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Abstract

In this paper realization problems for a class of operator-valued inverse Stieltjes
functions acting on a finite-dimensional Hilbert space are considered. They appear
as linear fractional transformations of the operator-valued transfer functions (charac-
teristic functions) of linear stationary conservative dynamical systems (Brodskĭı-Livšic
rigged operator colligations). Proofs of both the direct and inverse realization theorems
are provided.

1 Introduction

The major part of realization (representation) theory concerns the identification of a given

holomorphic function as a transfer (characteristic) function of a system (colligation) or a

linear fractional transformation of such a function. Systems whose main operator is bounded

have been investigated thoroughly, and original results go back to the works of M.S. Brodskĭı
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and M.S. Livšic, cf. [7], [12]. However many realizations in different fields including system

theory, scattering theory, and electrical engineering involve unbounded main operators and a

complete theory is not yet available. The aim of the present paper is to outline the necessary

steps needed to obtain a more general realization theory for a special class of holomorphic

functions along the lines of M.S. Brodskĭı and M.S. Livšic.

An operator-valued function V (z) acting on a Hilbert space E belongs to the class N of

Herglotz-Nevanlinna functions if outside R it is holomorphic, symmetric, i.e., V ∗(z) = V (z̄),

and satisfies (Im z)(Im V (z)) ≥ 0. Each Herglotz-Nevanlinna function V (z) has an integral

representation of the form

V (z) = Q + Fz +

∫

R

(
1

t− z
− t

1 + t2

)
dG(t), (1.1)

where Q = Q∗, F = F ∗ ≥ 0, and G(t) is nondecreasing operator-valued function on R, such

that ∫

R

dG(t)

t2 + 1
< ∞,

cf. [4], [11], [14]. The class of Herglotz-Nevanlinna functions has important subclasses such

as the class of Stieltjes functions and the class of inverse Stieltjes functions [11].

The question alluded to above is when a Herglotz-Nevanlinna function V (z) can be con-

sidered to be the characteristic function of a system (colligation) or its linear fractional

transformation. By a system is usually meant a linear stationary conservative dynamical

system (l.s.c.d.s.) Θ of the form

{
(A− zI) = KJϕ−,

ϕ+ = ϕ− − 2iK∗x,
ImA = KJK∗, (1.2)

where K and J are bounded linear operators in Hilbert spaces, ϕ− is an input vector,ϕ+ is

an output vector, and x is an inner state vector of the system Θ. The main operator A of

the system need not necessarily be bounded.

The realization of general Herglotz-Nevanlinna functions requires more general systems

than (1.2); the theory remains to be worked out in detail, cf. [8], [9], [10]. However, various

subclasses of Herglotz-Nevanlinna functions related to systems of the type (1.2) have been

identified, see [1], [2], [3], [5]. In particular, in [16], [18] necessary and sufficient conditions

were given for the main operator A, so that the linear fractional transformation of its transfer

function belongs to the class of Stieltjes functions. In the present paper similar questions are

treated related to the class of inverse Stieltjes functions. The approach in this note is based

on the use of rigged Hilbert spaces. This method for solving inverse problems in the theory

of operator-valued characteristic functions was introduced in [17] and was further developed

in [1], [4], [5].
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2 Preliminaries

This section contains some basic definitions and results that will be used in the proof of

the realization theorem for inverse Stieltjes functions. Let H be a Hilbert space with inner

product (·, ·). Let A be a closed linear Hermitian operator in H, i.e. (Af, g) = (f, Ag) for all

f, g ∈ dom A, whose domain dom A need not be dense. Let H0 = dom A and let A∗ be the

adjoint of the operator A (as an operator from H0 into H).

Since A is an operator it is clear that dom A∗ = H. Now equip H+ = dom A∗ with the

inner product

(f, g)+ = (f, g) + (A∗f,A∗g), f, g ∈ H+, (2.1)

and then construct a rigged Hilbert space triplet H+ ⊂ H ⊂ H− with positive and negative

norms, respectively; cf. [6]. In the following, the symbols (+) and (−) indicate the norms

‖ · ‖+ and ‖ · ‖− by which the geometrical and topological concepts are defined in H+ and

H−. Denote

Mλ = ran (A− λI), Nλ = M⊥̄
λ . (2.2)

Here the subspace Nλ is the defect subspace of A at λ̄ and the numbers dim Nλ and dim Nλ̄,

when Im λ < 0, are the deficiency indices of the operator A.

The set of all bounded linear operators acting from the Hilbert space H1 into the Hilbert

space H2 is denoted by [H1,H2]. An operator A ∈ [H+,H−] is said to be a bi-extension of

A if the inclusions A ⊃ A and A∗ ⊃ A are both satisfied. If, in addition, A = A∗ then A is

called a self-adjoint bi-extension of the operator A.

Given a closed Hermitian operator A, a closed densely defined linear operator T acting on

the Hilbert space H is said to belong to the class ΩA if T ⊃ A, T ∗ ⊃ A, and −i is a regular

point of T .

An operator A in [H+, H−] is called a (∗)-extension of an operator T from the class ΩA, if

the inclusions A ⊃ T and A∗ ⊃ T ∗ are both satisfied. A (∗)-extension A in [H+,H−] is said

to be correct if AR = 1
2
(A+ A∗) satisfies

AR ⊃ Â = Â∗ ⊃ A,

where Â = { {f,ARf} : f ∈ H, ARf ∈ H }.
An operator T ∈ ΩA is said to belong to the class ΛA, if T admits correct (∗)-extensions

and A is the maximal common Hermitian part of T and T ∗. It is known that for a closed

Hermitian operator A with finite, equal defect indices, the classes ΩA and ΛA coincide.

Finally, recall that a closed Hermitian operator A is called simple if there is no non-trivial

reducing subspace where it generates a self-adjoint operator. It is known, cf. e.g. [15], that

a symmetric operator A with equal deficiency indices is simple if and only if

span
{

Nλ : λ 6= λ̄
}

= H. (2.3)
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3 Linear stationary conservative dynamical systems

In this section linear stationary conservative dynamical systems Θ of the form (1.2) are

generalized to allow triplets of Hilbert spaces.

Definition 3.1. The array

Θ =

(
A K J

H+ ⊂ H ⊂ H− E

)
(3.1)

is called a linear stationary conservative dynamical system (l. s. c. d. s.) or Brodskĭı-Livšic

rigged operator colligation if

(i) A is a correct (∗)-extension of an operator T of the class ΛA;

(ii) J = J∗ = J−1 ∈ [E, E], dim E < ∞;

(iii) A− A∗ = 2iKJK∗, where K ∈ [E, H−], K∗ ∈ [H+, E].

In this case, the operator A (A ⊃ T ⊃ A, A∗ ⊃ T ∗ ⊃ A) is called a main operator, the

operator K is called a channel operator, and J is called a direction operator. A system Θ of

the form (3.1) will be called a scattering system (dissipative operator colligation) if J = I.

A system Θ is called minimal if its Hermitian operator A is simple.

The operator-valued function WΘ(z) defined by

WΘ(z) = I − 2iK∗(A− zI)−1KJ, (3.2)

is called an operator-valued transfer function of the system Θ or an operator-valued charac-

teristic function of Brodskĭı-Livšic rigged operator colligation. According to [13], ran K ⊂
ran (A− λI), and therefore WΘ(z) is well defined. Another operator-valued function related

to the l.s.c.d.s. Θ in (3.1) is given by

VΘ(z) = K∗(AR − zI)−1K. (3.3)

The transfer function WΘ(z) of the system Θ and the function VΘ(z) of the form (3.3) are

connected via

VΘ(z) = i[WΘ(z) + I]−1[WΘ(z)− I]J. (3.4)

Definition 3.2. An operator-valued function V (z) acting on a finite-dimensional Hilbert

space E is realizable, if in some neighborhood of the point −i, the function V (z) can be

represented in the form

V (z) = i[WΘ(z) + I]−1[WΘ(z)− I]J, (3.5)

where WΘ(z) is the transfer function of some l.s.c.d.s. Θ with the direction operator J

(J = J∗ = J−1 ∈ [E,E]).
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It was established in [4] that an operator-valued Herglotz-Nevanlinna function V (z) ∈
[E,E], dim E < ∞, can be realized by the l.s.c.d.s. Θ of the type (3.3) if and only if in the

representation (1.1) the following conditions are satisfied:

(i) F = 0;

(ii) Qe =
∫
R

t
1+t2

dG(t)e for all e ∈ E such that
∫
R(dG(t)e, e)E < ∞.

4 Realization theorems for the class S−1
0

The scalar version of the following definition can be found in [11]. In the present definitions

it is assumed that the underlying space E is finite-dimensional.

Definition 4.1. An operator-valued Herglotz-Nevanlinna function V (z) ∈ [E,E] is called a

Stieltjes or S-function if V (z) is holomorphic in Ext[0, +∞) and V (z) ≥ 0 in (−∞, 0), and

it is called an inverse Stieltjes function or S−1-function if V (z) is holomorphic in Ext[0, +∞)

and V (z) ≤ 0 in (−∞, 0).

The following two lemmas can be easily obtained from their scalar versions in [11].

Lemma 4.1. An invertible operator-valued function V (z) ∈ [E,E] (V (z) 6= 0) is an S−1-

function if and only if the function −V (z)−1 is an S-function.

Lemma 4.2. An operator-valued function V (z) ∈ [E, E] is an S−1-function if and only if

V (z) and V (z)/z both are operator-valued Herglotz-Nevanlinna functions.

Similar to (1.1) there are integral representations for Stieltjes and inverse Stieltjes func-

tions. In particular, V (z) is an operator-valued inverse Stieltjes function if and only if

V (z) = α + βz +

∫ ∞

0+

(
1

t− z
− 1

t

)
dG(t), (4.1)

where α ≤ 0, β ≥ 0, and G(t) is a non-decreasing operator-valued function on [0, +∞), such

that ∫ ∞

0+

dG(t)

t + t2
∈ [E,E].

The next definition is motivated by the general realization result from [4], mentioned

directly after Definition 3.2.

Definition 4.2. An operator-valued S−1-function V (z) ∈ [E,E] belongs to the class S−1
0 if

in the representation (4.1) the following conditions are satisfied:

(i) β = 0;

(ii)
∫∞
0+

(dG(t)e, e)E = ∞ for all e ∈ E.
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The next two theorems are the main results in this note. The first of them gives some

sufficient conditions for the system Θ of the form (1.2) which guarantee that VΘ(z) is an

inverse Stieltjes function from the class S−1
0 .

Theorem 4.1. Let Θ be an l.s.c.d.s of the form (3.1) with dom A = H, and assume that

(ARf, f) ≤ (A∗f, f) + (f,A∗f), f ∈ H+. (4.2)

Then the function VΘ(z) of the form (3.3), (3.4) belongs to the class S−1
0 .

Proof. First it will be shown that VΘ(z) belongs to S−1. Let {zk}, k = 1, ..., n, be a sequence

of non-real complex numbers and let ϕk be a sequence of elements of Nzk
, the defect subspace

of A. Then for every ϕk there exists hk ∈ E such that

ϕk = (AR − zkI)−1Khk, k = 1, . . . , n, (4.3)

and conversely, see [17]. With ϕ =
∑n

k=1 ϕk/zk it follows from A∗ϕk = zkϕk and (4.3) that

(A∗ϕ, ϕ) + (ϕ,A∗ϕ)− (ARϕ, ϕ)

=
n∑

k,l=1

1

zkz̄l

[(A∗ϕk, ϕl) + (ϕk, A
∗ϕl)− (ARϕk, ϕl)]

=
n∑

k,l=1

1

zkz̄l

([−AR + zk + z̄l]ϕk, ϕl)

=
n∑

k,l=1

(
(AR − z̄lI)−1(z̄l(AR − z̄lI)− zk(AR − zkI))(AR − zkI)−1

zkz̄l(zk − z̄l)
Khk, Khl

)

=
n∑

k,l=1

(
z̄lK

∗(AR − zkI)−1K − zkK
∗(AR − zlI)−1K

zkz̄l(zk − z̄l)
hk, hl

)

=
n∑

k,l=1

(
z̄lVΘ(zk)− zkVΘ(z̄l)

zkz̄l(zk − z̄l)
hk, hl

)

=
n∑

k,l=1

(
VΘ(zk)/zk − VΘ(z̄l)/z̄l

zk − z̄l

hk, hl

)
.

In particular, one obtains

(
VΘ(z)/z − VΘ(z̄)/z̄

z − z̄
h, h

)
≥ 0, h ∈ E, z ∈ C \ R,

so that (Im z)(Im (VΘ(z)/z)) ≥ 0. Therefore, VΘ(z)/z is an operator-valued Herglotz-

Nevanlinna function. Moreover, VΘ(z) itself is an operator-valued Herglotz-Nevanlinna func-

tion, cf. [4]. According to Lemma 4.2 this means that VΘ(z) is an inverse Stieltjes function.
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Next it will be shown that VΘ(z) belongs to the class S−1
0 . Since VΘ(z) is an inverse Stieltjes

function, (4.1) shows that

VΘ(z) = α + βz +

∫ ∞

0+

(
1

t− z
− 1

t

)
dG(t),

where α ≤ 0, β ≥ 0, and ∫ ∞

0+

dG(t)

t + t2
∈ [E,E].

In a neighborhood of zero the function t + t2 is equivalent to the function t + t3 and in a

neighborhood of ∞ one has the inequality

1

t + t3
<

1

t + t2
.

Hence, ∫ ∞

0+

dG(t)

t + t3
∈ [E,E]. (4.4)

Furthermore,

VΘ(z) = α + βz +

∫ ∞

0+

(
1

t− z
− t

1 + t2
+

t

1 + t2
− 1

t

)
dG(t)

=

(
α−

∫ ∞

0+

dG(t)

t + t3

)
+ βz +

∫ ∞

0+

(
1

t− z
− t

1 + t2

)
dG(t).

(4.5)

Assume that the function G(t) has been properly normalized. Then the integral represen-

tation (4.5) coincides with the integral representation (1.1). By assumption the Herglotz-

Nevanlinna function VΘ(z) is realizable, so that F = 0, and consequently, β = 0. Hence,

VΘ(z) satisfies the first condition (i) in Definition 4.2. The second condition (ii) in Definition

4.2 is also satisfied, since dom A = H (see [5], [13]).

The next result is a converse to Theorem 4.1.

Theorem 4.2. Let the operator-valued function V (z) act in a finite-dimensional Hilbert

space E, and assume that V (z) ∈ S−1
0 . Then V (z) admits a realization by a minimal system Θ

of the form (3.1) with a nonnegative densely defined Hermitian operator A, and a preassigned

direction operator J for which I + iV (−i)J is invertible. Moreover, the condition (4.2) holds

for this system.

Proof. Each inverse Stieltjes function is a Herglotz-Nevanlinna function. By direct inspection

it can be seen that an inverse Stieltjes function of the class S−1
0 can be realized by a minimal

l.s.c.d.s., see the conditions stated in the end of Section 3 (cf. [4]). Thus it suffices to show

that the realizing system in the proof of the realization theorem in [4] appears to be a system

of the form (3.1) where the operator A is a densely defined nonnegative operator, such that
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condition (4.2) holds. The operator A in the proof of the realization theorem in [4] has the

form

Af(t) = tf(t), (4.6)

and acts in the model Hilbert space L2
G[0, +∞). Hence, A is a nonnegative operator. The

construction of dom A in [4] (see also [5]) immediately implies that dom A = H.

It remains to show that the system also satisfies the condition (4.2). Due to the con-

struction of dom A in [4] and the fact that dom A = H, the operator A has equal deficiency

indices. By construction, the system Θ is minimal, and therefore, the operator A is simple.

Hence,

span
{

Nλ : λ 6= λ̄
}

= H+, (4.7)

where the closure is taken with respect to the (+)-metric. In the proof of Theorem 4.1 it

has been shown that

(ARϕ, ϕ) ≤ (A∗ϕ, ϕ) + (ϕ,A∗ϕ), ϕ =
n∑

k=1

ϕk/zk, ϕk ∈ Nzk
, (4.8)

is equivalent to
n∑

k,l=1

(
VΘ(zk)/zk − VΘ(z̄l)/z̄l

zk − z̄l

hk, hl

)
≥ 0,

cf. (4.3). Now, combine (4.7) and (4.8) to obtain the inequality (4.2). Therefore, Θ is the

required system.

Observe, that for scattering systems, i.e. if J = I, the invertibility condition in Theorem 4.2

is automatically satisfied.

5 A class of Schrödinger operators

In this section a system Θ of the form (3.1) is constructed for non-selfadjoint Schrödinger

operators on a half-line [a,∞) which are in the limit point case at ∞. Let H = L2[a, +∞)

and let l(y) = −y′′+ q(x)y, where q(x) is a real-valued locally summable function, such that

the limit point case prevails at ∞. Then the symmetric operator
{

Ay = −y′′ + q(x)y,

y(a) = y′(a) = 0,
(5.1)

has deficiency indices (1, 1). Provide the linear space H+ = dom A∗ with the scalar product

(y, z)+ = (y, z) + (l(y), l(z)), y, z ∈ dom A∗, (5.2)

where dom A∗ is the set of all absolutely continuous (including their derivatives) functions

y for which l(y) ∈ L2[a, +∞) and where (·, ·) stands for the scalar product in L2[a, +∞).

Construct a rigged Hilbert space

H+ ⊂ L2[a, +∞) ⊂ H−,
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and, for h ∈ C, (Im h > 0) consider the operators
{

Thy = −y′′ + q(x)y,

hy(a)− y′(a) = 0,
(5.3)

and {
T ∗

hy = −y′′ + q(x)y,

h̄y(a)− y′(a) = 0,
(5.4)

of the class ΩA. It is known [16] that the operators

Ay = −y′′ + q(x)y +
i

Im h
[hy(a)− y′(a)][δ′(x− a)−m∞(0−)δ(x− a)],

A∗y = −y′′ + q(x)y − i

Im h
[h̄y(a)− y′(a)][δ′(x− a)−m∞(0−)δ(x− a)],

(5.5)

define correct (∗)-extensions of the Schrödinger operators Th and T ∗
h of the form (5.3) and

(5.4). Here m∞(λ) is the Weyl function [16], while δ(x− a) and δ′(x− a) are the δ-function

and its derivative, respectively. It is easy to check (see also [16]) that

ImA =
1

Im h
[−y′(a)−m∞(0−)y(a)][δ′(x− a)−m∞(0−)δ(x− a)] = (·, g)g, (5.6)

where

g =
1

(Im h)1/2

[
δ′(x− a)−m∞(0−)δ(x− a)

]
. (5.7)

Let E = C1, and let K be defined by

K : c 7→ cg, c ∈ C1, (5.8)

where g ∈ H+ is given by (5.7). Clearly,

K∗y = (y, g), y ∈ H+,

and ImA = K K∗. The system

Θ =

(
A K I

H+ ⊂ L2[a, +∞) ⊂ H− C1

)
(5.9)

is a l.s.c.d.s. with the main operator A of the form (5.5), the direction operator J = I, and

the channel operator K defined by (5.8). It satisfies the conditions of the system in Theorem

4.2. Direct calculations show that

WΘ(λ) = −m∞(λ) + h̄

m∞(λ) + h
. (5.10)

Consequently, the function

VΘ(λ) = i[WΘ(λ) + I]−1[WΘ(λ)− I]

is an inverse Stieltjes function of the class S−1
0 .
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347.
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