a real or complex Hilbert space K always has a
positive self-adjoint extension. Indeed, the generalized Schwarz inequality

|(Ag |h)|2 ≤ (Ag | g)(Ah |h), g, h ∈ dom A

implies that dom A ⊆ D∗(A) and, therefore, A admits a positive self-adjoint extension according
to Theorem 4.1. In particular, by the same theorem, the Kreı̆n-von Neumann extension AN of A
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exists. In that case it is known that the so-called Friedrichs extension, that is, the largest positive
self-adjoint extension, exists as well. Using the procedure described in Theorem 4.1, we prove the
existence of the Friedrichs extension. Our method is very similar to that of Prokaj & Sebestyén
(1996a), but somewhat simpler.

Theorem 5.1. LetA be a densely defined positive symmetric operator in the real or complex Hilbert
space K. Then there exists the largest positive self-adjoint extension AF of A.

Proof. Let us recall the construction of the proof of Theorem 4.1 and consider the energy Hilbert
space E and the inclusion operator JA : E ⊇ ran A→ K defined by

JA(Ag) := Ag, g ∈ dom A.

By (4.5) we have dom J∗A = D∗(A) ⊇ dom A, and therefore we may consider the restriction QA
of J∗A to dom A, i.e.,

QA := J∗A|domA.

By (4.6),
QAg = Ag ∈ E , g ∈ dom A.

On the other hand, from QA ⊂ J∗A we get J∗∗A ⊂ Q∗A and Q∗∗A ⊂ J∗A, whence it follows that
AF := Q∗AQ

∗∗
A is a positive self-adjoint extension of A. We claim that AF is the largest among

the set of all positive self-adjoint extensions of A. Indeed, let B ⊃ A be any positive self-adjoint
extension of A. Repeating the above process we apparently have B = Q∗BQ

∗∗
B . Then

dom (Q∗AQ
∗∗
A )1/2 = dom Q∗∗A = dom QA

= {k ∈ K : ∃(kn)n∈N ⊂ dom A, kn → k, (A(kn − km) | kn − km)→ 0},

and, accordingly,

dom (Q∗BQ
∗∗
B )1/2 = {k ∈ K : ∃(kn)n∈N ⊂ dom B, kn → k, (B(kn − km) | kn − km)→ 0}

⊇ {k ∈ K : ∃(kn)n∈N ⊂ dom A, kn → k, (A(kn − km) | kn − km)→ 0}

= dom (Q∗AQ
∗∗
A )1/2.

Finally, for k ∈ dom (Q∗AQ
∗∗
A )1/2 ⊆ dom (Q∗BQ

∗∗
B )1/2, take (kn)n∈N ⊂ dom A such that

kn → k and (A(kn − km) | kn − km)→ 0,

then QAkn → Q∗∗A k in E , and hence

‖(AF )1/2k‖2 = (Q∗AQ
∗∗
A )1/2k‖2 = ‖Q∗∗A k‖2E = lim

n→∞
‖QAkn‖2E = lim

n→∞
(Akn | kn).

Moreover, since B ⊃ A,

‖B1/2k‖2 = ‖(Q∗BQ∗∗B )1/2k‖2 = lim
n→∞

(Bkn | kn) = lim
n→∞

(Akn | kn).

As a consequence we see that AF ≥ B, as desired.

Theorem 5.2. Let T : K → H be a densely defined linear operator satisfying

ran T ⊆ dom T ∗. (5.1)
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Then T is closable and the Friedrichs extension of the positive symmetric operator T ∗T is equal to
T ∗T ∗∗:

(T ∗T )F = T ∗T ∗∗. (5.2)

Proof. Condition (5.1) guarantees, according to Lemma 3.1, that T is closable. Hence, T ∗∗ exists
and T ∗T ∗∗ is a positive self-adjoint extension of T ∗T , thanks to von Neumann, see (Schmüdgen,
2012: Proposition 3.18). Our duty is therefore to establish identity (5.2). To this end we need only
to prove the domain inclusion

dom (T ∗T )
1/2
F ⊇ dom (T ∗T ∗∗)1/2, (5.3)

because we know that dom (T ∗T )
1/2
F ⊆ dom (T ∗T ∗∗)1/2 and that

‖(T ∗T )
1/2
F k‖2 = ‖(T ∗T ∗∗)1/2k‖2, k ∈ dom (T ∗T )

1/2
F ,

see the proof of Theorem 5.1. First we note that

dom (T ∗T ∗∗)1/2 = dom T ∗∗ = {k ∈ K : ∃(kn)n∈N ⊂ dom T, kn → k, Tkn − Tkm → 0}.

Recalling the proof of Theorem 5.1, let us denote by E the "energy space" associated with T ∗T , that
is, the completion of ran T ∗T endowed with the inner product

〈T ∗Tk, T ∗Tf〉 := (Tk |Tf), k, f ∈ dom T ∗T.

Consider the operator Q : K → E given by dom Q = dom T ∗T = dom T ,

Q(T ∗Tk) := T ∗Tk ∈ E , k ∈ dom T,

then we have (T ∗T )F = Q∗Q∗∗, again according to the proof of Theorem 5.1. Consequently, the
domain dom (T ∗T )

1/2
F can be described as follows:

dom (T ∗T )
1/2
F = dom (Q∗Q∗∗)1/2 = dom Q∗∗

= {k ∈ K : ∃(kn)n∈N ⊂ dom T, kn → k, ‖T ∗Tkn − T ∗Tkm‖2E → 0}
= {k ∈ K : ∃(kn)n∈N ⊂ dom T, kn → k, ‖Tkn − Tkm‖2K → 0}

= dom T ∗∗ = dom (T ∗T ∗∗)1/2.

This proves identity (5.3) and therefore (T ∗T )F = T ∗T ∗∗, as is claimed.
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THE CHARACTERIZATION OF BROWNIAN MOTION AS AN
ISOTROPIC I.I.D.-COMPONENT LÉVY PROCESS

Tommi Sottinen

This work is dedicated to Professor Seppo Hassi for his 60th birthday

1 Introduction

The Brownian motion is arguably the most important stochastic process there is. It has a long history
in particle physics dating back to at least the Roman poet and philosopher Lucretius and his scientific
poem De rerum natura ca. 50 BC; for a recent English translation, see Slavitt (2008). Since that
time the Brownian motion has proven to be central in such diverse fields as physics, economics,
quantitative finance, and evolutionary biology, just to mention a few.

The process is christened "Brownian motion" to honor the pioneering work of the Scottish botanist
Robert Brown in his work in 1827 on pollen movement in water; although it is obvious that Brown
was not the first one to observe the Brownian motion. The first mathematical study of the Brown-
ian motion is apparently by the Danish astronomer Thorvald Nicolai Thiele in 1880, see Lauritzen
(1981) for a discussion of Thiele’s work.

The Brownian motion is also sometimes called the "Wiener process" in honor of Norbert Wiener for
his pioneering contributions to the mathematical study of the process. To honor Wiener, we use the
symbol W for the Brownian motion.

From a mathematical and modeling point of view, the Brownian motion is extremely convenient. It
belongs to the intersection of many mathematical models: it is Gaussian, it is Markovian, it is a Lévy
process, it is a martingale, and it is a self-similar process.

The Brownian motion has many characterizations. It is, for example, the scaling limit of ran-
dom walks, the independent-increment stationary-increment Gaussian process, the 1

2 -self-similar
stationary-increment Gaussian process, the Markov process with Laplacian as its generator, the con-
tinuous Lévy process, or the continuous local martingale with the (raw) bracket [W ]t = t. Of all the
characterizations of the Brownian motion, let us just give the shortest one here.

Definition 1.1 (The Brownian motion as a Gaussian process). A d-dimensional centered stochastic
process W = (W 1, . . . ,W d) with W0 = 0 is the Brownian motion if it is Gaussian with variance-
covariance matrix given by E[W i

tW
i
s ] = (t ∧ s)δij , where t ∧ s = min(t, s) and

δij =

{
1, if i = j,

0, if i 6= j.

Definition 1.1 is of course concise and opaque. We will have better definitions later. Nevertheless,
let us show that Definition 1.1 is not vacuous, i.e., such a process does indeed exist. We do this
by using the Karhunen-Loève type expansion by which the Brownian motion is constructed as the
isonormal Gaussian process on the separable Hilbert space L2([0, T ]).



180 Acta Wasaensia

Theorem 1.2 (Brownian motion series construction). Let ξjk, j = 1, . . . , d, k ∈ N, be independent
and identically distributed standard Gaussian random variables. For every t ∈ [0, T ] set

W j
t =

∞∑
k=1

∫ t

0

ek(s) ds ξjk, j = 1, . . . , d, (1.1)

where (ek)k≥0 is your favorite orthonormal basis of L2([0, T ]). Then the series in (1.1) converges
in L2 and the process W = (W 1, . . . ,W d) is the Brownian motion on the time interval [0, T ].

To see that (1.1) defines the Brownian motion (in the sense of Definition 1.1), one simply calculates
the covariance.

In this paper we provide a new characterization, or a definition if you like, for the d-dimensional
Brownian motion for d ≥ 2 as the isotropic (i.e., rotationally invariant) Lévy process with inde-
pendent and identically distributed (i.i.d.) components. Our proof is short and simple, but not
elementary. Moreover, in proving the rise of Gaussianity we do not use, at least not directly, the
central limit theorem.

The rest of the paper is organized as follows. In Section 2 we give some basic results of Lévy pro-
cesses for the convenience of those readers who are not familiar with Lévy processes, and put our
result in context. In particular, we recall the Lévy–Khintchine representation theorem for Lévy pro-
cesses, and show by using it that the Brownian motion can be characterized as being the continuous
Lévy process. In Section 3 we state and prove our new characterization: Theorem 3.1. In Section
4 we discuss our new characterization and its implications. In particular, Remark 4.4 gives an open
problem on generalizing our result to the Markovian setting, and its connection to a qualitative char-
acterization of the Laplace operator. Finally, in Remarks 4.5 and 4.6 we discuss the implications of
our result for the modeling point of view.

2 Brownian motion and Lévy processes

The following is a common textbook definition of the Brownian motion, see, e.g., the recent book
on Brownian motion by Mörters & Peres (2010).

Definition 2.1 (The Brownian motion, a textbook definition). A d-dimensional centered stochastic
process W = (W 1, . . . ,W d) with W0 = 0 is the Brownian motion if:

(i) for all times 0 ≤ t1 ≤ · · · ≤ tn the random vectors

Wtn −Wtn−1 ,Wtn−1 −Wtn−2 , . . . ,Wt2 −Wt1

are independent; i.e., the process W has independent increments;

(ii) for every t ≥ 0 and h ≥ 0, the distribution of the increment Wt+h −Wt does not depend on
t; i.e., the process W has stationary increments;

(iii) the process (Wt)t≥0 has almost surely continuous paths;

(iv) for every t ≥ 0 and h ≥ 0 the incrementWt+h−Wt is multivariate normally distributed with
mean zero and variance-covariance matrix h Id, where Id is the d× d identity matrix.
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Remark 2.2 (Standard Brownian motion and relaxed definition). Property (iv) of Definition 2.1
states that, in addition to being Gaussian, the processW also has i.i.d.-componentsW i, i = 1, . . . , d,
and E[(W i

1)2] = 1. Sometimes one only insists that the process W is Gaussian. Under the assump-
tions (i)–(iii) of Definition 2.1 this would mean that Wt+h −Wt is a centered Gaussian vector with
variance-covariance matrix hΣ, where Σ is the variance-covariance matrix of W1. With this more
relaxed definition, one usually says that if Σ = Id, then W is the standard Brownian motion. The
connection between the standard Brownian motion and the relaxed definition of the Brownian mo-
tion is simple. Indeed, if W is the standard Brownian motion, and we decompose Σ as KKT, then
KW is a Brownian motion in the relaxed sense.

The following is a common textbook definition for Lévy processes, see, e.g, Bertoin (1996) or Sato
(2013).

Definition 2.3 (Lévy process, textbook definition). A stochastic process L = (L1, . . . , Ld) with
L0 = 0 is a Lévy process if

(i) it has independent increments;

(ii) it has stationary increments;

(iii) it is stochastically continuous, i.e., for every t ≥ 0 and ε > 0

lim
h→0

P [|Lt+h − Lt| > ε] = 0.

Remark 2.4 (Lévy process, càdlàg version). Sometimes one adds the following property to the
definition of Lévy processes

(iv) the paths (Lt)t≥0 are right-continuous with left limits, i.e., they are càdlàg (continue à droite,
limite à gauche).

However, it can be shown that under the assumptions (i)–(iii) of Definition 2.3 a Lévy process
admits a version with càdlàg paths. Thus, the continuity-type assumption (iv) is not really necessary.
Finally, regarding the mild continuity assumption (iii) in Definition 2.3, it should be noted that due
to assumption (ii), the stationarity of the increments, it is actually equivalent to assuming that for
every ε > 0

lim
h→0

P [|Lh| > ε] = 0.

So, the assumption (iii) is mild, indeed.

Thus, Lévy processes are processes with stationary independent increments satisfying a mild con-
tinuity assumption. The Brownian motion is a continuous Lévy process that is also Gaussian. Ac-
tually, the Gaussianity of the Brownian motion follows from the Lévy property and the continuity.
Indeed, property (iv) of Definition 2.1 can be replaced by the following much weaker property

(iv) the process W = (W 1, . . . ,W d) has i.d.d.-components with E[(W i
1)2] = 1.

The fact that Gaussianity follows from continuity is usually not appreciated in the common textbook
definitions, such as Definition 2.1 above. That fact follows from the following Lévy–Khintchine



182 Acta Wasaensia

representation theorem for Lévy processes. For that we recall the typical notation

〈x, y〉 =
d∑
j=1

xjyj

for the Euclidean inner product on Rd,

‖x‖ =
√
〈x, x〉

for the Euclidean norm in Rd, and

1A(x) =

{
1, if x ∈ A,
0, if x 6∈ A,

for the indicator of the set A. Finally let Bd be the closed unit ball in Rd.

Theorem 2.5 (Levy–Khintchine representation theorem). A stochastic process L = (L1, . . . , Ld) is
a Lévy process if and only if its characteristic function is of the form

E
[
ei〈θ,Lt〉

]
= e−tΨ(θ),

where the characteristic exponent is of the form

Ψ(θ) = i〈m, θ〉+
1

2
〈θ,Σθ〉+

∫
Rd

[
1− ei〈θ,x〉 + i〈θ, x〉1Bd(x)

]
ν(dx).

Here m ∈ Rd is the drift parameter, the symmetric non-negative definite matrix Σ ∈ Rd×d is the
diffusion parameter, and ν, the so-called Lévy measure, is a measure on Rd satisfying

ν({0}) = 0 and
∫
Rd

[
‖x‖2 ∧ 1

]
ν(dx) <∞.

The triplet (m,Σ, ν) is called the Lévy triplet of the process L.

Now, to see that the Gaussianity of the Brownian motion follows from the Lévy–Khintchine repre-
sentation, just note that

1st for continuous Lévy processes one must have ν ≡ 0;

2nd then, for centered Lévy processes one must have m ≡ 0;

3rd and finally, for i.i.d.-component Lévy processes one must have Σ = σ Id, and since one has
E[(W i

1)2] = 1, it follows that σ = 1.

Thus Ψ(θ) = 1
2‖θ‖

2, and the Gaussianity follows from this.

Remark 2.6. If we did not assume independence (and identical distribution) of the components in
the reasoning above, we would still obtain from the continuity that

Ψ(θ) =
1

2
〈θ,Σθ〉,

which would still imply Gaussianity. Thus the (relaxed sense) Brownian motion is characterized as
being the continuous Lévy process.
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3 A new characterization

Theorem 3.1. Let d ≥ 2. A Lévy process W = (W 1, . . . ,W d) is (a multiple of) the standard Brow-
nian motion if and only if it is centered and isotropic with independent and identically distributed
components.

Proof. The only if part is clear. For the if part, let (m,Σ, ν) be the Lévy triplet of W . Since W
has independent components, ν is concentrated on the coordinate axes. Since W is isotropic, ν is
also isotropic. Consequently, ν ≡ 0. Since W is centered, m ≡ 0. Finally, since W has i.i.d.-
components, Σ = σ Id. Thus (m,Σ, ν) = (0, σ Id, 0), proving the claim.

4 Discussion

Remark 4.1 (The importance of having d ≥ 2). In Theorem 3.1 it is important that d ≥ 2. Indeed,
for d = 1 symmetric processes are isotropic and there are many discontinuous symmetric Lévy
processes for d = 1. Indeed, one can construct such Lévy processes by using the Lévy triplet
(0, 0, ν), where ν is any symmetric measure on R satisfying

ν({0}) = 0 and
∫
R

[
x2 ∧ 1

]
ν(dx) <∞.

Remark 4.2 (Gaussianity without the central limit theorem). As stated in the introduction, we did
not (directly) invoke the central limit theorem in proving the rise of Gaussianity in our new char-
acterization of the Brownian motion in Theorem 3.1. Instead, we used the Lévy–Khintchine repre-
sentation of Theorem 2.5. Now, the classical way of proving the Lévy–Khintchine representation
theorem does involve the central limit theorem and the so-called infinitely divisible distributions
that are closely related to central limit-type theorems. There are, however, ways of proving the
Lévy–Khintchine representation without resorting to the central limit theorem. For example, Jacod
& Shiryaev (2003: Chapter 4) contains a nice derivation of the Lévy–Khinchine formula that only
uses stochastic analysis and "compensator calculus".

Remark 4.3 (The history of the rise of Gaussianity). It seems that the rise of Gaussianity through
independence of the components and the rotational invariance has a long history dating back at
least to the works of Herschel and Maxwell in 1850’s, see Jaynes (2003: Section 7.2). The key
ingredients in the Herschel–Maxwell argument are (looking at a fixed time point and assuming
continuous distribution) that the components are i.i.d. and that the process is isotropic. Hereby the
first property implies that the distribution takes the form

p(x) dx =
d∏
j=1

f(xj) dxj (4.1)

in Cartesian coordinates, and the second property implies that the distribution takes the form

p(x) dx = g(r)r drdθ (4.2)

in polar (or hyper-spherical) coordinates.
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Equating (4.1) and (4.2) one is given the functional equation

d∏
j=1

f(xj) = g(‖x‖). (4.3)

The solution of the functional equation (4.3) is of the form

f(x) = c1e−c2‖x‖
2

,

which is the Gaussian density.

Einstein (1905) also used similar arguments in his investigation of the Brownian motion in con-
nection to the existence of atoms and molecules. Of course, neither the Herschel–Maxwell nor the
Einstein derivation can be used in our setting of Theorem 3.1, since the distribution of a Lévy process
at any fixed time is not a priori continuous.

Remark 4.4 (Open problem: from Lévy to Markov). Lévy processes in general, and Brownian
motion in particular, are Markovian processes that admit generators. Indeed, recall that the generator,
if it exists, of a Markov process X = (X1, . . . , Xd) is the linear operator given as

Af(x) = lim
t→0

1

t
[Ex [f(Xt)]− f(x)] .

Here Ex means that the process X is started from x, or, in the case of Lévy processes, we are
considering the translated process X + x. The generator of a Lévy process with triplet (m,Σ, ν) is

Af(x) = 〈m,∇f(x)〉+
1

2
〈∇,Σ∇f(x)〉 (4.4)

+

∫
Rd

[f(x+ y)− f(x)− 〈y,∇f(x)〉1Bd(y)] ν(dy).

Thus the generator of the Brownian motion is the Laplacian up to a factor 1/2. This provides also an
alternative proof for Theorem 3.1. Indeed, one only has to show that (a multiple) of the Laplacian is
the only linear operator of the form (4.4) with d ≥ 2 that satisfies

(i) Ax = Ay for any rotation y = Rx (isotropy);

(ii) Ax =
∑d
j=1 Axj (i.i.d.-components).

It would be interesting to know in which class of operators the properties (i)–(ii) above characterize
the (multiple of the) Laplacian. For example, could it be possible to extend Theorem 3.1 from Lévy
processes to (a larger class of) Markov processes?

Remark 4.5 (Fractional Laplacian). Recently there has been much interest in models involving
the fractional Laplacian −(−∆)α/2, which is a non-local pseudo-differential operator given by the
Cauchy principal value integral

−(−∆)α/2f(x) =
2αΓ(α/2 + 1/2)

π1/2Γ(−α/2)

∫
Rd

f(x)− f(y)

‖x− y‖1+α
dy.

From the probabilistic point of view the fractional Laplacian can be understood as the generator
of an isotropic α-stable Lévy process. With α = 2 the fractional Laplacian is just the Laplacian
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(actually, with our probabilistic parametrization it is 1
2∆). Now, α-stable processes X are natural

models in the sense that they are Lévy processes satisfying the scaling property

(cXc−αt)t≥0
d
= (Xt)t≥0,

where d
= means equality in the sense of finite-dimensional distributions. Thus, assuming α-stability

of some given random Lévy d-variate time-series X , we are faced with two natural (and maybe
contradicting) assumptions:

(α1) The time-series X is rotationally invariant.

(α2) The time-series X has i.i.d.-components.

If α = 2, then the time-series is generated by a Brownian motion, and the assumptions (α1) and
(α2) are the same. If, however, α 6= 2 (and then necessarily α ∈ (0, 2)), the assumptions (α1)
and (α2) are mutually exclusive. Assumption (α1) corresponds to the Lévy process with generator
−(−∆)

α/2
x that is rotationally invariant, while assumption (α2) corresponds to the Lévy process

with generator

Aαx =
d∑
j=1

−(−∆α/2
xj )

that acts coordinatewise.

Remark 4.6 (Modeling implications). Remark 4.5 above illustrates the message of our new charac-
terization, Theorem 3.1, for the modeling point of view. In the context of d-variate Lévy processes
for d ≥ 2 the two natural assumptions

• rotational invariance;

• independent components,

are mutually exclusive unless your model is the Brownian motion.
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THE ROLE OF MATHEMATICS AND STATISTICS IN THE
UNIVERSITY OF VAASA; THE FIRST FIVE DECADES

Ilkka Virtanen

In dedication to Professor Seppo Hassi on the occasion of his 60th birthday

The tragedy of the world is
that those who are imaginative
have but slight experience,
and those who are experienced
have feeble imaginations.
Fools act on imagination
without experience.
Pedants act on experience
without imagination.
The task of the university is
to weld together imagination and experience.

Alfred North Whitehead
A Cambridge mathematician

1 From a business school towards a university with a clearly
defined academic profile

1.1 The beginning

The University of Vaasa is one of the four “new universities” founded in Finland in 1966. Practical
activities of the new units started two to five years after the foundation decision was made by the
state authorities. Three of the new universities were founded in Eastern Finland whereas the Univer-
sity of Vaasa came to be placed on the west coast of Finland. All these new universities had different
academic profiles. Vaasa got a private business school which, however, from the beginning – the
first students started their studies in 1968 – got the major part of its financing from the state. After
ten years the business school became a state university. Thus the University of Vaasa started as a
business school, but it was clear from the beginning that the final target was to develop it into a mul-
tidisciplinary university. The University of Lappeenranta was a technical university, the University
of Kuopio had disciplines in medicine, biosciences, and social sciences and, finally, the University
of Joensuu was based on an earlier teacher training college having also natural sciences, humanities,
and social sciences in its discipline palette. The Eastern Finland universities were state universities
from the beginning.
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The post-war baby boom generation was coming to the university in the 1960s and 1970s, and
competition for resources between universities was great. So it turned out that the development of
the business school towards the multidisciplinary target would be a hard and long-lasting exercise.
Step by step the goal was, however, reached, at least to a decent extent.

Today the University of Vaasa is – on the Finnish scale – a small or medium-sized business-oriented
and multidisciplinary science university. The strategic focus areas of the university are management
and change, energy and sustainable development, as well as financial and economical decision-
making. The university has about 5000 students and about 300 of them are international degree
students. The total number of employees is about 510 of whom about 100 are international.

The university has been organized into schools. There are four schools for research and teaching:
the School of Management, the School of Accounting and Finance, the School of Marketing and
Communication, and the School of Technology and Innovations. The unit of mathematical sciences
belongs to the School of Technology and Innovations, although it is responsible for all the teaching
of mathematics and mathematics-based quantitative methods in the whole university. The teachers
and researchers of this unit are in close cooperation with employees of the other schools.

1.2 Strategy and values of the university today

In its strategy for 2030 the university defines itself to be an internationally competitive, productive
and specialized research university with a strong focus on impactful basic scientific research. The
core competence of the university consists of high-level expertise in business, technology, manage-
ment, and communications.

The university is focused on responsible business. Its fundamental purpose is to cultivate new know-
ledge and nurture civilization as a core value of our society. This is why the focus is on global
challenges and opportunities. They provide the university with the core source of motivation for its
education and research. The university uses its work as a means to advance positive and sustainable
development for individuals, communities, and the world at large.

Based on the strategy for 2030, the university has defined its vision, mission and values as follows.

• Vision: The University of Vaasa is regarded internationally as a successful and impactful
research university.

• Mission: The university carries out impactful research and educates experts that address the
needs of society today, and in the future. The university advances competitiveness, innovation
and sustainable development in business, technology, and society.

• Values: The values of the university are Courage, Community, and Responsibility.
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2 The role of mathematics and statistics in the university’s
palette of sciences

2.1 No own degree programme in master level – a recognized role, however

The role of mathematics and statistics in the University of Vaasa is not typical for universities. Ac-
cording to the strategy applied in the university today and during the past decades, these disciplines
have never been offered as the main subjects of bachelor and master level degrees. This has not
meant, however, that the disciplines were considered as less important for studies and research than
the disciplines with their own degree programmes. On the contrary, the methodological disciplines
have for example always been represented by professor chairs. It is noteworthy that even the first
chair established in the university – a business school in the beginning – and also having got its first
office-holder was the combined chair in economic mathematics and statistics.

The holder of the chair in economic mathematics and statistics was also the first rector of the business
school. He started his work already one year earlier than the school was opened and received its
first students. That is, he had a central role in planning the first year’s curriculum for the school.
According to the experiential opinion of the author of this article, the result was that the quantitative
sciences got a stronger role in the curriculum for the business students than was the case in the other
Finnish business schools at that time.

Nowadays the situation has changed. Other business schools have also became aware that modern
economic and business education as well as research needs a good comprehension of the quantitative
methods as well as the skill to use them. A large number of students graduated as doctors in business
economics in the University of Vaasa who, having been recruited as professors and other academic
employees to other business schools, have had a marked effect in this process.

2.2 Mathematical sciences – a close and united academic unit

At the beginning the teaching staff consisted of one professor and one lecturer, both posts being
combined posts for business mathematics and statistics. As the number of students increased the
unit obtained another professorship and an additional lectureship. This made it possible to focus the
duties of all the posts only on business mathematics or statistics, respectively. An assistantship was
also an important addition to the staff.

In the beginning of the 1990s the university started to enlarge its branch of activities towards techno-
logy. This could progress step by step only. First, technical elements were included in the curriculum
of two master programs in economics and business administration and an unofficial label “industrial
economist” was given to the graduates. The main subject in these programmes was either industrial
management or information technology. In the next step the university started to educate civil engi-
neers in co-operation with the Helsinki Technical University. The University of Vaasa recruited the
students who carried out half of their studies in Vaasa and graduated from Helsinki Technical Uni-
versity. In the beginning of the 2000s the University of Vaasa was allowed to educate civil engineers
completely as its own activity.
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It was clear that the enlargement of the branch of activities into technology presumed additional
resources also for the unit of mathematical sciences. The total number of students increased and the
amount, type, and level of mathematics needed in technical studies is different from what is needed
in economics, business administration, and in the social sciences. The requirements were resolved
by providing the unit with a professorship and a lectureship in mathematics.

Today the permanent staff in the unit (department) consists of three professors, three senior lecturers
with doctor degrees, one university teacher, and a varying number (3–5) of doctoral students and
post-doctoral researchers. Although administratively the unit is a part of the School of Technology
and Innovations, the main sphere of responsibility of business mathematics and statistics has been
supporting the School of Accounting and Finance and other business oriented schools by teaching
quantitative methods both for education and research purposes.

The unit of mathematical sciences is small. Therefore it is important that the mathematically oriented
disciplines form also administratively an integrated own unit. Together the unit’s academic subjects
are stronger, they can flexibly use common teaching resources, and they create and maintain a high-
level and international academic atmosphere in research. This administrative solution guarantees that
the department can form a close and united academic society. One example of the manifestation of
this coherence is that the unit takes care also of maintaining close contacts with its staff in retirement.

Holders of the professor offices in the department have been mainly recruited from other universities.
Statistics is an exception. The last two professor appointments in statistics have been candidates who
have done their doctoral studies and qualified for professorship when working at the University of
Vaasa. All the senior lecturers of the unit have received their doctor degrees while working at the
university. As a result, the staff members represents a high quality group of experts in their own
fields, but, at the same time, they possess understanding of and positive attitude towards the needs
of quantitative methods appearing among the students and researchers of other disciplines in the
university.

2.3 The unit’s supporting role in undergraduate education, its own intensive postgraduate
education, and high-quality international research

As has been mentioned earlier, the unit of mathematical sciences doesn’t have and has never had
any own master-level education programme in the curriculum of the university. In undergraduate
studies the role of mathematical sciences is to contribute as a strong and high-standard supporting
discipline offering basic university level knowledge and relevant advanced tools in mathematical and
statistical modelling for the students of the other education programmes of the university, especially
for students in business and technology. The demand of skills in the use of modern quantitative
methods and models is outstandingly high in the postgraduate level of the studies. Besides offering
methodological courses the professors of the unit participate as tutors in other subject’s doctoral
seminars.

Postgraduate studies in mathematics and statistics have been possible in the university from the be-
ginning. Their role has become more and more important during the years. The recruiting of students
is challenging due to the non-existing own master level education. The achievements are, however,
good and the department is for example a pioneer in the university in recruiting international students
for doctoral studies. Today, a majority of the unit’s postgraduate students is of foreign origin.
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As the mathematical sciences are represented on the professor level in the university, scientific re-
search is, of course, strongly on the department’s agenda. The research groups in which the de-
partment’s researchers participate represent the top quality in the university. The researchers have
created and maintain one of the university’s research programmes with the theme of mathematical
modelling. The projects in the programme are both discipline oriented, especially in mathematics,
and more application oriented in statistics and business mathematics. The research groups work
actively in co-operation with other researchers inside the university and with researchers in other
universities, both in Finland and abroad. Visiting foreign scholars are commonly seen working in
the department and the staff members work frequently abroad.

The professors and other staff members participate actively in the general management of the Uni-
versity. Two professors in economic mathematics have served as rectors of the University, several
professors as faculty deans and as heads of multidisciplinary departments. Professors and other staff
members are members of several managerial working groups.

3 Discussion

The chosen policy for the mathematical sciences in the University of Vaasa – i.e., to operate as an
academic education and research unit without any own undergraduate education programme – is
challenging. But the work done during the five first decades has shown that the chosen option has
been successful. The main measures for reaching success are:

• Careful attention has been paid when recruiting new members to the staff. Besides compe-
tence, the new members must also have an understanding of and a positive attitude towards
the other disciplines in the university with which they are expected to co-operate both in
education and research.

• Active co-operation with other disciplines inside the university has been a necessity for being
able to give relevant and up-to-date methodological support to both students and researchers
of other disciplines.

• To reach and maintain a high level competence in the area of everyone’s own expertise an
active communication and co-operation with the representatives of one’s own discipline in
other universities in Finland and abroad have been strongly on the agenda.

• The absence of own undergraduate education has not meant absence of postgraduate edu-
cation. On the contrary, active doctoral programmes have guaranteed continuity in research
and have helped in recruiting to the unit new employees who possess a relevant orientation
towards the operating principle of the unit. Of course, external recruiting has also been im-
portant for guaranteeing high levels of competence.

• Special attention has been paid for activating international co-operation in research and post-
graduate education.

A small university like the University of Vaasa must carefully focus its activities on areas about
which it has successful experience from the past, which are still relevant today and are also or
are expected to become crucial in the future, and which form a coherent entity. In education and
research, also the needs of the region and the whole society as well as the region’s possibilities to
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offer co-operation and support must have a strong role in the agenda. The strategy and values of the
university meet these requirements well.

Similarly, the unit of mathematical sciences as a small unit inside the university must have a clear
and specific high-standard academic culture in its operations. Conclusions from the scrutiny above
show that the unit has been successful in creating this culture.

Department of Mathematics and Statistics, University of Vaasa, 65200 Vaasa, Finland
E-mail address: ilkka.virtanen@uva.fi
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